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Abstract

In this paper, we present a network-based clustering method, called vector Wasserstein

clustering (vWCluster), based on the vector-valued Wasserstein distance derived from

optimal mass transport (OMT) theory. This approach allows for the natural integration of

multi-layer representations of data in a given network from which one derives clusters via a

hierarchical clustering approach. In this study, we applied the methodology to multi-omics

data from the two largest breast cancer studies. The resultant clusters showed significantly

different survival rates in Kaplan-Meier analysis in both datasets. CIBERSORT scores were

compared among the identified clusters. Out of the 22 CIBERSORT immune cell types, 9

were commonly significantly different in both datasets, suggesting the difference of tumor

immune microenvironment in the clusters. vWCluster can aggregate multi-omics data repre-

sented as a vectorial form in a network with multiple layers, taking into account the concor-

dant effect of heterogeneous data, and further identify subgroups of tumors in terms of

mortality.

Introduction

Current large-scale cancer genome projects, such as The Cancer Genome Atlas (TCGA), pro-

vide a comprehensive molecular portrait of human cancers, including gene expression, copy

number variation (CNV), and DNA methylation profiles. These offer unprecedented opportu-

nities for exploring cancer biology that is characterized through various molecular functions

and their complex interactions. Several computational methods for multi-omics data integra-

tion and further clustering have been proposed to identify tumor subgroups associated with

distinct clinical outcomes, leveraging complementary information of multi-omics data [1].

iCluster uses a joint latent variable method across multi-omics types to model integrative clus-

tering [2]. Recently, Alkhateeb et al. proposed a deep learning method to predict the 5-year

interval survival of breast cancer based on multi-omics data integration [3]. Network based
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clustering methods using integrated multi-omics data have been proposed. Similarity network

function (SNF) is a technique for combining multiple networks of each omics type into a single

network, which is followed by a spectral clustering method to identify subtypes of tumors [4].

On the other hand, aWCluster utilizes a prior known network of gene products to integrate

multi-omics data [5]. First, the data integration method yields an invariant measure for each

node (gene). After repeating this process for each omics type, the invariant measures are inte-

grated at each node. The Wasserstein distance, derived from optimal mass transport (OMT)

theory [6, 7], is then computed between all pairs of samples on the network using the integra-

tive invariant measure. The distance matrix is then input into a hierarchical clustering algo-

rithm, resulting in clusters.

Representing data, e.g. as latent variables or weighted graphs, is essential to efficiently inte-

grate multi-omics data while minimizing information loss. In this study, we propose a new

method, called vector Wasserstein clustering (vWCluster), in which we employ a vector-val-

ued version of the Wasserstein distance [8]. First, multi-omics data are represented as a multi-

layer biological network, forming a layer for each single omics type. The Wasserstein distance

is then computed on the vector-valued data in the network between all pairs of samples. The

resulting distance matrix is then input into a hierarchical clustering method to identify sub-

types of tumors. This method that represents multi-omics data vectorially on a network

appears to be more straightforward to handle heterogeneous data compared to previously pro-

posed methods while minimizing information loss.

The Wasserstein distance from OMT has increasingly received attention in data analysis

due to its attractive property of (weak) continuity [6, 7]. In the present work, we will only use

the W1 version, also known as the Earth Mover’s distance (EMD). Other metrics commonly

used on distributions, such as Kullback Leibler, Jensen-Shannon, or total variation, do not

have the property [9, 10], which makes the metrics much more susceptible to the noise that is

typically observed in medical data. Moreover, the Wasserstein distance is a metric for distribu-

tions defined on a metric space, which is essential for us to include the information from the

weighted graphs used in this paper. Due to its attractive properties, OMT is becoming more

and more widely used in signal processing, machine learning, computer vision, meteorology,

statistical physics, quantum mechanics, and network theory [9, 11–15]. To even strengthen its

power, several works deal with various extensions of the theory; see [11, 13, 16–18] and the ref-

erences therein. In the present work, we empoly vector-valued extension of the Wasserstein

distance [8, 19].

To the best of our knowledge, we are the first to use a vector-valued OMT methodology

for the multi-omics data integration. We propose a general pipeline to analyze heteroge-

neous data in a multi-layer structure, employing a known protein-protein interaction net-

work, and then cluster samples based on the resulting Wasserstein distance matrix. In the

present work, our method is applied to multi-omics data from the two largest breast cancer

studies: the Molecular Taxonomy of Breast Cancer International Consortium (METABRIC)

and TCGA studies [20, 21]. In the following section, we describe the proposed method and

data in detail.

Background and methods

We developed a vector-valued OMT approach that integrates multi-omics data represented in

a multi-layer network, on which we applied the W1 Wasserstein distance (EMD). Accordingly,

we will only outline the OMT theory in this special case. In the following, we first describe the

basic concept of Wasserstein distance and then introduce the proposed method.
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Scalar-valued optimal transport

The W1 Wasserstein distance (EMD) was first formulated by the French civil engineer and

mathematician Gaspard Monge in 1781 [6, 7, 22, 23]. Originally, this subject was inspired by

the problem of finding the optimal plan, relative to a given cost, for moving a pile of soil from

a given location to another in a mass preserving manner. The original Monge’s formulation of

OMT (in which the cost function is defined by the distance) may be given a modern expression

as follows [6, 7]:

WMðr0; r1Þ ¼ inf
T

Z

S
jjx � TðxÞjjr0ðxÞdx j T#r0 ¼ r1

� �

; ð1Þ

where S denotes a subdomain of Rn, T is the transport map, and ρ0, ρ1 are two marginals. Here

T# denotes the push-forward of T. Therefore, the W1 Wasserstein distance is the optimal cost

with respect to the norm among all possible T.

As pioneered by Leonid Kantorovich [24], the Monge formulation of OMT may be relaxed

by replacing transport maps T by couplings π:

WKðr0; r1Þ ¼ inf
p2Pðr0 ;r1Þ

Z

S
jjx � yjjpðdx; dyÞ; ð2Þ

whereP(ρ0, ρ1) denotes the set of all the couplings between ρ0 and ρ1 (joint distributions

whose two marginal distributions are ρ0 and ρ1). Despite the relaxation, one may show that

Kantorovich and Monge formulations are equivalent in a number of cases under certain conti-

nuity constraints; see [6, 7] and the references therein.

One of the benefits of Eq (2) is that it amounts to a linear programming problem. Via dual-

ity theory, an equivalent form may be expressed as follows (see [22] for the proof):

W ~K ðr0; r1Þ ¼ inf
u

Z

S
jjuðxÞjjdx ð3aÞ

divxuðxÞ ¼ r0ðxÞ � r1ðxÞ; ð3bÞ

where u ¼ ðu1; u2; . . . ; unÞ : S! Rn is the flux, and divx denotes the divergence operator.

It is straightforward to extend Eq (3) to the discrete case by simply replacing the integral by

an appropriate summation and replacing divx by the discrete divergence operator:

WGðr0; r1Þ ¼ min
u

XjEG j

i¼1

juij ð4aÞ

r0 � r1 � Du ¼ 0: ð4bÞ

On the graph G ¼ ðVG;EGÞ, the fluxes ui now are defined on the edges EG, and D 2 RjVG j�jEG j

denotes the incidence matrix of G with directionality, namely we need to specify the directions

of the fluxes. Thus, in the matrix D, each column has two nonzero entries, where one is 1

whose row number is the starting point of an edge while the other nonzero entry is -1 whose

row number is the ending point of that edge.

Vector-valued optimal transport

A vector-valued density~r ¼ ½r1ðxÞ; r2ðxÞ; � � � ; rmðxÞ�T on a given space S (continuous or dis-

crete) may represent a physical entity that can mutate or transition between alternative mani-

festations, e.g., power reflected off a surface at different frequencies or polarizations. More
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formally, in the continuous setting, an m-layer vector-valued density~r on S � Rn is a map

from S toRm
þ

whose total mass is defined as
Pm

i¼1

R

Sr
iðxÞdx: As a distribution, we require its

total mass to be 1. Note that the integral over S is just in general. If the space S is a discrete

space, then the integral is replaced by summation.

Vector-valued optimal transport studies such distributions, which is of great theoretical

and practical interest since it does not simply consider each layer separately, but explicitly

models the relationships among layers [19]. A relationship is expressed as an additional graph

structure that connects each layer. Specifically, each component of ρ is represented by a node

of a graph F ¼ ðVF ;EFÞ and an edge between two nodes allows for direct transport between

the corresponding layers. So jVF j ¼ m, which represents the cardinality of all the channels

(layers), and EF is the set of all the direct connections between the layers.

Thus, the vector-valued optimal transport problem may be written as follows:

WVð~r0;~r1Þ ¼ inf
~u ;~w

Z

S
jj~uðxÞjj þ gjj~wðxÞjjdx ð5aÞ

divx~uðxÞ þ divF~wðxÞ ¼ ~r0ðxÞ � ~r1ðxÞ; ð5bÞ

where~u; ~w are both vector-valued, divx is the spatial divergence which is taken componentwise

for each layer, and divF is the discrete divergence on the graph F which takes the flows

between channels into account. Here γ� 0 is a parameter to control flow between channels.

As in the scalar-valued case, we can extend the definition for distributions to a discrete

graph G. The vector-valued formulation on a graph is then the following:

W ~V ð~r0;~r1Þ ¼ min
u;w

XjEG j

i¼1

XjVF j

j¼1

juj
ij þ g

XjVG j

i¼1

XjEF j

j¼1

jwj
ij ð6aÞ

~r0 � ~r1 � D1u � D2w ¼ 0; ð6bÞ

where u is the flux within each layer, w is the flux across layers, and D1 and D2 are two matrices

of the discrete divergence operators for two graphs.

On the one hand, this is a generalized form of Eq (4) derived by replacing each original

node in the graph G by another graph. On the other hand, this formulation may be understood

as a distribution on a super-graph G � F . This super-graph is an irregular grid version of the

Kronecker product. A slight difference from directly computing OMT distance on such a

super-graph is that vector OMT on a graph here gives two different weights for the two differ-

ent sets of edges. It is weighted vector-valued OMT. We later will see that two different kinds

of fluxes via two graphs have different meanings.

Multi-omics data from two breast cancer studies

Multi-omics data for METABRIC and TCGA breast cancer studies were downloaded from the

cBioPortal database [25, 26]. The METABRIC dataset contains microarray gene expression of

24,368 genes from 1,904 samples and copy number variation (CNV) of 22,544 genes from

2,173 samples. The intersection of the two omics data resulted in 16,195 genes from 1,904 sam-

ples. The TCGA breast cancer dataset consists of RAN-Seq gene expression of 18,022 genes

from 1,100 samples, CNV of 15,213 genes from 1,080 samples, and methylation of 15,585

genes from 741 samples. The intersection of the three omics data resulted in 7,737 genes from

726 samples.

vWCluster requires all the nodal values in the network to be positive, because of the Markov

chain process (see Section Markov chain and stationary distribution). The only data prepro-

cessing was to exponentiate CNV values to ensure their positive.
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Graph structures for analysis

We represented multi-omics data as vector-valued distributions on the gene (product) interac-

tion network. The interaction network was derived from the Human Protein Reference Data-

base (HPRD) [27]. The largest connected network component was found in the interaction of

the HPRD and the gene list of METABRIC or TCGA breast cancer data, separately, resulting

in 3,147 and 3,426 genes, respectively. As multi-omics data in the TCGA breast cancer cohort,

gene expression, CNV, and methylation data were used, whereas in the METABRIC cohort,

only gene expression and CNV data were available, thereby forming 3-vector and 2-vector dis-

tributions, respectively.

More specifically, the network for METABRIC consisted of two layers (gene expression and

CNV), each of which had the same topology (the largest connected network component)

derived from HPRD. The connection between the two layers was formed by connecting the

two nodes for the same gene in each layer, yielding the graph F structure.

For the network with the TCGA data, the layer for gene expression was connected with

both layers for CNV and methylation since CNV and methylation may affect the level of gene

expression. There was no connection between the CNV and methylation layers. See Fig 1.

Markov chain and stationary distribution

One problem of applying the vector-valued optimal transport method to multi-omics data is

that the scale of individual omics data varies. For example, CNV data consists of integer values,

while gene expression and methylation data have continuous values. To tackle this issue, we

use the invariant (stationary) distribution derived from a Markov process of the gene network.

A Markov process is a stochastic process such that the probability of a given event depends

only on the state of the previous event. To put it simpler in our graph setting, one starts with a

certain distribution. At each time step, the probability at each node redistributes to all its

neighbors with predefined weights. In the gene network setting [28], we set the probability of

moving from a node i to its neighbor j to be:

pij ¼
gj

P
k2NðiÞgk

; ð7Þ

Fig 1. Graph structure for the TCGA breast cancer data.

https://doi.org/10.1371/journal.pone.0265150.g001
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where gk> 0 is the weight of node k, which can be any omics type (gene expression, CNV or

methylation). Note that for methylation, 1-methylation values were used since methylation is

likely to be negatively correlated with gene expression.

The matrix p is a stochastic matrix, i.e., the state probability matrix from the current time

step to the next, as follows:

ptþ1 ¼ ptp; ð8Þ

where πt is the distribution at time step t. In our setting, after a finite number of time steps, the

initial distribution will converge to a stationary (invariant) distribution π such that

p ¼ pp: ð9Þ

The stationary distribution has a closed form solution:

pi ¼
1

Z
gi
X

k2NðiÞ
gk; ð10Þ

where Z is the normalization factor to be a probability distribution.

This Markov process on the gene network mimics the interactions among genes and the

stationary distribution gives a distribution that represents the information each gene has

which includes not only its own value but the interactions with its neighbors. The Markov pro-

cess was performed for each sample in individual omics types, separately, yielding invariant

measures Iijk for sample i, omics type j, and gene k.

Clustering based on the vector-valued Wasserstein distance

With the graph structure determined, the vector-valued Wasserstein distance was computed

for each pair of samples, using the invariant measures of each omics type. Note that the net-

work for METABRIC or TCGA breast cancer data consisted of 2 and 3 layers, respectively.

That is, we fitted the multi-omics data into the vector-valued optimal transport model. The

resulting distance matrix was then input to standard hierarchical clustering to identify clusters

of tumors. Kaplan-Meier survival analysis with log-rank test was performed to assess the dif-

ference of 5-year survival rates among the clusters identified. Further, CIBERSORT scores

were compared among the clusters to investigate the difference in immune cell types [29, 30].

This analysis was performed for METABRIC or TCGA breast cancer data, separately. vWClus-

ter was implemented in MATLAB and the code is available on https://github.com/MSK-MOI/

vWCluster.

Results

METABRIC data analysis

The vector-valued Wasserstein distance was computed on gene expression and CNV data for

METABRIC data. As described above, the resulting distance matrix was input to standard

hierarchical clustering. The clustering results are shown in Fig 2.

Based on the dendrogram and the number of intrinsic molecular subtypes in breast cancer,

four clusters were chosen for further analysis. Kaplan-Meier analysis with log-rank test (with-

out NA samples) resulted in a statistically significant survival difference among clusters with a

log-rank p< 0.0001 (Fig 3).

The clustering results were compared with PAM50 and Claudin-low subtypes [31], and the

associations were assessed using a chi-squared test, resulting in p< 0.0001 as shown in
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Table 1. Clusters 1 and 2 were enriched for Luminal A subtype. Cluster 3 was enriched for

Luminal A and B subtypes, and cluster 4 was more enriched for basal subtype.

For the four clusters identified, 22 CIBERSORT immune cell types were compared using

one-way analysis of variance (ANOVA) test. The twelve immune cell types were statistically

significantly different among the four clusters. The top two significant immune cell types were

M0 and M1 macrophages, for which Cluster 4 had the highest values with mean = 0.158 (stan-

dard deviation [SD] = 0.094) and 0.103 (0.051), respectively (Table 2).

Fig 2. Clustering results employing the resultant vector-valued Wasserstein distance on METABRIC data.

https://doi.org/10.1371/journal.pone.0265150.g002

Fig 3. Kaplan-Meier analysis for four clusters that resulted from a hierarchical clustering method on the vector-valued

Wasserstein distance matrix in the METABRIC study.

https://doi.org/10.1371/journal.pone.0265150.g003
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TCGA data analysis

To validate the proposed method, we further analyzed multi-omics data in the TCGA breast

cancer study, including gene expression, CNV, and methylation data. The clustering results

are shown in Fig 4. Similar to the METABRIC analysis, four clusters were chosen for further

analysis. Kaplan-Meier analysis with log-rank test resulted in a statistically significant survival

difference among clusters with a log-rank p = 0.0088 (Fig 5).

The clustering results were compared with PAM50 subtypes. The associations were assessed

using a chi-squared test, resulting in p< 0.0001 as shown in Table 3. Clusters 1 and 2 were

enriched for Luminal A and B subtypes. Cluster 4 was more enriched for basal subtype.

For the four clusters identified, 22 CIBERSORT immune cell types were compared using

the one-way ANOVA test. Fifteen immune cell types were statistically significantly different

among the four clusters. The most significant immune cell type was M0 macrophages with

p = 1.51E-08 (Table 4).

Table 1. Comparison between PAM50 along with Claudin-low subtypes and clusters identified by the proposed method.

Cluster Luminal A Luminal B Her2 Basal Claudin-low Normal-like NA

1 189 94 33 16 24 32 3

2 316 78 32 18 95 62 2

3 147 205 85 31 27 33 1

4 27 84 70 134 53 13 0

NA: not available.

https://doi.org/10.1371/journal.pone.0265150.t001

Table 2. Comparison of 22 CIBERSORT immune cell types among the four clusters identified in METABRIC, showing mean (standard deviation) values.

Immune cell types Cluster 1 Cluster 2 Cluster 3 Cluster 4 P-value

B cells naive 0.008 (0.017) 0.008 (0.018) 0.008 (0.019) 0.007 (0.017) 0.8240

B cells memory 0.03 (0.036) 0.035 (0.047) 0.025 (0.031) 0.026 (0.031) 3.60E-05

Plasma cells 0.17 (0.098) 0.169 (0.097) 0.172 (0.093) 0.165 (0.089) 0.7405

T cells CD8 0.045 (0.05) 0.044 (0.048) 0.041 (0.049) 0.042 (0.047) 0.5181

T cells CD4 naive 0.014 (0.034) 0.017 (0.039) 0.013 (0.028) 0.009 (0.025) 0.0028

T cells CD4 memory resting 0.055 (0.06) 0.057 (0.058) 0.052 (0.057) 0.044 (0.053) 0.0068

T cells CD4 memory activated 0.001 (0.005) 0.001 (0.007) 0.001 (0.005) 0.001 (0.007) 0.6263

T cells follicular helper 0.057 (0.034) 0.053 (0.035) 0.055 (0.035) 0.068 (0.036) 3.86E-10

T cells regulatory (Tregs) 0.016 (0.02) 0.014 (0.02) 0.017 (0.021) 0.017 (0.021) 0.0771

T cells gamma delta 0.057 (0.045) 0.056 (0.044) 0.059 (0.044) 0.063 (0.044) 0.1604

NK cells resting 0.003 (0.013) 0.005 (0.016) 0.003 (0.011) 0.003 (0.013) 0.1057

NK cells activated 0.029 (0.026) 0.025 (0.026) 0.029 (0.025) 0.031 (0.028) 0.0028

Monocytes 0.017 (0.024) 0.021 (0.027) 0.015 (0.022) 0.019 (0.029) 0.0018

Macrophages M0 0.106 (0.095) 0.104 (0.092) 0.13 (0.098) 0.158 (0.094) 3.50E-19

Macrophages M1 0.076 (0.042) 0.069 (0.044) 0.081 (0.043) 0.103 (0.051) 1.69E-28

Macrophages M2 0.159 (0.089) 0.162 (0.095) 0.147 (0.077) 0.126 (0.067) 6.74E-11

Dendritic cells resting 0.003 (0.01) 0.005 (0.013) 0.003 (0.008) 0.005 (0.014) 0.0323

Dendritic cells activated 0.003 (0.01) 0.004 (0.013) 0.005 (0.017) 0.009 (0.023) 3.89E-07

Mast cells resting 0.147 (0.104) 0.148 (0.11) 0.144 (0.1) 0.101 (0.082) 4.26E-13

Mast cells activated 0.001 (0.004) 0.001 (0.005) 0.001 (0.004) 0.001 (0.008) 0.1828

Eosinophils 0 (0) 0 (0.001) 0 (0.001) 0 (0) 0.9508

Neutrophils 0.001 (0.005) 0.001 (0.004) 0.001 (0.006) 0.001 (0.002) 0.0684

https://doi.org/10.1371/journal.pone.0265150.t002
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Nine immune cell types were significantly different in both METABRIC and TCGA studies:

memory B cells, resting memory CD4 T cells, follicular helper T cells, monocytes, M0 macro-

phages, M1 Macrophages, resting dendritic cells, activated dendritic cells, and resting mast

cells (Fig 6). Three immune cell types, including naive CD4 T cells, activated NK cells, and M2

macrophages, showed statistical significance in METABRIC alone, whereas six immune cell

types, including naive B cells, Plasma cells, CD8 T cells, activated memory CD4 T cells, regula-

tory T cells (Tregs), and resting NK cells, showed statistical significance in TCGA alone.

Fig 4. Clustering results employing the resultant vector-valued Wasserstein distance on TCGA data.

https://doi.org/10.1371/journal.pone.0265150.g004

Fig 5. Kaplan-Meier analysis for four clusters that resulted from a hierarchical clustering method on the vector-valued

Wasserstein distance matrix in the TCGA breast cancer study.

https://doi.org/10.1371/journal.pone.0265150.g005
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Comparison with SNF

The clustering performance of vWCluster was compared with that of SNF using gene expres-

sion and CNV data for METABRIC and gene expression, CNV, and methylation data for

TCGA breast cancer. Kaplan-Meier analysis for the resulting four clusters from SNF yielded

statistical significance for METABRIC with a log-rank p< 0.0001, but for TCGA breast can-

cer, the log-rank test was statistically insignificant with p = 0.13 (S1 Fig).

We also compared vWCluster with SNF for five clusters. For METABRIC, both methods

resulted in significant log-rank p-values with p< 0.0001. For TCGA breast cancer, vWCluster

resulted in statistical significance with p = 0.013, which was slightly worse than that of four

clusters, whereas the p-value of SNF for five clusters remained statistically insignificant with

p = 0.0884.

Table 3. Comparison between PAM50 subtypes and clusters identified by the proposed method.

Cluster Luminal A Luminal B Her2 Basal Normal-like NA

1 184 9 0 0 11 0

2 131 46 22 56 15 3

3 66 73 19 45 4 4

4 2 7 2 25 1 1

NA: not available.

https://doi.org/10.1371/journal.pone.0265150.t003

Table 4. Comparison of 22 CIBERSORT immune cell types among the four clusters identified in TCGA, showing mean (standard deviation) values.

Immune cell types Cluster 1 Cluster 2 Cluster 3 Cluster 4 P-value

B cells naive 0.068 (0.045) 0.05 (0.046) 0.045 (0.046) 0.033 (0.037) 2.29E-07

B cells memory 0.007 (0.017) 0.015 (0.031) 0.01 (0.021) 0.017 (0.025) 0.0005

Plasma cells 0.049 (0.052) 0.037 (0.045) 0.046 (0.052) 0.032 (0.038) 0.0341

T cells CD8 0.106 (0.057) 0.108 (0.064) 0.093 (0.061) 0.094 (0.068) 0.0331

T cells CD4 naive 0 (0.004) 0 (0.001) 0.002 (0.011) 0 (0.002) 0.0662

T cells CD4 memory resting 0.135 (0.076) 0.122 (0.074) 0.098 (0.071) 0.068 (0.069) 1.23E-06

T cells CD4 memory activated 0 (0.002) 0.004 (0.012) 0.003 (0.011) 0.003 (0.009) 0.0014

T cells follicular helper 0.063 (0.039) 0.073 (0.04) 0.07 (0.045) 0.093 (0.068) 0.0003

T cells regulatory (Tregs) 0.014 (0.02) 0.026 (0.03) 0.02 (0.024) 0.015 (0.02) 8.15E-06

T cells gamma delta 0.003 (0.01) 0.003 (0.01) 0.002 (0.007) 0.004 (0.012) 0.4291

NK cells resting 0.003 (0.01) 0.006 (0.013) 0.005 (0.011) 0.012 (0.019) 7.92E-05

NK cells activated 0.02 (0.024) 0.019 (0.023) 0.021 (0.025) 0.017 (0.023) 0.8629

Monocytes 0.02 (0.023) 0.016 (0.019) 0.015 (0.026) 0.016 (0.018) 0.0314

Macrophages M0 0.056 (0.1) 0.087 (0.105) 0.116 (0.132) 0.177 (0.165) 1.51E-08

Macrophages M1 0.055 (0.032) 0.069 (0.045) 0.057 (0.04) 0.058 (0.054) 0.0014

Macrophages M2 0.271 (0.119) 0.273 (0.128) 0.301 (0.121) 0.286 (0.13) 0.1177

Dendritic cells resting 0.021 (0.031) 0.015 (0.025) 0.011 (0.024) 0.005 (0.012) 0.0003

Dendritic cells activated 0.002 (0.007) 0.004 (0.013) 0.009 (0.026) 0.021 (0.06) 3.58E-07

Mast cells resting 0.096 (0.071) 0.063 (0.062) 0.064 (0.075) 0.042 (0.044) 1.41E-07

Mast cells activated 0.007 (0.024) 0.005 (0.02) 0.011 (0.036) 0.004 (0.009) 0.4921

Eosinophils 0.001 (0.003) 0 (0.003) 0 (0.002) 0 (0) 0.8402

Neutrophils 0.003 (0.008) 0.002 (0.005) 0.004 (0.007) 0.003 (0.008) 0.1433

https://doi.org/10.1371/journal.pone.0265150.t004
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Discussion

The treatment of multi-omic biological data in a vector-valued manner may provide new

insights for understanding the biological mechanisms of cancer biology, using complementary

information offered by individual omics types. vWCluster is a data analysis methodology

based on OMT theory, which enables the integration of multi-omics data in a vector-valued

form, represented by multiple layers in a network. The Wasserstein distance computed on the

vector-valued data was further employed to identify cancer subtypes. We applied this method

to the two largest breast cancer studies, METABRIC and TCGA. The clusters identified

showed significantly different survival rates in both studies.

vWCluster identified cluster 4 as a poor survival group in both METABRIC and TCGA

breast cancer studies and cluster 2 and cluster 1 as a good survival group in METABRIC and

TCGA breast cancer, respectively. In both studies, the poor survival group was enriched for

basal subtype and the good survival group was enriched for Luminal A subtype. This is consis-

tent with the clinical findings that in general, the triple-negative/basal-like subtype has a poor

prognosis [32] while the Luminal A subtype has a better prognosis than other breast cancer

subtypes [33].

CIBERSORT scores, consisting of 22 immune cell types, were further compared among the

identified clusters. CIBERSORT employs gene expression profiles from a set of 547 genes to

predict 22 immune cell types, using support vector regression [29]. ANOVA tests revealed that

nine immune cell types were commonly statistically significant in both studies, indicating that

the tumor immune microenvironment may differ among the identified clusters and this is

associated with the difference in survival in breast cancer patients. Among the nine immune

cell types, the poor survival group (cluster 4) had the lowest scores in memory resting CD4 T

cells and resting mast cells, and the highest scores in follicular helper T cells, M0 macrophages,

and activated dendritic cells in both METABRIC and TCGA breast cancer studies (Tables 2

and 4). By contrast, the good survival group (cluster 2 in METABRIC and cluster 1 in TCGA

breast cancer) had the highest scores in memory resting CD4 T cells and resting mast cells,

and the lowest scores in follicular helper T cells and M0 macrophages in both METABRIC and

TCGA breast cancer studies. The score for activated dendritic cells was the lowest in TCGA

breast cancer and the second lowest in METABRIC. A study revealed that M0 and M1 macro-

phages were significantly higher in the basal-like subtype compared to the Luminal A and B

subtypes (p< 0.001) [34]. Recently, Gao et al. [35] investigated the difference of immune cells

infiltration abundance between ER/PR-positive and triple-negative subtypes and reported that

Fig 6. Comparison of 22 immune cell types in CIBERSORT among the four clusters identified in METABRIC and

TCGA studies. The black dot line indicates -log10(p = 0.05).

https://doi.org/10.1371/journal.pone.0265150.g006
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triple-negative tumors had significantly higher CIBERSORT scores for follicular helper T cells

(p< 0.001) and lower CIBERSORT scores for resting memory CD4 T cells (p = 0.002) and

resting mast cells (p< 0.001) compared to ER/PR-positive tumors. These results are consistent

with our findings.

Kaplan-Meier analysis was performed for intrinsic molecular subtypes in the METABRIC

and TCGA breast cancer studies (Fig 7). As in Kaplan-Meier analysis for the clusters identified

by our method in METABRIC, an extremely significant survival difference was found among

intrinsic subtypes with a log-rank p< 0.0001, showing the worst survival rate for basal sub-

type. By contrast, for the TCGA breast cancer cohort, our method resulted in much better sta-

tistical significance with a log-rank p = 0.0088 compared to marginal statistical significance

with a log-rank p = 0.0291 among intrinsic subtypes in TCGA. It is worth noting that Kaplan-

Meier survival curves for all four clusters in Fig 5 were separable, whereas in the intrinsic sub-

types, only the Luminal A subtype was separated from others that had similar survival patterns,

suggesting the potential of our proposed method to identify new subtypes in cancer and fur-

ther stratify patients at high risk of mortality. Further investigation of the association between

the tumor immune microenvironment and survival will be explored in future work.

Prior to this study, Chen et al. [8] and Ryu et al. [19] introduced vector-valued extensions

of the Wasserstein distance metric. However, the current study is the first to employ the vec-

tor-valued Wasserstein distance methodology for the integration of multi-omics data and fur-

ther to cluster samples.

Conclusion

We proposed a multi-omics data integration and clustering method, called vWCluster, based

on the vector-valued Wasserstein distance. In this method, individual omics types represented

as multiple layers in a network can be efficiently integrated, considering the biological interac-

tions of biomarkers and providing complementary biological information. The formulation of

vWCluster treats the data vectorially, which potentially minimizes information loss. vWClus-

ter is flexible and applicable to the integration of multi-modal data including imaging and

genomic data, which is a research direction we plan to explore in the future.

Supporting information

S1 Fig. Kaplan-Meier analysis for four clusters that resulted from SNF in (A) METABRIC

and (B) TCGA breast cancer studies.

(PDF)

Fig 7. Kaplan-Meier analysis for intrinsic molecular subtypes in (A) METABRIC and (B) TCGA breast cancer

studies with no normal-like samples.

https://doi.org/10.1371/journal.pone.0265150.g007
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