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Abstract

A prevailing paradigm posits that Polycomb Group (PcG) proteins maintain stem cell identity by 

repressing differentiation genes, and abundant evidence points to an oncogenic role for PcG in 

human cancer 1,2. Here we demonstrate using Drosophila that a conventional PcG complex can 

also have a potent tumor suppressive activity. Mutations in all core PRC1 components cause 

dramatic hyperproliferation of eye imaginal tissue, accompanied by deregulation of epithelial 

architecture. The mitogenic JAK/STAT pathway is strongly and specifically activated in mutant 

tissue; activation is driven by transcriptional upregulation of Unpaired (Upd) family ligands. We 

show that upd genes are direct targets of PcG-mediated repression in imaginal discs. Ectopic JAK/

STAT activity is sufficient to induce overproliferation, while reduction of JAK/STAT activity 

suppresses the PRC1 mutant tumor phenotype. These findings show that PcG proteins can restrict 

growth directly by silencing mitogenic signaling pathways, shedding light onto an epigenetic 

mechanism underlying tumor suppression.
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The allele P3C was identified as a Drosophila tumor suppressor mutation with unusual 

properties 3. Mutant clones generated in genetically mosaic eye imaginal discs do not 

survive well nor persist through metamorphosis, but cause non-autonomous overgrowth of 

surrounding wild type tissue (Fig.S1a,b). Since certain tumor suppressor mutations manifest 

their full phenotypes only when cell competition is eliminated 4,5, we utilized the FLP/cell 

Users may view, print, copy, download and text and data- mine the content in such documents, for the purposes of academic research, 
subject always to the full Conditions of use: http://www.nature.com/authors/editorial_policies/license.html#terms

Corresponding author: Prof. David Bilder Department of Molecular & Cell Biology University of California Berkeley 142 LSA #3200 
Berkeley, CA 94720-3200 Phone: (510) 642-8605 Fax: (510) 643-7448 bilder@berkeley.edu.
Author Contribution Statement A.K.C and D.B conceived the study and wrote the paper. A.K.C performed the experiments and 
analyzed the data. B.B performed the molecular and T.V the genetic mapping of the P3C allele, which was isolated and initially 
characterized by K.H.

HHS Public Access
Author manuscript
Nat Genet. Author manuscript; available in PMC 2010 April 01.

Published in final edited form as:
Nat Genet. 2009 October ; 41(10): 1150–1155. doi:10.1038/ng.445.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



lethal system 6 to generate eye and wing discs consisting predominantly of P3C mutant 

cells. Such P3C imaginal discs are dramatically overgrown (Fig.1a,b; S2h) and larvae that 

contain these discs become `giant larvae' and die in pupation. Mutant tissue fails to undergo 

terminal differentiation (Fig.1c,d) and exhibits a range of architectural defects (Fig.S3a–d). 

These epithelial defects occur in the context of upregulation of F-actin (Fig.1e,f), loss of E-

cadherin (Fig.1g,h) and ectopic expression of Matrix Metalloprotease 1 (Fig.1i,j). 

Overgrowth, differentiation defects and disrupted epithelial architecture are phenotypes 

reminiscent of previously described neoplastic tumor suppressor mutations 5.

Genetic and molecular mapping of P3C reveals that it is a small deletion removing the two 

neighboring homologous genes Posterior Sex Combs (Psc) and Suppressor of Zeste 2 

(Su(z)2) (Fig.S1g) 7. A related but more complex phenotype was obtained with the 

previously studied deficiency Psc-Su(z)21b8, which deletes seven additional genes (Fig.S1g) 

8,9. However, eye mosaic clones for null alleles of Psc or Su(z)2 alone did not exhibit a 

proliferation phenotype (Fig.S1c–f), suggesting that the genes are functionally redundant for 

growth control.

Psc and Su(z)2 encode members of the Polycomb Group (PcG) of epigenetic silencers, and 

can functionally substitute for each other in Polycomb Repressive Complex 1 (PRC1) 10. 

The PRC1 core component Polycomb (Pc) mediates recognition and binding to 

trimethylated Lysine 27 of Histone H3 (H3K27me3), an epigenetic mark whose placement 

is catalyzed by Polycomb Repressive Complex 2 (PRC2). Binding of PRC1 to trimethylated 

target loci is thought to mediate transcriptional repression 11–13. A growth regulatory effect 

in wing discs was previously described for Psc-Su(z)2 and Polyhomeotic-distal and -

proximal (Ph) but not other PcG members 8,14. To distinguish whether control of eye disc 

growth is a function only of Psc-Su(z)2 or instead a function of general PcG activity, we 

tested null or strong mutations in PRC1 members. Strikingly, eye discs mutant for PRC1 

components Polycomb (Pc), polyhomeotic-distal and -proximal (ph), or Sex combs extra 

(Sce) all strongly overgrow (Fig.1u) and cause pupal lethality. PRC1 mutant phenotypes are 

not fully identical: Psc-Su(z)2 and ph show more severe epithelial organization and 

differentiation defects than Pc and Sce (Fig.1k–t; S3) and the former cause overgrowth of 

both eye and wing imaginal disc tissue whereas growth affects of the latter are seen 

predominantly in the eye (Fig.1u; S2). Additionally, survival of Psc-Su(z)2 clones in mosaic 

tissue is impaired compared to other PRC1 mutant clones (Fig.S2a–f). We also tested the 

PRC2 components Enhancer of Zeste (E(z)) (Fig.S4g'–i') and Suppressor of Zeste 12 

(Su(z)12) (data not shown) and found consistent but mild overgrowth in mutant discs, 

paralleling the relatively limited requirement of E(z) function in imaginal target gene 

repression 8. Nevertheless, from the common overgrowth mutant phenotype, we conclude 

that the canonical activity of PRC1 proteins, mediated by their cooperative function, is 

required to restrict imaginal disc growth.

The best-known PcG targets are Hox genes and other transcription factors, and the role of 

PcG in differentiation has been intensively studied 8,15–18. Several cell cycle regulators 

have also been identified as PcG targets 8,14,19,20, but a role for PcG in controlling cell 

proliferation is poorly understood. To identify growth-regulatory targets of PcG in 

Drosophila discs, we used a battery of signaling reporters to test whether known mitogenic 
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pathways are upregulated in PRC1 mutant eye discs (Table 1). The results show that potent 

growth regulatory pathways involving Myc 21, Ras 22, and Dpp 23 are not consistently 

upregulated in PRC1 mutant tissue (Table 1, Fig.2a–d). Spatial activation of Notch 24 and 

Hippo/Warts 25 pathways appears abnormal in PRC1 mutant mosaic clones, but again our 

assays did not detect pathway hyperactivation within mutant cells of all genotypes (Fig.2e–

h, S5a).

By contrast, JAK/STAT signaling, assessed by the 10XSTAT92E>GFP reporter26, is 

robustly hyperactivated in PRC1 mutant tissue. 10XSTAT92E>GFP is expressed at very 

low levels in wild type L3 eye discs, but in similarly staged discs lacking PRC1 components, 

strong and consistent expression is seen (Fig.2i–l; S4a–e). Mild 10XSTAT92E>GFP 

upregulation can also be seen in E(z) mutant tissue, correlating with the mild degree of 

overgrowth (Fig.S4g–j). JAK/STAT pathway activation is not secondary to epithelial 

defects (Fig.S4e) and is not a consequence of generally disrupting epigenetic modifications 

or cell identity (Fig.S4f). Altogether, these results suggest that repression of JAK/STAT 

signaling is a key function of PcG activity in imaginal discs.

To determine how PcG normally restrains JAK/STAT activity, we considered components 

of the pathway whose derepression might enhance signaling. Because the pathway ligand 

Upd is rate-limiting for signaling activation, we assayed upd expression using quantitative 

real-time PCR. The data show that upd and its paralogs upd2 and upd3 are dramatically 

upregulated in PcG mutants. Specifically, upd transcription is at least more than 5-fold 

higher in PRC1 mutant eye discs than in wild type (Fig.3a; S6a); it is also elevated in E(z) 

mutant tissue (Fig.S6a). In contrast, transcription of genes encoding other JAK/STAT 

pathway components including the receptor Domeless, the Janus kinase Hopscotch and the 

downstream transcription factor Stat92E are not strongly elevated in PRC1 mutant tissue 

(Fig.3a; S6a). Notably, transcripts encoding rate-limiting components of other oncogenic 

growth pathways such as Notch/Delta, Myc, Akt, InR, Wingless or Dpp are not consistently 

nor strongly upregulated in all PRC1 mutants (Fig.S5). These data indicate that, amongst 

many signaling components, upd is particularly sensitive to PcG regulation.

Is JAK/STAT signaling controlled by PcG in discs because upd is a bona fide target of PcG 

mediated repression? To investigate this hypothesis, we performed chromatin 

immunoprecipitation (ChIP) on wild type L3 imaginal discs using antibodies against 

H3K27me3 and Pc, the PRC1 component that binds to H3K27me3. ChIP-quantification by 

real-time PCR shows that the upd and neighboring upd2 gene regions contain high (8–12 

fold) enrichment of H3K27me3 and Pc binding as compared to a previously described non-

target control region (Fig.3b; S6b) 27. Levels of H3K27me3 and Pc binding at upd loci are 

similar to those at a well-characterized direct PcG target gene, the Hox gene Abdominal-B. 

These results were confirmed by H3K27me3 ChIP-Seq analysis, which also revealed high 

levels of H3K27me3 across the upd3 gene region (Fig.S6c). This suggests that upd genes are 

indeed direct targets of PcG-mediated repression in imaginal discs.

As an additional test for direct regulation of upd genes by PcG activity in vivo, we assayed 

transcriptional silencing of the updLacZ transposon, which inserts the white gene required 

for eye pigmentation into upd regulatory elements. Previous experiments have shown that 
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white in this insertion is silenced by mechanisms unrelated to PEV-sensitive 

heterochromatin modifications 28. To test whether the regulatory silencer is instead 

responsive to PcG activity, we looked for derepression of updLacZ-associated pigmentation 

in eyes heterozygous for PcG components. Loss of one copy of Pc or Psc-Su(z)2 causes an 

increase in pigmentation in updLacZ flies, while PcG heterozygosity has no effect on 

pigmentation caused by an unrelated transposon insertion (Fig.3c,d; S6d,e). These data are 

consistent with the presence of a PcG-responsive silencer upstream of upd.

To assess the functional significance of PRC1-mediated regulation of Upd ligands in growth 

control, we asked whether the JAK/STAT pathway was involved in PcG mutant tumor 

formation. We first compared the effects of ectopic JAK/STAT pathway activation to loss of 

PcG function. Previous studies have demonstrated a strong growth promoting function for 

Upd in the eye disc 29–31. Similarly, overexpression of Upd, or of constitutively activated 

Hopscotch, in the wing disc causes a striking expansion of the epithelial field (Fig.4a,b; 

Fig.S7a,b). These data indicate that ectopic Upd expression is sufficient to drive overgrowth 

generally in imaginal discs.

To determine whether Upd-mediated signaling is required for PRC1 mutant imaginal 

overproliferation, we tested whether reducing JAK/STAT activity in Psc-Su(z)2, Pc or Sce 

eye discs would suppress tumor growth. We first examined animals heterozygous for genes 

encoding JAK/STAT components, which causes no change in WT eye growth. Interestingly, 

heterozygosity for Stat92E, upd, or a deletion removing all three upd genes partially rescues 

the pupal lethality induced by the presence of Psc-Su(z)2 eye tumors (Fig.4o) 5,32,33, and 

causes a mild but significant reduction in tumor size (Fig.4c,d,m). To more potently inhibit 

the JAK/STAT pathway, we co-expressed a dominant negative version of the receptor 

Domeless 34 or the endogenous STAT inhibitor SOCS36E 29,35 in Pc or Sce mutant eye 

disc cells (Fig.4e–l). Interference with Domeless function slightly decreases WT disc growth 

(Fig.4f) but dramatically and consistently reduces Pc and Sce tumor growth (Fig.4i,l). 

Striking suppression is also seen when SOCS36E is expressed: overgrowth is strongly 

perturbed in Sce discs, which approach the size of WT discs (Fig.4j,n), while the analogous 

manipulation has almost no effect on growth of WT discs (Fig.4g). These experiments 

confirm that interfering with JAK/STAT signaling can ameliorate overgrowth in PRC1 

mutants, and together reinforce the conclusion that hyperactivation of the JAK/STAT 

pathway via derepression of Upd ligands underlies overgrowth of PcG mutant discs.

Studies of PcG activity in cell proliferation have focused on a role in repressing transcription 

factors that drive differentiation, thereby maintaining a stem cell-like identity 2,36,37. In 

stem cells and several cancers, PcG activity promotes sustained cell division. Here we show 

that in the Drosophila imaginal disc, a favored model system for understanding organ 

growth, PcG activity is instead required to restrain proliferation. This finding, which 

provides a clear counterexample to the general paradigm that PcG activity maintains a 

proliferative state, should inspire renewed attention to contexts in which mammalian PcG 

proteins seem to act as negative, rather than positive, regulators of cell proliferation. For 

instance, recent studies describe an antiproliferative activity for PcG in transiently 

amplifying cells of mammalian hematopoetic progenitor pools 1,38–40. The proliferative 

potential, partially differentiated state, and developmental plasticity of transiently 
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amplifying populations are traits similar to those ascribed to early imaginal disc tissue in 

Drosophila 41, which lacks characterized stem cells. Distinct PcG activities in 

undifferentiated stem cells and partially differentiated proliferative populations could 

reconcile data regarding oncogenic and tumor-suppressive functions in different contexts.

In this study, we find that in Drosophila discs, PcG proteins directly regulate a mitogenic 

signaling pathway by repressing expression of the pathway ligand. Currently, the best-

known targets of PcG are transcription factors involved in cell fate and differentiation. 

Recent studies have suggested that cell cycle regulators are PcG targets as well, but none of 

those identified are sufficient to drive excess tissue growth 14,19,20. It is intriguing that the 

growth regulatory pathway targeted by PcG repression is the JAK/STAT pathway, which is 

oncogenic in both mammalian 42 and Drosophila tissues 29,30, and regulates fly stem cell 

populations 43. Interestingly, genes encoding the mammalian JAK/STAT pathway ligands 

Interferon-γ and Interleukins 4 and 13 become H3K27 trimethylated and silenced in TH1 

and TH2 helper cells, respectively, as they undergo maturation from naïve T-cells 44,45. 

This implies that regulation of JAK/STAT ligands by PcG's may be evolutionary conserved. 

Similarly, our data indicate that during imaginal disc development, the increasingly 

restricted pattern of Upd expression (Fig. S7c–f) 46 requires PcG silencing, which perhaps 

serves as an epigenetic `brake' on organ growth. JAK/STAT activity is required in early 

discs for full growth 31,46 and as discs enter a slower growth phase expression of upd 

decreases 47; whether PcG activity participates in the control of disc size by switching tissue 

`growth states' via silencing upd remains to be investigated.

Why would organ growth be negatively regulated by epigenetic mechanisms such as PcG 

activity? One reason is that epigenetic modifications can act as flexible but heritable 

switches for gene expression. The switches may be especially suited for proliferating cells as 

they rapidly turn over epigenetic marks during cell divisions, a provision lost upon terminal 

differentiation. A second reason is the ability of PcG to control broad gene networks to 

regulate developmental states in response to changing signaling environments. Indeed, 

during Drosophila disc regeneration, downregulation of PcG activity has been shown to 

promote cell fate plasticity 48–50; our results suggest that it may do so for proliferative 

potential as well.

We define here a new and distinct class of Drosophila TSGs that encode chromatin-

modifying proteins of the PcG family. We further show a major role for one set of their 

targets - the upd genes - in the control of imaginal growth. However, the complex as well as 

differing phenotypes of PRC1 mutant discs suggest that other targets are also involved in 

PcG tumor suppressive activity during development. Regulators of signaling and patterning 

(such as Notch and Dpp pathways, see Table1, Fig.S5), the cell cycle and of epithelial 

polarity are likely to play additional roles. Future genome-wide analyses will reveal how 

PcG activity coordinates growth, architecture and differentiation during Drosophila 

organogenesis.
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Materials and Methods

Genetics

The P3C allele was generated on a FRT42D chromosome by using EMS mutagenesis; Psc-

Su(z)2 discs in the text were created using this allele. The strong or null mutants used in this 

study are: Pc [XT109]; Su(z)2 [1b8]; Su(z)2 [1b7];; ph [505]; Sce[1]; E(z) [731]; Su(z)12 

[4]; trx [E2]; Stat92E [85c9]; Upd [YM55]; os [1A]; scrib[1]. Mosaic imaginal discs were 

generated as described 52 using eyflp or hsflp to induce recombination. Discs consisting 

predominantly of mutant cells (referred to in the text as mutant discs) were generated using 

the FLP/cell-lethal system as described 6 utilizing eyflp for eye and ubxflp for wing discs. 

Other fly strains are: unpairedLacZ (PD); E(spl)mβ-LacZ; exLacZ (ex[e1]); 10x STAT 

GFP; UAS Upd; UAS Hop[TumL]; upd GAL4, UAS GFP (E132); MS1096 GAL4; UAS 

Dome ΔCyt; UAS SOCS36E; act>CD2>GAL4, UAS GFP. Wild type controls were 

outcrosses to white or isogenized FRT42 and FRT82 chromosomes. Crosses were reared at 

22°C. Detailed genotypes are listed in Supplementary Table 1.

Genetic interaction tests

Larvae were raised at 50 animals per vial from 4 hour-staged collections at 25°C. Tumors 

for size analysis were dissected 96 hours or 120 hours after hatching, stained with phalloidin 

and scored in double-blind tests. A Student T-test was used to calculate P-values. Adult 

escapers were counted at eclosion. Adult fly heads were imaged using a Z16 APO 

microscope (Leica) fitted with a DFC300 FX camera. UpdLacZ eye color modification was 

scored in double-blind tests on male flies 24 hours after eclosion.

Immunohistochemistry

Imaginal disc tissues were fixed in 4% formaldehyde and stained under standard conditions 

with TRITC-phalloidin (SIGMA) and TOPRO-3 (Invitrogen) and primary antibodies against 

the following antigens: Notch (NECD), Elav, DEcad, Arm, Wg (all obtained from 

Developmental Studies Hybridoma Bank), β-Gal (Capell), Capicua (kindly provided I. 

Hariharan), Fibrillarin (MCA-38F3, EnCor Biotech.) and Phospho-SMAD (kindly provided 

by T. Tabata). Secondary antibodies were obtained from Invitrogen.

Mutant and wild-type discs were processed in the same tubes, and confocal settings were 

adjusted to maintain a linear intensity range for signals in different genotypes. Images are 

single confocal cross sections collected on a Leica TCS microscope. All scalebars are 

100μm.

Quantitative Real-time PCR

cDNA libraries of FLP/cell-lethal eye imaginal discs were generated using standard 

procedures. Real-time PCR was carried out using SYBR GreenER qPCR Supermix for ABI 

PRISM (Invitrogen) on a StepOnePlus ABI machine. The standard curve and ΔΔCt method 

was used and expression levels were normalized to at least two endogenous cDNA controls 

(CG12703 and GAPDH). Fold induction relative to WT expression levels are shown for one 

representative biological replicate. Primer sequences are listed in Supplemental Table 2. 

Detailed protocols are available on request.
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Chromatin Immunoprecipitation

ChIP was carried out as previously described 53 on imaginal tissue from 50 third-instar 

larvae for H3K27me3 ChIP and 200 third-instar larvae for Pc ChIP. Fixed and sheared 

chromatin was precipitated using an anti-Histone3 trimethylK27 mouse mAb (Lake Placid, 

# AM-0174) or Polycomb rabbit Ab (kindly provided by V. Pirrotta) and ProteinA-coupled 

Dynabeads (Invitrogen). Chromatin precipitated in Polycomb ChIP was preamplified using 

PCR as previously described 54. A negative control lacking Ab yielded less than 0.2% of 

specific pull-down observed with Ab, ChIP carried out with non-specific mouse IgG failed 

to enrich for sequences tested. Quantification was carried out using real-time PCR on a 

StepOnePlus ABI machine. Primer sequences and amplified regions are listed in 

Supplemental Table 2. Detailed protocols are available on request.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. PRC1 components are fly tumor suppressors
(a–j). Phenotype of Psc-Su(z)2 mutant eye imaginal discs generated with the eyFlp/cell 

lethal system. Heterozygous tissue is marked by expression of GFP (green). WT (a) and 

Psc-Su(z)2 discs (b) stained for Actin to reveal size difference. (c) WT and (d) Psc-Su(z)2 

discs stained for Elav (red) and Actin (blue) showing impaired differentiation. Psc-Su(z)2 

mutant eye imaginal discs stained for Actin (e, red in f) and E-cadherin (g, red in h) 

revealing defective epithelial organization. Psc-Su(z)2 mutant eye imaginal discs stained for 

MMP1 (i, red in j) and Actin (blue in j). (k–t) Phenotype of Pc mutant mosaic eye imaginal 

discs generated with eyFLP. WT or heterozygous tissue is marked by expression of GFP 

(green). (k) Wild type and (l) Pc mosaic discs stained for Actin to reveal size difference. (m) 
Wild type and (n) Pc mosaic discs stained for Elav (red) and Actin (blue) showing impaired 

differentiation. Pc mosaic discs stained for Actin (o, red in p) and E-cadherin (q, red in r) 

revealing defective epithelial organization. Pc mosaic discs stained for MMP-1 (s, red in t) 
and Actin (blue in t). (u) Eye discs mutant for core members of PRC1 (Psc-Su(z)2, ph, Pc 

and Sce) stained for Actin; strong overgrowth is seen in all genotypes. See Supplementary 

Table 1 for detailed genotypes.

Classen et al. Page 10

Nat Genet. Author manuscript; available in PMC 2010 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 2. JAK/STAT signaling is ectopically activated in PRC1 mutant tissue
(a–h) Immunofluorescent stains for reporters in Pc eye mosaic clones; WT cells are marked 

by GFP (green in b,d,f,h). Fibrillarin (a, red in b), Capicua (c, red in d). expanded-LacZ (e, 

red in f) and mβ-LacZ (g, red in h) are not consistently upregulated in mutant cells. (i–l) 
Expression of a JAK/STAT reporter (cyan) in WT or PRC1 mutant eye imaginal discs; actin 

staining is red. Compared to WT (i), the reporter is strongly and consistently elevated in 

Psc-Su(z)2 (j), ph (k) and Pc (l) mutant discs.
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Figure 3. Unpaired is a direct target of PcG-mediated silencing in imaginal discs
(a) Real-time PCR analysis measuring transcription of JAK/STAT pathway components in 

Psc-Su(z)2 (orange), ph (yellow), Pc (light green) and Sce (dark green) mutant eye discs. 

Ligand-encoding upd transcripts are upregulated while other pathway components are 

relatively unchanged. (b) ChIP quantifying H3K27me3 enrichment (SD, n=3) and Pc-

binding at upd, upd2 and AbdB relative to the unmethylated control hsp68 in WT imaginal 

discs. (c) Eye color induced by a mini-white transgene inserted in the upd regulatory region. 

(d) Darker eye color indicates reduction of silencing of the mini-white gene in Pc 

heterozygous males.
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Figure 4. JAK/STAT signaling drives PRC1 mutant overgrowth
(a,b) Wing imaginal discs expressing GFP (green) under the control of MS1096GAL4 

stained for DNA (red). Characteristic landmarks of wing discs are indicated by colored dots: 

cyan – dorsal-ventral boundary; magenta – second fold; yellow – peripodial stalk. Compared 

to discs expressing GFP alone (a), discs coexpressing Unpaired (b) show expansion of the 

disc epithelium along with increased epithelial folding. (c–l) Phenotype of PRC1 mutant eye 

imaginal discs with reduced JAK/STAT activity, stained for Actin. Compared to Psc-Su(z)2 

mutant eye discs (c), Psc-Su(z)2 mutant discs heterozygous for Stat92E (d) show reduced 

size. Control imaginal discs expressing no transgene (e), DomeΔCyt (f) or SOCS36E (g) 

under the control of eyFLP FLPout-GAL4. Expression in Sce (h) or Pc (k) mutant discs of 

DomeΔCyt (i, l) or SOCS36E (j) reduces overgrowth of mutant eyes. (m–n) Quantitation of 

disc size: individual discs (circles/squares), average (grey bar) and SD are shown with P 

values (Student's T-test). (m) Psc-Su(z)2 disc size (0.87 +/− 0.13 ×105 μm2, n=12) is 

reduced when heterozygous for Stat92E (0.78 +/− 0.12 ×105 μm2, n=12). (n) Sce disc size 

(1.59 +/− 0.32 ×105 μm2, n=20) is reduced when discs express SOCS36E (1.05 +/− 0.33 

×105 μm2, n=22). (o) Rate of eclosion in animals carrying Psc-Su(z)2 mutant eye discs 

alone, heterozygous for Stat92E, upd, or the os[1A] deficiency deleting upd, upd2, and 

upd3. > 15-fold increase in eclosion rate is seen.
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