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Abstract: This paper discusses the problem of thermocycling effect of light-curing polymer–ceramic
composites. Cyclic thermal shocks were simulated in laboratory conditions. As a rule, these loads
were supposed to reproduce the actual conditions of biomaterials exploitation. Periodically variable
stresses occurring in dental restorations are associated with the wear of cold and hot foods and
beverages. They lead to changes in the properties of composites, including the properties of the
surface layer. The aim of the work was to assess the impact of cyclic hydrothermal interactions on the
properties of the surface layer of composites relevant to the operational quality. Two commercial
materials manufactured by the world’s leading producer (3M ESPE)—Filtek Z550, Filtek Flow and
two experimental, micro-hybrid and flow type composites marked Ex-mhyb(P) and Ex-flow(P),
respectively. All tests were carried out before and after hydro-thermal cycles (flowing water
thermocycling). Micro-hardness test using the Vickers method, indentation hardness, and resistance
to tribological wear in a ball–disc system in sliding friction conditions were performed. In addition,
observations of the surface layer of composites on the SEM (scanning electron microscope) were
carried out. It was noticed that semi-liquid composites, containing a smaller amount of filler,
retain higher stability of mechanical and tribological properties of the surface layer under cyclic
hydro-thermal loads. Coefficient of friction of samples after hydro-thermal cycles increased for
micro-hybrid materials and Filtek Flow (FFlow) composite. In the case of Ex-flow(P) material,
the coefficient of friction decreased. The microhardness of composites also changed, the variability
of this size depended on the type of material. Composites with a higher content of filler particles
were characterized by greater variability of microhardness under the influence of thermocycles.
The resistance to tribological wear also changed in a similar way. Composites containing higher
volume fraction of inorganic filler showed higher tribological wear after thermocycling. The wear
resistance of flow composites changed to a lesser extent, after thermocycling increased. The paper also
showed that, in real kinematic nodes, the surface layer of light-curing ceramic–polymer composites is
exposed to significant non-tribological (erosive, thermal, and chemical) defects that synergize with
tribological ones. In slip pairs loaded dynamically, under mixed friction conditions, tribological
wear of PMCCs (polymer matrix ceramic composites) is manifested by spalling (spalling of the
material flakes, in particular the polymer phase) and pitting (crushing wear caused by wear products,
in particular large filler particles or clusters, previously adhesively extracted).
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1. Introduction

The problem of operational (usable) durability is well established in the issues of machine operation.
It is also undertaken in reference to materials and medical devices subjected to biomechanical
workload [1–10]. However, understanding the importance of durability and reliability in the operation
of medical facilities is not common, and durability studies are utilitarian. It is possible that the problem
is undoubtedly the nuisance and significant labour-intensity of durability tests and the necessity of
owning and manufacturing specialized equipment. Therefore, research in this area is often carried
out by interdisciplinary teams, including researchers with experience in mechanical engineering,
biomedical engineering, and dentistry [11].

The damage to the surface is of key importance for durability and reliability of medical devices.
This problem lies in the interest of the scientific discipline of tribology. Currently, technical tribology
covers issues of durability and reliability of friction nodes. That is why in technical tribology
there are two categories-wear and lubrication [12]. Wear as a utilitarian category also applies to
biotribological nodes. This is, among others, an empirical description of the wear process in a
biotribological friction node using technical tribology tools. Dental biotribology deals with a number
of research problems, including: roughness and enamel wear [13], tooth brushing wear [14], wear of
dental composites in oral environment [15,16], and mechanical contact of dental materials against
natural tooth enamel [17–19]. Resistance to wear determines the durability of dental restorative
composites [20].

Dental materials include curing light polymer–ceramic composites (PMCCs) classified according
to manufacturing technology, applications and performance [21]. These are the materials used in the
reconstruction of human teeth. Reconstructions are exposed to oral environment factors. They are
subjected to thermocycles [22], among others, which are the result of eating foods, including hot soups,
cold and warm drinks, and ice cream. A typical temperature range on the tooth surface is in the range
of 1–50 ◦C [23–25]. However, there are often higher and lower temperatures [26,27].

As emphasized in a number of works [28], the effect of thermal cycling is noticeable and may be
reflected in the functional properties of dental composites. This problem mostly concerns the surface
layer (SL), which is most vulnerable. The temperature gradient is created as a result of heating and
cooling of the surface element and the surface and core of the material remaining in the force interaction,
inhibit the change of surface dimensions [29]. This phenomenon leads to the formation of the so-called
thermal stress of the second type. The temperature distribution in the entire sample volume of
the polymer–ceramic composite after thermocycling is shown, among others, at work [30]. In the
composites concerned, the polymer matrix is reinforced with a powder filler. The thermal expansion of
individual filler particles and polymer matrix is not the same. This results in the formation of thermal
stresses of the first type in the PMCCs structure [31], the largest in SL.

Thermodiffusion of water particles to the composite structure may also have influence on SL of
dental restorative composites in addition to temperature. The process of diffusion of water particles to
multicomponent materials can be described with the help of Fick’s law, which depends on the degree
of diffusion from time and temperature. The hydrolytic deterioration of dental composites is believed
to intensify in the case of a cyclic load [31]. In addition, the action of stretching thermal stresses causes
the opening of microdamages and facilitates the penetration of water [32]. Engineering definition of
fatigue is the time dependent fracture of a material due to repetitive cyclic loading [33]. Importance of
fatigue for dental restorative composites is clear [15].

Open data on the mechanical and tribological properties and durability of dental materials are
limited [34]. These functional properties are important for clinical success [35]. Therefore, the aim of
the research is to acquire knowledge useful in the manufacture and operation of medical substitute
products for natural-dental composites and comparative study of hybrid and flow types of resin
composite materials.
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2. Experimental Design, Materials, and Methods

The research used light-cured polymer matrix composites (LC PMCCs). Filtek Z550 and Filtek
Ultimate Flow composites are commercial materials (3M ESPE, St Paul, USA, MN). Filtek Z550
(Z550, 3M ESPE, St Paul, USA, MN) is a nanohybrid material with a content of 78.5% (by weight)
of filler particles. It contains clusters of zirconium and silicon compounds nanoparticles and
nanosilica particles. The Z550 matrix is formed by Bis-GMA, UDMA, Bis-EMA, PEGDMA,
and TEGDMA resins [36]. Compressive strength Z550 is ≈385 MPa, bending strength ≈150 MPa and
tensile strength ≈85 MPa (strength determined by the “Brazilian” method). Z550 is characterized by
good abrasion resistance (linear wear of 5 µm/2 × 105 cycles, test in combination of three bodies) [36].
Filtek Ultimate Flow (FFlow, 3M ESPE, St Paul, USA, MN) is a flow composite material, by the
manufacturer, 3M ESPE, known as a low viscosity nanocomposite. The FFlow matrix are Bis-EMA,
TEGDMA, and Bis-GMA [37] resins. The technical data sheet (TDS) states that the filler is a combination
of 0.1 to 5 µm particles and surface-modified silica nanoparticles with dimensions of 20 nm and 75 nm
and clusters containing zirconium nanoparticles with main dimensions from 4 to 11 nm and 20 nm
silica particles. The dimensions of clusters range from 0.6 to 10 µm [37]. The content of filler particles
in the composite is 68% (by weight).

Experimental materials were also used in the research. Experimental material Ex-mhyb(P) is a
micro-hybrid composite, the filler of which consists of particles of fluorochar–aluminum–silicon glass,
silicon glass, titanium oxide, average particle size: 0.90 µm, filler content 79% (by weight). The Ex-flow(P)
material is a flow composite in which the powder filler is made of fluorochar–aluminum–silicon glass,
silicon glass, titanium oxide, average particle size: 0.76 µm, the content of filler particles is 64%
(by weight).

Specimens were shaped by a single operator in metal split-mould and then light-cured using
light emitting diode (LED) photopolymerization lamp L.E. Demetron (Kerr, Brea, USA, CA, USA) for
40 s impulse.

Thermal shock simulations were performed using a thermal shocks simulator designed by the
present authors [18]. The simulator (Figure 1) comprised a hydraulic unit and a microprocessor
control system. The device produced stepped changes in the temperature of the liquid (water in
present study) in the measuring vessel, in which the specimens were immersed. The measuring
vessel was alternately filled with heated (55 ◦C) or cooled (5 ◦C) working liquid from two separate
pumping systems. One cycle lasted 201 s and included: pumping the liquid cooled to the sample
vessel (35 s), holding the liquid cooled in the vessel—tmin (30 s), pumping out the cooled liquid (35 s),
pause (0.5 s), pumping the heated liquid to the sample vessel (35 s), keeping the liquid heated in the
vessel—tmax (30 s), pumping out the heated liquid (35 s), pause (0.5 s).

Microhardness was measured by the Vickers method using Futertech FM 700 (Future-tech Corp.,
Kawasaki, Japan) under a load of 0.025 kg. Indenter penetration time was set to 25 s. The tests
were carried out at 10 points on the exposed (LC) and non-exposed (NLC) specimen surfaces (LC);
the number of specimens in each group was 10 (N = 10).

The indentation hardness (H) and the elastic modulus of the surface (E) were determined according
to the Oliver–Pharr method [38]. The test was performed on the Micro Combi Tester (MCT, Anton Paar
GmbH, Ostfildern, Germany). The method is described in more detail in [16,38–40].

Wear studies were conducted using a universal microtribometer (Pin-on-Disk Tribometer 0–60 N,
CSM Instruments SA, Peseux, Switzerland). The ball-on-disc method was applied. A spherical
counterspecimen with a diameter of 6 mm made of aluminum trioxide (Al2O3, Anton Paar GmbH,
Ostfildern, Germany) was used. A constant load of 5 N was used. The testing speed was 60 rpm.
The number of specimens in each group was 10 (N = 10). Wear was measured in non-thermocycled
specimens and in specimens which had been subjected to 10 × 103 thermal load cycles. There are
various wear measurement methods: some measure weight loss [41] while others determine volumetric
wear [42]. In this present study, volumetric wear was measured using the Dektak 150 surface
profilometer (Veeco, Plainview, USA, NY, USA). All tested specimens were measured on the transverse
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plane to the sliding direction circle. Distance between profiles was about 35 degrees, 10 measurements
were made around the perimeter of the wear scar. The areas of the 2D profiles were integered
according to the circumference of the trace of wear which made the determination of the volume of
removed material.
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Figure 1. Operation diagram of the device in the pumping phase of heated liquid: 1—digital control system;
2—working vessel; 3—samples on fatigue process; 4—perforated support plate; 5—peristaltic pump;
6—flexible hose insulation; 7—hot water reservoir; 8—electrovalve; 9—thermostat; 10—container with
heated liquid; 11—rotary pump; 12—liquid cooling system.

The volumetric wear was calculated on the basis of measurements of the cross-sectional area of
the wear path according to the formula

Vdisc = 2πR× SAR(Mean) (1)

where:

Vdisc—volume wear of a sample from a dental composite (µm3),
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R—radius of wear trace (3 mm = 3 × 103 µm),
SAR(Mean)—average value of the cross-sectional area of the wear trace (µm2).

The wear coefficient was calculated from the following formula [43]

K =
HV(0.05) ×Vdiscs

FN × L
(2)

where:

HV(0.05)—mean Vickers hardness of the composite (MPa),
Vdiscs—mean volume loss of the composite (mm3),
FN—normal force (N),
L—friction distance (mm).

In addition, specific wear rate k was calculated according to [44] using the equation below

k =
Vdiscs

FN × L
(3)

where:

Vdiscs—mean volume loss of the composite (mm3),
FN—normal force (N),
L—friction distance (m).

In the work to identify the mechanisms of tribological wear, microscopic studies of the surface of
the wear scar were carried out. Observations were made on a scanning electron microscope (SEM)
Phenom FEI G2 pro (FEI G2 pro, Phenom-World, Eindhoven, Netherlands).

3. Experimental Results and Discussion

3.1. Microhardness

The results of microhardness tests were compiled on the cardinal histograms (Figure 2). The charts
include cardinality, percentage share, and descriptive statistics. The Shapiro–Wilk test of normality
(α level of 0.05) was performed (Table 1). The microhardness of the studied composites is varied
among materials. The type of composite has an effect on hardness range. Some studies indicate
that filler content influences hardness [45,46]. The microhardness of flow composites was lower
than for microhybrid materials. Despite the similar content of filler particles in Ex-mhyb(P) and
Z550 composites, these materials differed in their hardness. The similar results were obtained by
Yeh et al. [47]. In the paper [47], it was found that the proportion of filler particles affects the hardness,
however, the effect of the particle size and size of the disperse phase is greater. According to [48],
the use of nanoparticles as a part of the filler increases the hardness of the material. According to [49],
hardness depends on the size, dispersion, and content of filler particles in the matrix and the adhesion
of filler and matrix particles. The degree of cross-linking and conversion can also have a positive effect
on microhardness as well as the content of zirconium particles in the Z550 structure. The research
presented in [50,51] showed that as the content of zirconium particles in the material increases, the
hardness of the composite increases. The hardness of zirconium particles is 17 GPa, while another
popular filler, also used in experimental materials, is about 3–4 GPa [45].
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only aging in AS, (h) after TC. The Vickers hardness diagrams are given in units characteristic for this 
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Figure 2. Vickers hardness results due to material type and thermocycling fatigue: Z550 composite
(a) only aging in artificial saliva (AS), (b) after thermocycling (TC); FFlow composite (c) only aging
in AS, (d) after TC; Ex-mhyb (P) composite (e) only aging in AS, (f) after TC; Ex-flow (P) composite
(g) only aging in AS, (h) after TC. The Vickers hardness diagrams are given in units characteristic for
this method (HV).
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Table 1. Shapiro–Wilk test values for normal distribution for Vickers hardness results. Values of p < 0.05
are marked in red.

Material Side nTC W p

Z550 LC 0 0.95987 0.16582
Z550 NLC 0 0.97887 0.64768
Z550 LC 10,000 0.96545 0.25589
Z550 NLC 10,000 0.93406 0.02190

FFlow LC 0 0.96040 0.17285
FFlow NLC 0 0.96289 0.21006
FFlow LC 10,000 0.87838 0.00048
FFlow NLC 10,000 0.95224 0.09058

Ex-mhyb(P) LC 0 0.98045 0.70620
Ex-mhyb(P) NLC 0 0.92604 0.01199
Ex-mhyb(P) LC 10,000 0.93154 0.01808
Ex-mhyb(P) NLC 10,000 0.94048 0.03590
Ex-flow(P) LC 0 0.85747 0.00014
Ex-flow(P) NLC 0 0.85916 0.00015
Ex-flow(P) LC 10,000 0.90563 0.00280
Ex-flow(P) NLC 10,000 0.98177 0.75460

The effect of thermocycles on microhardness has been reported in several studies but is not
well known. In general, thermocycles cause the degradation and softening of composite resins and
consequently decrease mechanical properties [52]. The decrease of microhardness of Z550 i Ex-mhyb(P)
composites after thermocycling could be explained by water absorption during cycles. Absorbed water
can cause microfracturing of the resin–filler interface and degrade the surface of the filler particles.
Similar observations were reported by Tuncer S. et al. [52] who examined resin-based materials after
10 × 103 thermocycles in range temperature from of 5 to 55 ◦C with a dwell time of 30 s. On the
other hand, in the presented study, after thermocycling the mean microhardness volume of FFlow
and Ex-flow(P) composites does not change significantly. It might be the result of the heating process
occurred during thermocycles. The temperature may have contributed to the post-curing process,
further polymerization of the surface, and lead to increased hardness. It is in agreement with the
results obtained by [53] in case of Sinfony material but they performed only 5000 cycles in range of
temperature from 5 to 55 ◦C with a dwell time of 30 s.

3.2. Indentation Hardness

In some works, researchers use the ratio H/E [54] (indention hardness HIT to the elastic modulus
of the surface E based on [38–40]) obtained by the Oliver–Pharr method [16]. This coefficient combines
the ability to make as much elastic deformation as possible (low modulus) and the ability to minimize
permanent deformation (high hardness). For many materials, yield strength σY (yield stress) is related
to the hardness H (typical H ≈ 3σY). The H/E ratio expresses ‘elastic strain to failure’ and elastic
resilience of material. The higher the H/E and H2/E ratio, the greater the wear resistance should be in
the material [55,56].

In the tests, the highest value of the H/E coefficient (Figure 3) is characterized by materials with
lower wear resistance (Z550 and Ex-mhyb(P)), the relationships resulting from H2/E comparisons
are similar. There is only the dependence of the H/E and H2/E ratio on the degree of wear inside
the material groups determined by the level of the filler content. The direction of variability of
H/E and H2/E coefficients is consistent with the tendency of variability of abrasion resistance due to
hydro-thermal fatigue. It seems that the usefulness of the H/E index in the assessment of the degree of
damage may be partial, which is also confirmed by the research presented in [57]. Such dependencies
can be explained on the basis of the results of the work [58]. The authors of the study [58] noted that
some polymeric materials (e.g., elastomers) show high abrasion resistance, although they are relatively
low hard. Similar relations were found for other polymer materials, the paper [59].
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Figure 3. H/E and H2/E average values for dental composite in relation to thermocycling. 
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Figure 3. H/E and H2/E average values for dental composite in relation to thermocycling.

3.3. Tribological Wear

The wear process, called ‘attrition’, is the most frequent cause of PMCCs wear degradation in the
dental biotribological system [60]. Attrition is a variant of abrasion (abrasive) wear occurring as a result
of the cooperation of two rigid bodies. Abrasive wear occurs when two rough surfaces cooperate.

3.3.1. Abrasion Testing

Exemplary traces and wear profiles of the Ex-mhyb composite (P) are shown in Figure 4. Figure 5
presents the results of dental materials wear depending on the thermocycling.
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In literature the correlation between the content and the wear resistance of composites was reported.
With the increase of filler particles content, wear resistance also increase [61]. However, it was not shown
in [62–64]. Although FFlow material has lowest grains than Z550 and Ex-mhyb (P), the composite is
characterized by the lowest wear among studied materials. The type and size of the filler particles,
their dispersion in the material and the adhesion of filler and matrix particles also probably affect the
wearing resistance of the composites.

The presented studies show the difference between the results of composites, in case of Z550 and
Ex-mhyb (P) materials, after thermocycles. Aging could increase softened surface layer that easily
worn out [65]. Moreover, the adhesion of filler and matrix particles may have changed. In the case of
’flow’ type materials, abrasion resistance increased after thermocycling.

Table 2 presents the results of research on the wear of composite surfaces. Wear coefficient (K)
and wear rate (k) are included.

Table 2. Results of friction wear tests.

Material nTC LC K k (mm3/Nm)

Z550 0 40 s LED 2.52 × 10−2 1.13 × 10−4

Ex-mhyb(P) 0 40 s LED 2.35 × 10−2 1.20 × 10−4

Fflow 0 40 s LED 1.10 × 10−2 8.52 × 10−5

Ex-flow(P) 0 40 s LED 1.48 × 10−2 1.12 × 10−4

Z550 10,000 40 s LED 3.31 × 10−2 1.96 × 10−4

Ex-mhyb(P) 10,000 40 s LED 2.96 × 10−2 2.03 × 10−2

Fflow 10,000 40 s LED 1.05 × 10−2 8.04 × 10−5

Ex-flow(P) 10,000 40 s LED 1.23 × 10−2 9.80 × 10−5
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Table 3 presents the values of friction coefficients. The minimum, maximum, average, and
standard deviation of the coefficients of friction are presented. In Figure 6, selected courses of friction
coefficients as a function of the friction distance of dental materials are presented. It seems that
hydro-thermal non-violent defects overlap with tribological ones, which is manifested by the increased
wear of Z550 and Ex-mhyb(P). The phenomenon related to the damage from the hydro-thermal factor is
also confirmed by the friction coefficient µ as a function of the friction path. The values of the coefficient
of friction in the case of Z550, Ex-mhyb(P), FFlow composites increase significantly after thermocycling,
which is probably caused by the damage of the surface (Table 3 and Figure 6). However, in the case of
a flow-type material, this does not translate into deterioration in wear resistance (Figure 5), which is
crucial for durability. In the case of Ex-flow(P) material, thermo-cycling results in a decrease in the
coefficient of friction. The phenomenon of increase and decrease in the coefficient of friction of dental
composites under the influence of thermocycling was also noted in [30].

Table 3. Test results of friction coefficient.

Material N Mean Min Max Std.Dev.

nTC = 0
Ex-mhyb(P) 10 0.1431 0.1162 0.1679 0.0173
Ex-flow(P) 10 0.1152 0.0851 0.1462 0.0159

Z550 10 0.2199 0.1947 0.2800 0.0305
FFlow 10 0.1524 0.1325 0.1729 0.0130

nTC = 10,000
Ex-mhyb(P) 10 0.3087 0.2578 0.3598 0.0311
Ex-flow(P) 10 0.0614 0.0460 0.1008 0.0186

Z550 10 0.3832 0.2444 0.5132 0.0935
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3.3.2. Microscopic Images of Traces of Abrasive Wear of Non-Thermocycling Composites

The highest wear of dental composites occurs mainly at the point of friction contact and is
consistent with the direction of sliding against the sample after the composite sample (Figure 7). In the
friction contact zone, there may be solidified or loose abrasive particles [2].

Figure 8 summarizes the wear trace of the tested composites. Microscars are visible in the images in
the trace of wear, consistent with the direction of motion in the kinematic pair, caused by microsurging.
Surface defects visible in Figure 8a,b of composites with high filler content are also associated with
pitting (a) and spalling (b). In flow-type composites, such damage occurs less frequently (Figure 8c,d).
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3.3.3. Microscopic Images of Fatigue Wear

Figure 9a presents fatigue damage of the Ex-mhyb(P) material in the form of microcracks,
whose combination leads to the formation of wear debris in the form of so-called material flakes.
Our own research confirms that the fatigue wear, often described in the literature, is a typical mechanism
of PMCCs surface damage. In [66], it has been shown that as a result of cyclic loads, damage in wear
scar subsurface is initiated. Their development towards the surface can cause the removal of large
particles-material flakes. To describe this damage mechanism, the model described by Zwierzycki
seems appropriate. According to Zwierzycki [67] flake wear, related to the delaminational theory of
N.P. Saha, can be described in stages. The flake particle formation stages are as follow: the nucleation of
micro-effects, the coalescence of micro-defects into the micro-gap, the propagation of the fracture gap,
up to the friction surface, the detachment of wear debris in the form of tiles (flakes) (Figure 9b).
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Most of the studies that showed the formation of flaking wear debris were carried out on
tribometers in the conditions of sliding friction [66,68–70]. Additionally, in studies conducted on
chewing simulators, subsurface cracking after mastication cycles was demonstrated [9]. However,
other wear mechanisms are also indicated as accompanying the afforementioned issues. Among the
mechanisms of wear of PMCCs, abrasion and mechanical fatigue have been indicated [71], mechanical
fatigue [72,73], abrasion caused by microcutting and microcracking [74], and delamination [75]. It was
found that delamination of composite phases is the predominant mechanism for brittle materials
(and these are high-filled PMCCs, KIC stress factor KIC ≈ 1/2 MPa·m0.5) in the case of relatively large
normal loads [76].

Figure 10 presents damage developing in the environment of inclusions and/or large filler particles.
Microcracks initiate in the vicinity of the filler particles (Figure 10a), they develop as a result of
cyclic loads, leading to the weakening of the cohesion of the filler particles and lead to chipping (pitting).
In Figure 10b, the craters formed after the removal of a large filler particle are visible. Removal of
the particle, which was weakly bound due to the development of fatigue cracks, was caused by
tacking micro-lines on surfaces cooperating with friction. It is probably an adhesive mechanism of
destruction [32].
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Figure 10. Crushing of large ceramic filler microparticles (a) and torn large particles/agglomerates of
the filler in wear scar (pitting wear) Ex-mhyb(P) (b). Direction of sliding marked by an arrow.

3.3.4. Microscopic Images of Traces of Abrasive Wear After Thermocycling Composites

The process of destroying the tribological surface after thermocycling takes place similarly to
before thermocycling, but it is more intense. The defects and structure of the structure caused by
the process of thermal cycling have a great significance for friction and wear, e.g., areas of surface
decohesion and non-abrasive wear (Figure 11a–c).
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In flow composites, surface damage caused by thermal cycling is not so high (Figure 12). However,
thermal cycles showed more air bubbles in the structure of the Ex-flow composite (P) (Figure 13).Materials 2019, 12, x FOR PEER REVIEW 15 of 20 
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Figure 13. Opened air bubble in Ex-flow(P) composite structure exposed as a result of the combined
effect of degradation factors—thermocycling and tribological wear.

In the case of FFlow before thermocycling, the polymer phase was smeared on the surface of the
harder filler particles (Figure 14a). However, after thermal shocks, the formation of a polymer film is
less noticeable (Figure 14b), which is most likely reflected in the friction coefficient (Table 3). A reverse
relation was observed in the Ex-flow(P) material. The polymer film is more noticeable in the after
thermocycling material (Figure 15) which may affect the coefficient of friction (Table 3).



Materials 2019, 12, 2776 15 of 19
Materials 2019, 12, x FOR PEER REVIEW 16 of 20 

 

 
Figure 14. The friction surface of FFlow composite samples without (a) and after thermocycling (b). 
Direction of sliding marked by an arrow. 

 
Figure 15. Surface of friction of Ex-flow(P) composite samples without (a) and after thermocycling 
(b). Direction of sliding marked by an arrow. 

4. Conclusions  

The aim of the work was to assess the influence of cyclic hydrothermal interactions on the 
properties of the surface layer of two micro-hybrid composites and two types of flow composites 
used as dental restoration materials. 

Within the limits of this study, it could be concluded that: 
1. The flow composites tested, containing a smaller amount of filler, retain the stability of the 

mechanical and tribological properties of the surface layer after thermocycling. Materials with a 
higher filler content (Z550, Ex-mhyb (P)), more strength and hardness, potentially more resistant to 
wear, proved to be less stable under these conditions. 

2. The conducted research allows to better define the mechanisms of tribological and non-
tribological mechanical wear. 

Figure 14. The friction surface of FFlow composite samples without (a) and after thermocycling (b).
Direction of sliding marked by an arrow.

Materials 2019, 12, x FOR PEER REVIEW 16 of 20 

 

 
Figure 14. The friction surface of FFlow composite samples without (a) and after thermocycling (b). 
Direction of sliding marked by an arrow. 

 
Figure 15. Surface of friction of Ex-flow(P) composite samples without (a) and after thermocycling 
(b). Direction of sliding marked by an arrow. 

4. Conclusions  

The aim of the work was to assess the influence of cyclic hydrothermal interactions on the 
properties of the surface layer of two micro-hybrid composites and two types of flow composites 
used as dental restoration materials. 

Within the limits of this study, it could be concluded that: 
1. The flow composites tested, containing a smaller amount of filler, retain the stability of the 

mechanical and tribological properties of the surface layer after thermocycling. Materials with a 
higher filler content (Z550, Ex-mhyb (P)), more strength and hardness, potentially more resistant to 
wear, proved to be less stable under these conditions. 

2. The conducted research allows to better define the mechanisms of tribological and non-
tribological mechanical wear. 

Figure 15. Surface of friction of Ex-flow(P) composite samples without (a) and after thermocycling (b).
Direction of sliding marked by an arrow.

4. Conclusions

The aim of the work was to assess the influence of cyclic hydrothermal interactions on the
properties of the surface layer of two micro-hybrid composites and two types of flow composites used
as dental restoration materials.

Within the limits of this study, it could be concluded that:
1. The flow composites tested, containing a smaller amount of filler, retain the stability of the

mechanical and tribological properties of the surface layer after thermocycling. Materials with a higher
filler content (Z550, Ex-mhyb (P)), more strength and hardness, potentially more resistant to wear,
proved to be less stable under these conditions.
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2. The conducted research allows to better define the mechanisms of tribological and non-tribological
mechanical wear.

3. In slip pairs loaded dynamically, under mixed friction conditions, tribological wear of PMCCs,
of primary importance for the degree of surface destruction, is manifested by spalling (flaking of
the material, in particular polymer phase), pitting (crushing wear caused by wear products), in particular
large filler particles or clusters, previously taken apart.

4. On the basis of the obtained results, it should be recognized that in actual kinematic nodes,
the exploitative top layer is exposed to significant non-tribological (erosive, thermal, and chemical)
damages that are synergistic with the tribological one.
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Eksploatacji): Poznań-Radom, Poland, 1998; p. 331. (In Polish)

68. Souza, J.; Bentes, A.; Reis, K.; Gavinha, S.; Buciumeanu, M.; Henriques, B.; Silva, F.S.; Gomes, J.R. Abrasive
and sliding wear of resin composites for dental restorations. Tribol. Int. 2016, 102, 154–160. [CrossRef]

69. Zhao, X.; Pan, J.; Malmstrom, H.S.; Ren, Y.F. Protective effects of resin sealant and flowable composite
coatings against erosive and abrasive wear of dental hard tissues. J. Dent. 2016, 49, 68–74. [CrossRef]

70. Wang, X.; Cai, Q.; Zhang, X.; Wei, Y.; Xu, M.; Yang, X.; Ma, Q.; Cheng, Y. Improved performance of
Bis-GMA/TEGDMA dental composites by net-like structures formed from SiO2 nanofiber fillers. Mater. Sci.
Eng. C Mater. Biol. Appl. 2016, 59, 464–470. [CrossRef]

71. Braem, M.; Lambrechts, P.; van Doren, V.; Vanherle, G. In vivo evaluation of four posterior composites:
Quantitative wear measurements and clinical behaviour. Dent. Mater. 1986, 2, 106–113. [CrossRef]

72. Truong, V.T.; Cock, D.J.; Padmanathan, N. Fatigue crack propagation in posterior dental composites and
prediction of clinical wear. J. Appl. Biomater. 1990, 1, 21–30. [CrossRef]

73. McKinney, J.E.; Wu, W. Relationship between subsurface damage and wear of dental restorative composites.
J. Dent. Res. 1982, 61, 1083–1088. [CrossRef] [PubMed]

74. Heintze, S.D.; Zellweger, G.; Zappini, G. The relationship between physical parameters and wear of dental
composites. Wear 2007, 263, 1138–1146. [CrossRef]

75. Hu, X.; Marquis, P.M.; Shortall, A.C. Two-body in vitro wear study of some current dental composites and
amalgams. J. Prostht. Dent. 1999, 82, 214–220. [CrossRef]

76. De Souza, J.A.; Dolavale, L.C.; de Souza Camargo, S.A. Wear mechanisms of dental composite restorative
materials by two different in-vitro methods. Mater. Res. 2013, 16, 333–340. [CrossRef]

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1007/s00784-014-1373-4
http://www.ncbi.nlm.nih.gov/pubmed/25491442
http://dx.doi.org/10.4012/dmj.2013-339
http://www.ncbi.nlm.nih.gov/pubmed/25007731
http://www.ncbi.nlm.nih.gov/pubmed/27840447
http://dx.doi.org/10.1080/02726351.2016.1262484
http://dx.doi.org/10.1016/j.bsbt.2016.09.002
http://dx.doi.org/10.1016/j.triboint.2016.05.035
http://dx.doi.org/10.1016/j.jdent.2016.01.013
http://dx.doi.org/10.1016/j.msec.2015.10.044
http://dx.doi.org/10.1016/S0109-5641(86)80004-5
http://dx.doi.org/10.1002/jab.770010105
http://dx.doi.org/10.1177/00220345820610091101
http://www.ncbi.nlm.nih.gov/pubmed/6963283
http://dx.doi.org/10.1016/j.wear.2006.12.010
http://dx.doi.org/10.1016/S0022-3913(99)70159-9
http://dx.doi.org/10.1590/S1516-14392012005000183
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Experimental Design, Materials, and Methods 
	Experimental Results and Discussion 
	Microhardness 
	Indentation Hardness 
	Tribological Wear 
	Abrasion Testing 
	Microscopic Images of Traces of Abrasive Wear of Non-Thermocycling Composites 
	Microscopic Images of Fatigue Wear 
	Microscopic Images of Traces of Abrasive Wear After Thermocycling Composites 


	Conclusions 
	References

