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Hierarchical modeling 
of mechano‑chemical dynamics 
of epithelial sheets across cells 
and tissue
Yoshifumi Asakura1, Yohei Kondo2,3,4, Kazuhiro Aoki2,3,4 & Honda Naoki1,5,6*

Collective cell migration is a fundamental process in embryonic development and tissue homeostasis. 
This is a macroscopic population-level phenomenon that emerges across hierarchy from microscopic 
cell-cell interactions; however, the underlying mechanism remains unclear. Here, we addressed this 
issue by focusing on epithelial collective cell migration, driven by the mechanical force regulated 
by chemical signals of traveling ERK activation waves, observed in wound healing. We propose 
a hierarchical mathematical framework for understanding how cells are orchestrated through 
mechanochemical cell-cell interaction. In this framework, we mathematically transformed a particle-
based model at the cellular level into a continuum model at the tissue level. The continuum model 
described relationships between cell migration and mechanochemical variables, namely, ERK 
activity gradients, cell density, and velocity field, which could be compared with live-cell imaging 
data. Through numerical simulations, the continuum model recapitulated the ERK wave-induced 
collective cell migration in wound healing. We also numerically confirmed a consistency between these 
two models. Thus, our hierarchical approach offers a new theoretical platform to reveal a causality 
between macroscopic tissue-level and microscopic cellular-level phenomena. Furthermore, our model 
is also capable of deriving a theoretical insight on both of mechanical and chemical signals, in the 
causality of tissue and cellular dynamics.

Collective cell migration in epithelial sheets plays an important role in embryonic development and tissue 
homeostasis1. Such a tissue-level phenomenon must have emerged through interactions between individual 
cells. However, how the intercellular interactions affect collective cell migration remains unclear, because of 
the difficulties in understanding causality between the microscopic intercellular process and the macroscopic 
tissue-level phenomenon. In this study, we aimed to address this issue through computational modeling across 
the hierarchy between cells and tissues.

Several studies have investigated the molecular basis of chemical and mechanical regulation of cell migra-
tion. Recently, it was revealed that actomyosin-generated mechanical force is regulated by chemical cues such as 
E-cadherin2 and Rho GTPases3,4 during collective cell migration. In addition, extracellular signal-related kinase 
(ERK), involved in the MAPK cascade plays an important role in single cell migration in vitro5 and in vivo6,7, 
through phosphorylation of myosin light chain (MLC) kinase and focal adhesion kinase.

Recently, we reported that collective cell migration during wound healing was mediated by mechano-chemical 
cellular dynamics involving ERK activation in vivo and in vitro8,9. In these previous studies, we experimentally 
discovered that ERK activation spread in space and time as traveling waves during wound healing, as revealed by 
live-imaging of ERK activity using a biosensor based on the principle of fluorescence resonance energy transfer 
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(FRET)6,7,10. ERK chemical waves spread from the site of injury across the epithelial sheet, and cells collectively 
move toward the site of injury; this implies that cell migration occurs in a direction opposite to that of ERK 
waves (Fig. 1, supplemental figure 1, supplemental movie 1). We also showed that cells altered their mechanical 
properties, including mobility and volume, in response to ERK activation.

To understand how the ERK activation wave is transformed to collective cell migration, we previously devel-
oped a particle-based model of an epithelial cell population8. This model was formulated as one-dimensionally 
aligned particles connected by springs, in which particles and springs represent cells and elastic cell–cell interac-
tions, respectively. According to our experiments, we incorporated the effects of ERK signals on cellular mechani-
cal properties, namely ERK-dependent mobility and volume, in the model. Using computer simulations, our 
model successfully recapitulated the basic property of ERK-mediated collective cell migration, i.e., cells migrate 
in a direction opposite to that of the ERK traveling wave.

However, the particle-based model could not facilitate a direct comparison of the experimental data with 
the model, because of the following discrepancies. First, our previous model was implemented in one dimen-
sion whereas the epithelial tissue migrated in two dimensions. Second, even in a possible 2D model, it is hard 
to compare the model with cellular behaviors observed in live-imaging, due to the plastic nature of the tissue. 
In the tissue, cellular positions are not stably fixed, as is observed in solid particles; it behaves like a fluid in 
which cellular positions are rearranged in time. Additionally, cells stochastically pass through other cells. Third, 

Figure 1.   Live imaging of ERK-induced collective cell migration (a). Visualization of ERK activity during 
wound-healing in epithelial MDCK cell sheet expressing the FRET-based biosensor of ERK. Snapshots are 
presented at 1 h (upper panel) and 9 h (lower panel) after scratching. Red and blue colors indicate high and low 
ERK activity, respectively. Note that the cytosol is not visualized, since the FRET-based biosensor is localized 
only in the nucleus6,10. (b) A kymograph of ERK activity images in a band region of interest indicated by the 
white box in (a). (c) A schematic representation of ERK-mediated collective cell migration. Cells migrate toward 
the opposite direction of the ERK wave. The cellular volume and mobility are increased by ERK activation.

Table 1.   List of parameter values.

Variables Figs. 2b, 3c–e left, 4a and 5 Figs. 2c, 3c–e middle, 4b Figs. 2d, 3c–e right, 4c

µ0 10 10 10

α 1.5 1.5 − 0.4

β 2.5 0 2.5

k0 2 2 2

R0 0.5 0.5 0.5

η 0.08 0.08 0.08

r 1 1 1
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cellular responses are heterogeneous; however, our previous model assumed that cells are homogeneous with 
the same parameter values.

To overcome the aforementioned limitations, we aimed to acquire a coarse-grained model of the two-dimen-
sional epithelial dynamics that averages the heterogeneous properties of individual cells. We propose a hierarchi-
cal approach, in which our particle-based model of ERK-mediated collective cell migration was approximately 
translated into a continuum model. This approach allows us to seamlessly connect hierarchical causality from 
single-cell behavior to tissue-level dynamics. In the following sections, we describe the particle-based model 
and its transformation to the continuum model and demonstrate the validity of our hierarchical approach by 
comparing these two models via numerical simulations.

Results
Particle‑based model with viscosity.  Previously, we developed a particle-based model to understand 
how the ERK traveling wave mediates collective cell migration in epithelial sheets, in which cells adhere to 
neighboring cells11–13 so that they cannot freely migrate due to contact inhibition14 but rather mechanically 
interact each other through repulsive and attractive forces (Fig. 2a). In the model, the epithelial sheet was con-
sidered a one-dimensional (1D) series of particles connected through springs, where particles denote the posi-
tions of cells and springs represent the elastic property of the cells involved in the membrane, cytoskeleton 

Figure 2.   Simulations of the particle-based model in 1D (a). Graphical representation of the particle-based 
model. The centers of cells are illustrated by particles, and these are connected with neighboring cells by springs 
and dampers representing the elasticity and viscosity of the cytoplasm, respectively. (b–d). Simulations of 
ERK-induced collective cell migration with different parameter settings. Each line indicates cellular trajectory 
with the line color representing ERK activity. Parameters in Table 1 were used. In (b), cells migrate toward 
the opposite direction of the ERK waves. In (c), cells show back-and-forth movement during the ERK waves 
without net displacement. In (d), cells migrate toward the same direction of the ERK waves.
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and adhesion8. Thus, the dynamics of the cellular position xi is described by the following ordinary differential 
equations (ODEs):

where xi and vi indicate the position and velocity of the i-th cell, respectively. Parameters µi , k,Ri , and η indicate 
the friction coefficient, spring constant, cell radius, and viscosity coefficient, respectively. Because cell size and 
mobility were upregulated by ERK activation in our previous study8, we assumed that cell radius and friction 
were positively or negatively modulated by ERK activity as

where R0 and µ0 indicate the basal radius and basal friction of the cells, respectively; α and β denote the effect of 
ERK activity on cellular size and friction, respectively. ERK activity was applied as traveling Gaussian distribu-
tions as

where ERKi ,A0 , so , c, σ 2 indicate the ERK activity of the i-th cell, amplitude of the ERK wave, initial position of 
an ERK wave, velocity of the ERK wave, and a positive constant regulating width of the ERK wave, respectively.

Through the simulation, the model showed ERK-induced cell migration, in which the cells migrated in a 
direction opposite to that of the ERK traveling wave (Fig. 2b); this was consistent with our previous experi-
ments. The cellular migration is driven by imbalance between the friction and the pushing force by the volume 
expansion, which are caused by the ERK activity wave (supplemental figure 2). Additionally, by changing the 
simulation parameters, migration in the opposite direction was abolished (Fig. 2c,d). Cancelling the effects of 
ERK on friction coefficient µi abolished any migration after the passage of an ERK wave (Fig. 2c), and the nega-
tive effect of ERK on cell radius Ri caused migration in the same direction as the ERK traveling wave (Fig. 2d). 
These parameter dependencies of the direction of cellular migration validated our assumption of the effects of 
ERK on cellular properties expressed in Eqs. (3) and (4).

Continuum model.  We coarse-grained the 1D particle-based model by continuum dynamics approxima-
tion (Fig. 3a). We first transformed Eq. (2) into

where Pi = k
{

(Ri+1/2 + Ri−1/2)− (xi+1/2 + xi−1/2)
}

 . Pi−1/2 and Pi+1/2 correspond to the pressure from left 
and right neighboring cells. Since the cell density is defined as a number of cells within unit distance, the cell 
density at the middle position between the cells i and i ± 1 is calculated by

In the same way, natural density is defined by ρ∞

i±1/2 = 1/{Ri±1(ERKi±1)+ Ri(ERKi)} . Thus,

In the coarse-grained description (6), collective cell migration is interpreted as a continuous flow field, 
expressed in Lagrangian description in fluid dynamics as follows:

where v indicates velocity of the flow field, P = k(1/ρ∞

− 1/ρ) , and D/Dt = ∂/∂t + v grad (in this 1D case, 
Dv/Dt = ∂v/∂t + v∂v/∂x , see “Methods” section for details). Because ρ∞

= 1/2R0(1+ αERK),

(1)
dxi

dt
=vi ,

(2)

dvi

dt
=− µivi − k{(Ri+1 + Ri)− (xi+1 − xi)}

+ k{(Ri + Ri−1)− (xi − xi−1)}

+ η(vi+1 − vi)− η(vi − vi−1),

(3)Ri = R0(1+ αERKi),

(4)µi = µ0 exp(−βERKi),

(5)ERKi = A0 exp

[

−{xi − (so + ct)}2

2σ 2

]

,

(6)
dvi

dt
= −µivi − (Pi+1/2 − Pi−1/2)+ η(vi+1 − 2vi + vi−1),

(7)ρi±1/2 = 1/(xi+1 − xi).

(8)Pi±1/2 = k

(

1

ρ∞

i±1/2

−

1

ρi±1/2

)

.

(9)
Dv

Dt
= −µ(ERK)v −

1

ρ

∂P

∂x
+

η

ρ2

∂2v

∂x2
−

η

ρ3

∂ρ

∂x

∂v

∂x
,

(10)
Dv

Dt
= −µ exp(−βERK)v − 2αkR0

1

ρ

∂ERK

∂x
−

k

ρ3

∂ρ
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Note that D/Dt is used for the Lagrangian description in which individual cells are tracked and the velocity 
change is detected as a function of time, whereas ∂/∂t is used for the Eulerian description in which velocity 
change is written as a function of space and time.

In contrast to Eq. (6), v, P and ρ are not indexed by i, since we addressed these variables as continuous func-
tions in space and time. The cell density field also has a flux according to Eq. (7) and its dynamics are described by

(11)
Dρ

Dt
= −ρ

∂v

∂x
.

Figure 3.   Simulations of the continuum model in 1D (a). A schematic representation of the coarse-grained 
approximation from the particle-based model to continuum model. Migrations of particles, i.e., cells, are 
represented by density distribution and velocity. (b) ERK traveling waves applied in simulations. (c–e) 
Simulation results of velocity (upper panel), density (middle panel), and trajectories of the cells (lower panel). 
Parameters used in (c), (d) and (e) are the same as Fig. 2b–d, respectively.



6

Vol:.(1234567890)

Scientific Reports |         (2021) 11:4069  | https://doi.org/10.1038/s41598-021-83396-6

www.nature.com/scientificreports/

ERK waves were given the same function as those in the particle-based model (Fig. 3b). With this continuum 
model, we performed simulations of fields of v and ρ in an Euler description with ERK waves that travel in a 
positive direction on the x-axis. The resulting velocity field showed negative values (Fig. 3c), indicating flow in 
a direction opposite to that of the ERK waves. The migration in an opposite direction against ERK waves is con-
sistent with our observations in previous experiments. As observed in the particle-based model, velocity fields 
showed the same direction values in some simulation parameters, as shown in (Fig. 3c–e).

Comparison between two models in 1D.  To validate our continuum approximation in 1D, we com-
pared the simulation results generated by the two models. To this end, we numerically reconstructed a trajectory 
of cellular migration, i.e., path line in fluid mechanics, from the simulated velocity field in the continuum model 
(Fig. 3c–e) (see “Methods” section). It should be noticed that the velocity field in the continuum model repre-
sents velocity at time t and space x, but does not correspond to tracking velocity of specific cells. By comparing 
the trajectories simulated in our two models, we confirmed that the trajectories generated by the two models 
were almost the same in various parameters both under symmetric (Fig.  4) and asymmetric (supplemental 
Fig. 3) ERK waves. We also tested the effect of spatial grid size in the continuum model simulation (supplemental 
Fig. 4, 5) . As long as the grid size was smaller than ERK wave length, the simulated trajectories were almost the 

Figure 4.   Comparison between the particle-based and continuum models in 1D simulation Comparisons 
between the migration trajectories simulated by two models with the same parameter values. In the left and 
center panels, the shaded gray and blue lines indicate trajectories simulated by the particle-based and continuum 
models, respectively, and the color of the inner lines indicates ERK activity. In the right panels, the shaded 
gray and blue lines were merged for comparison. Parameters used in (a), (b), and (c) are the same as Fig. 2b–d, 
respectively.
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same as ones in particle-based model. These results indicate that our fluid approximation is valid and that the 
continuum model is able to explain ERK-dependent cell migration.

Comparison between two models in 2D.  We further showed that our continuum model was valid not 
only in 1D but also in 2D. The 2D particle-based model was extended in 2D. The dynamics of a cell i at the posi-
tion xi = (xi , yi) are described by following ODEs:

where vi = (vx,i , vy,i) represents velocity of the cell i. Its dynamics are described as

where µi indicates the friction coefficient, which is the same as that in Eq. (4), and Pij and Vij indicates pressure 
and viscosity, which a neighboring cell j applies to the cell i. They are expressed as

where k,Ri , and µi are the spring coefficient, natural length of a cell i, and friction coefficient, respectively, and 
eij is a unit vector (xj − xi)/|xj − xi| from cell i to j. The neighboring cells were detected by calculating Voronoi 
diagrams.

In the 2D continuum model, our model was extended as follows:

where s ∈ {x, y} . In both models, ERK was described as

where � is a positive symmetric matrix regulating the shape of ERK waves.
With these equations, we conducted numerical simulations. In both models, we confirmed cellular migration 

in a direction opposite to that of traveling ERK waves (Fig. 5a–c, supplemental movie 2). For comparison between 
the cellular trajectories simulated by two models in 2D, we plotted cellular trajectories in space-time coordinates, 
in which cellular trajectories within a 1D band region of interest were depicted (Fig. 5d,e). We noticed that the 
trajectories in the particle-based model seemed less continuous than those in the continuum model, because the 
cells were in contact with discrete numbers of neighboring cells, e.g., five or six, and the neighboring pairs were 
frequently rearranged. Although the trajectories were disconnected because cells leave and enter the band region, 
the cells showed almost the same migration in a direction opposite to that of the ERK waves in both models. This 
result showed a clear consistency between the particle-based and continuum models, even in 2D. We further 
confirmed a consistency between the two models by comparing the simulated trajectories in 2D space (Fig. 5d, 
e). Taken together, our continuum approximation was validated to recapitulate tissue dynamics, even in 2D.

Discussion
Here we proposed a hierarchical modeling approach to understand mechano-chemical epithelial dynamics, 
which acquires causality beyond the hierarchy between the cellular and tissue levels. We showed that the previ-
ous particle-based model at the cellular level can be hierarchically transformed into the continuum model to 
reveal tissue-level epithelial dynamics. Through numerical simulation, we demonstrated the clear consistency 
of the trajectories simulated by the continuum model and our previous particle model, and our continuum 
model successfully recapitulated our previous experimental observations. These results indicated the validity of 
our hierarchical modeling. Thus, our continuum model offers a new theoretical platform to reveal hierarchical 
regulatory systems between cells and tissues, integrating mechano-chemical signals that determine both cellular 
and tissue behaviors.

Several coarse-grained models have been developed15–20, however, no models for the incorporation of 
mechanical dynamics with molecular activities that were quantitatively measured by recent imaging techniques 
with the FRET-based biosensor have been introduced. Due to this lack of integration, mechanistic insights into 
how intracellular signals, e.g., MAPK and WNT, regulate the mechanical dynamics of tissues and cells have been 
limited21, in spite of the recent progress in imaging techniques. Therefore, our model is the first coarse-grained 
model to integrate the complex regulatory mechanisms of mechano-chemical tissue dynamics.

Although the epithelial tissue is a 2D sheet, our previous particle-based model was restricted to 1D observa-
tions. On the other hand, our continuum model can easily be extended to function as a two-dimensional model 

(12)
dxi

dt
= vi ,

(13)
dvi

dt
= −µivi +

∑

j

(

Pij + Vij

)

,

(14)Pij = keij
{

|xj − xi| − (Ri + Rj)
}

,

(15)Vij = η(vj − vi),

(16)
Dvs

Dt
= −µ exp(−βERK)vs − 2αkR0
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Dρ

Dt
= −ρ
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∂x
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∂vy
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)

,
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1
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and reflects in situ 2D epithelial sheet dynamics observed by imaging experiments. Furthermore, because the 
continuum model coarse–grains noisy rearrangement of cells, our hierarchical modeling approach presents a 
new theoretical methodology to understand tissue dynamics without monitoring all cellular behaviors. There-
fore, the continuum model is more advantageous than other models at the cellular level, in terms of enabling the 
interpretation of 2D epithelial sheet dynamics observed by the imaging data22–24.

Limitation of our model is that ERK activity was just given as an external input. Hence, how the ERK activity 
wave is spatially propagated is out of our scope, which is supported by our previous optogenetic experiment. 
We have shown that artificially-evoked ERK activity wave induced cell migration as observed in wound healing, 
even under the inhibition of the intercellular ERK activity propagation. Therefore, this experiment suggested that 

Figure 5.   Comparison between the particle-based and continuum models in 2D simulation (a). ERK wave 
applied in the simulations. (b,c). Simulation results in the particle-based and continuum models. Each dot 
represents cells in the particle-based model (b) and virtual marker simulated in the Lagrange description (c). 
Red lines indicate the trajectories of the cell (b) and virtual marker (c), which are initially located at the same 
position. See a supplemental movie for these simulations. (d,e). Trajectories of the simulated cells in space (x)—
time coordinates in the particle-based (d) and continuum (e) models. Cellular migration trajectories within a 
white box region shown in (a).
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feedback regulation of ERK activity from mechanical force is not essential for collective cell migration. On the 
other hand, it has been recently reported that the ERK activation wave was linked with mechanical force of cell 
migration25 and mathematically modeled26. Another limitation is that the model did not address on a sustained 
ERK region at the leading edge of the wound (Fig. 1). Actually, during wound healing in vivo9 and in vitro with 
a different experimental setting25, the ERK wave was periodically generated and propagated from the wound 
edge, but the sustained ERK wave was not observed. Therefore, we focused on the cellular migration in response 
to the ERK waves, but not to the sustained ERK activity.

Since the recent progress in live cell imaging techniques has led to an increase in the number of signaling 
molecules that can be monitored at the same time, future works need to elucidate the importance of the chemi-
cal factors other than ERK. Our continuum model currently takes only one chemical factor into account, and 
it needs to be further extended to consider two or more factors. Along with the multiple-chemical signal quan-
tifications, recent progress in the quantitative biology field has enabled the measurement of mechanical signals 
such as pressure and density27,28. No methods had been introduced, however, to analyze mechanical signals with 
canonical molecular biochemical signals at the same time. Our continuum model provides a new theoretical 
basis to analyze the cellular system, integrating both mechanical and chemical signals.

Methods
Detailed derivation of the continuum model.  Equation (2) of the particle-based model is rewritten as

where Pj = k
{

(Rj+1/2 + Rj−1/2)− (xj+1/2 − xj−1/2)
}

 and Pi+1/2 and Pi−1/2 correspond to pressure from neigh-
boring cells on the right and left, respectively. Here, we defined the cell density at cell i as ρi = 1/(xi+1/2 − xi−1/2) , 
where i + 1/2 represents the middle point index between cell i and cell i + 1 . In the same way, the natural cell 
density at cell i is defined by the inverse of the sum of the natural radius of neighboring cells as 
ρ∞

i = 1/(Ri+1/2 + Ri−1/2) . These definitions lead to Pj = k
(

1/ρ∞

j − 1/ρj

)

 . Thus, the Eq. (2) becomes

where

According to continuous approximation, i.e. lim(xi+1/2−xi−1/2)→0 , this equation is transformed into

where v indicates continuous function of x and t as v(x,  t), P(x, t) = k{1/ρ∞(x, t)− 1/ρ(x, t)} , 
ρ∞(x, t) = 1/2R(ERK(x, t)) and Dv/Dt = ∂v/∂t + v ∂v/∂x . Note that Dv/Dt indicates Lagrange description 
of velocity, representing the temporal derivative of the migration velocity of tracking cells. Here, we considered 
R(ERK) = R0(1+ αERK) in the particle-based model, which leads to Eq. (10).

To obtain the continuum dynamics of cell density, we consider the temporal derivative of ρi referring to the 
definition ρi = 1/(xi+1/2 − xi−1/2) as

 As described for velocity above, this equation changes to

Again, continuum approximation leads to temporal derivative of density in the Lagrange description:

(19)

dvi
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= −µ(ERKi)vi −

(
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{
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∣
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This equation can be changed in Euler description as

This equation is well known as the continuity equation, resulting from the law of mass conservation in continuum 
dynamics. Because it is naturally derived, our continuum approximation was accurate.

Finally, an equation of momentum was derived from Eq. (21). The temporal derivative of momentum is

where p indicates the momentum as p = ρv . Using a general equation between Euler and Lagrange description

and Eqs. (25), (26) changess to

where p = ρv indicates the momentum.

Alternative derivation of the continuum model.  Here, we consider a volume element centered by xi 
that contains �i cells and scaled parameters to confirm the model derivation in the previous section by following 
a procedure established in20.

Equation (2) of the particle-based model is rewritten as

where m is mass of a cell and m = 1 in the Eq.  (2), hi = (Ri+1/2 + Ri−1/2)− (xi+1/2 − xi−1/2) and 
ui = vi+1/2 − vi−1/2 . Note that the ERK dependency of µ is not explicitly written here. This equation is scaled to

where m̂, µ̂, ˆh, η̂ , and û are scaled variables for the corresponding variables.
The mass m̂ is proportional to �i as

The friction term is also proportional to �i as

In the pressure term, ˆh is linearlized by the Taylor expansions with chain rule,

Therefore by Eq. (35), the scaled pressure term is

since ˆk = k/�i , which is the effective spring constant of linearly-connected springs, and ˆh = h�i , which is total 
displacement of �i cells.

Next, using the Taylor expansions of û in the same manner as Eqs. (35) and (36), the viscosity term is

(24)
Dρ

Dt
= −ρ

∂v

∂x
.

(25)
∂ρ

∂t
= −

∂

∂x
(ρv).

(26)
∂p

∂t
= v

∂ρ

∂t
+ ρ

∂v

∂t
,

(27)
∂v

∂t
+ v

∂v

∂x
=

Dv

Dt
,

(28)
∂

∂t
p = −v

∂(ρv)

∂x
+ ρ

(

Dv

Dt
− v

∂v

∂x

)

(29)= −

∂

∂x
(vp)+ ρ

Dv

Dt

(30)= −

∂

∂x
(vp)− µ(ERK)p−

∂P

∂x
+ η

∂

∂x

(

1

ρ

∂v

∂x

)

,

(31)m
dvi

dt
= −µvi − k

(

hi+1/2 − hi−1/2

)

+ η
(

ui+1/2 − ui−1/2

)

(32)m̂
dvi

dt
= −µ̂vi − ˆk

{

ˆh(xi+�i/2)− ˆh(xi−�i/2)

}

+ η̂
{

û(xi+�i/2)− û(xi−�i/2)
}

,

(33)
m̂ = �i m

= �i.

(34)µ̂ = �i µ.

(35)ˆh
(

xi±�i/2

)

=
ˆh(xi)± ˆh′(xi)

(

1

2

∂x

∂i
�i

)

+ O(�i2).

(36)
−
ˆk
{

ˆh(xi+�i/2)− ˆh(xi−�i/2)

}

= −
ˆk
∂x

∂i

∂ ˆh

∂x
�i + O(�i2)

= −k
∂x

∂i

∂h

∂x
�i + O(�i2),
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Using Taylor expansions of v in the same manner as Eqs. (35) and (36) with the Eq. (37),

Here, v̂ = v was used since velocity is defined at each location. By Eqs. (37) to (38) with η̂ = η/�i , which is the 
effective viscosity constant, the viscosity term becomes

Then, by ignoring O(�i2) terms from Eqs. (33), (34), (36), and (39), the initial Eq. (32) becomes

which is the same as the first line of Eq. (21), since 1/ρ = ∂x/∂i.
Regarding density ρ , temporal differentiation of 1/ρ = ∂x/∂i leads to

which is the same as the Eq. (25) since v = ∂x/∂t and ρ = ∂i/∂x.

Asymmetric ERK waves.  As the asymmetric ERK waves in the simulations, we utilized the skew-normal 
distribution function which is normalized as its maximum value as 1 was utilized as,

where ξ ,ω , and α indicate the location of the distribution, scale, and shape, respectively. This function was 
implemented in a C++ package “Boost” (https​://www.boost​.org/).

Numerical simulation for the particle‑based model.  Numerical simulations for the particle-based 
models in 1D and 2D were conducted by the Runge–Kutta method with fourth order accuracy. In the 1D simu-
lation, the initial positions of the particles were equally spaced with unit intervals. In the 2D simulation, the 
initial positions of the particles were equally spaced on the xy-plane in a hexagonal lattice with unit intervals. 
Neighboring cells were detected according to the Voronoi diagram with a C++ package qhull29.

Numerical simulation for the continuum model.  Discretization of the continuum model.  For nu-
merical simulations, the continuum PDE model in Euler description was discretized with local Lax–Friedrichs 
flux30. PDEs were generally expressed by

where u ∈ {ρ(x, t), v(x t)}, f (u) indicates flux, e.g., f (ρ) = ρv for cell density and f (v) = v2/2 for cell velocity, 
and S(t) indicates reaction terms, e.g., S(t) = 0 for cell density and S(t) equals to the right-hand-side of Eq. (10). 
This PDE can be discretized in space and time as

where j and τ denote indices of discretized space and time, respectively; j ± 1/2 corresponds to mid positions 
between j and j ± 1 ; �x and �τ indicate the discretized intervals of space and time, respectively; sτj  indicates 
value at time τ�t and position j�x , (s ∈ {u, f , g}); uτj  represents the spatial average of u(x) at space j as

(37)η̂
{

û(xi+�i/2)− û(xi−�i/2)
}

= η̂
∂x

∂i

∂

∂x
û(xi)�i + O(�i2).

(38)
û(xi) = v̂(xi+�i/2)− v̂(xi−�i/2)
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(40)
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,

(41)
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,

(42)f (x) =
1

ωπ
exp
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−(x − ξ)2

2ω2

∫ α(
x−ξ
ω
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−∞

exp

(

−t2

2

)
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}

,

(43)
∂u

∂t
+

∂f (u)

∂x
= S(x, t),

(44)uτ+1
j = uτj +

�t

�x
(f τj+1/2 − f τj−1/2)+ Sτj �t,
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Since fj±1/2 indicates flux at the mid positions between j and j ± 1 , this equation satisfies the conservation 
of u. Here, we considered the discontinuity at j ± 1/2 such that

and

Fluxes at j ± 1/2 were defined by Lax–Friedrichs flux as

where γ = maxx |f (u(x))| . The first term represents the average flux, whereas the second term indicates artificial 
diffusion for avoiding numerical stability. uτj±1/2

L and uτj±1/2
R in Eq. (46) were calculated by weighted essentially 

non-oscillatory (WENO) scheme30,31 described below.

The WENO scheme.  We used the fifth-order WENO scheme to compute uτj±1/2
L and uτj±1/2

R from values of u 
at the grid points in the stencils SL = {xj−2, xj−1, xj , xj+1, xj+2} and SR = {xj−1, xj , xj+1, xj+2, xj+3} , respectively. 
The WENO scheme is a local interpolation method that takes into account the discontinuity of u(x). Because uj 
represents the spatial average of u(x) over the interval [xj−1/2, xj+1/2] , we just know its integral as

In the WENO reconstruction procedure31, values of U were interpolated by the three different stencils of

as third-order polynomials, P(1)(x),P(2)(x) and P(3)(x) , respectively. Then, values of u were reconstructed by 
second-order polynomials as p(n)(x) = dP(n)(x)/dx , and uj+1/2 is approximated to values of p(n)(xj+1/2) as

Then, uj+1/2
L was approximated by a convex combination of the three reconstructed uj+1/2 as

where 
∑

n wn = 1 and these weights are modulated in a discontinuity-dependent manner as

with

�1 = 1/10, �2 = 6/10, �3 = 3/10 and ǫ = 10−6 . sn is smoothness indicator of p(n)(x) defined by

where m is the polynomial degree of p(n)(x) (in this case, m = 2 ). The smoothness indicators were formulated by

(45)uτj =
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(
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,
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Note that if u(x) is smooth from xj−1 to xj+3 (i.e., s1 = s2 = s3) , uj+1/2
L becomes exactly the same as a polyno-

mial of degree at most four on large stencil S. Similarly, uj+1/2
R can be calculated on stencil SR , but in a mirror 

symmetric manner with respect to xj of the above procedure.

Numerical simulation in Euler description.  The Eq. (43) can be written as a method-of-line ODEs system

where uj = {uj−2, uj−1, uj , uj+1, uj+2} . These ODEs were temporally integrated by the total variation diminishing 
(TVD) Runge–Kutta method with third order accuracy30 as

where u(k)j = {u
(k)
j−2, u

(k)
j−1, u

(k)
j , u

(k)
j+1, u

(k)
j+2}.

2D numerical simulation in Euler description.  For a 2D simulation in Euler description in the WENO scheme30, 
PDEs were generally expressed by

where S(x,  y,  t) expresses the reaction term. In the 2D case, we calculated momentum ρvx and ρvy as u in the 
Eq. (62) instead of calculating vx and vy directly. In x direction, u, f(u), g(u) and S(x,  y,  t) in the Eq. (62) were

With Eqs. (63) to (65), each term on the left-hand-side in Eq. (62) becomes

The sum of the first terms on the right-hand-side of the equation was removed as,

since the equation of continuity appears in the brackets. The sum of the second terms becomes
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which corresponds to the Eq. (66).
Then, the Eq. (62) was discretized in a finite different scheme30 as

Note that in the finite different scheme, each of the numerical fluxes f τj±1/2 and gτj±1/2 can be computed inde-
pendently. Therefore, the numerical fluxes were computed in the same way as in the 1D case.

Numerical simulation in Lagrange description.  After obtaining the field value v(x, t) , Lagrange-described value 
x(x0,T) at time T is calculated by

by referring v(x, t) . The calculations were conducted using the Runge–Kutta method with fourth order accuracy 
in 1D simulations, and on an implicit Runge–Kutta method of the Radau IIA family of order five in 2D simula-
tions. Initial positions of particles on the tissue were determined as the same initial positions as those in the 
particle model simulations.
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