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Background: Head and neck squamous cell carcinoma (HNSCC) is the most common type and accounts 
for 90% of all head and neck cancer cases. Despite advances in early diagnosis and treatment strategies—
chemotherapy, surgical resection, and radiotherapy—5-year survival remains grim. For patients with early-
stage HNSCC, accurately predicting clinical outcomes is challenging. Considering the pivotal role of the 
immune system in HNSCC, we developed a reliable immune-related gene signature (IRGS) and explored its 
predictive accuracy in patients with early-stage HNSCC. 
Methods: We examined immune gene expression profiles and clinical information from 230 early-stage 
HNSCC specimens, including 100 cases from The Cancer Genome Atlas (TCGA), 49 cases from the Gene 
Expression Omnibus (GEO; GSE65858), and 81 cases from an independent clinical cohort. The prognostic 
signature was constructed using Kaplan-Meier analysis and the least absolute shrinkage and selection 
operator (LASSO) Cox algorithm. We also explored the IRGS-related biological pathways and immune 
landscape using bioinformatics analysis.
Results: A nine-immune-gene signature was generated to significantly stratify patients into high and  
low-risk groups. High risk patients exhibited shorter survival time [hazard ratio (HR) =13.795, 95% 
confidence interval (CI): 3.275–58.109, P<0.001]. The signature demonstrated robust prognostic ability 
in the training and validation sets and could independently predict overall survival (OS) and relapse-free 
survival (RFS). Subsequently, the receiver operating characteristic (ROC) curve and C-index confirmed 
the signature’s predictive accuracy compared to clinical parameters. Additionally, cases classified as low risk 
showed more immune cell infiltration than high-risk cases. 
Conclusions: Our novel IRGS is a reliable and robust classifier for accurate patient stratification and 
prognostic evaluation. Future studies will attempt to affirm the signature’s clinical application to early-stage 
HNSCC.
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Introduction

Head and neck cancers are highly aggressive and 
heterogeneous tumors that originate in the upper aero-
digestive tract, including the oral cavity, nasal cavity, larynx, 
and pharynx (1). Head and neck squamous cell carcinoma 
(HNSCC) is the most common type and accounts for 90% 
of all head and neck cancer cases. More than 350,000 new 
cases are diagnosed worldwide, and 170,000 deaths are 
reported annually (2). Unfortunately, despite advances in 
early diagnosis and treatment strategies—chemotherapy, 
surgical resection, and radiotherapy—5-year survival 
remains grim, at less than 50% (3). One problem is that 
many patients are diagnosed with advanced-stage disease. 
Even among those with early-stage disease, local recurrence 
may occur in up to 40% (4,5). Consequently, there is an 
urgent and unmet need for practical approaches to predict 
disease progression while considering patient-specific 
factors.

Conventional HNSCC prognostic stratification and 
clinical management depend on clinicopathological features. 
Meanwhile, our ability to predict disease course remains 
insufficient, especially in patients with early-stage HNSCC. 
The rapid advance and application of high-throughput 
sequencing technologies have revealed the molecular 
complexity of HNSCC and offered insight into disease-
specific biomarkers (6,7). Numerous studies have affirmed 
the essential role of gene expression signatures in HNSCC 
diagnosis, prognostication, surveillance, and treatment 
(8,9). Portions of the multigene signature have already been 
incorporated into routine clinical practice; however, we 
require large, multi-center studies to validate the signature 

and confirm its predictive value. Information gleaned from 
such studies should allow us to improve clinical outcomes, 
particularly in patients with early-stage HNSCC. 

The complex immune system plays a decisive role in 
tumor surveillance. Immune system dysfunction allows 
cancer cells to evade immune surveillance, facilitating 
tumor growth, invasion, and metastasis (10,11). Therefore, 
immunotherapy enhances a tumor-specific immune 
response and inhibits cancer cell proliferation through active 
and passive immune system activation (12). Numerous 
clinical trials of immune checkpoint inhibitors (ICIs) have 
produced durable clinical responses that are translated 
into survival benefits in patients with early-stage HNSCC 
(13-15). Additionally, immune cell infiltration of the 
tumor microenvironment (TME) could mediate immune 
responsiveness (10) and may convey a more-favorable 
prognosis in patients with HNSCC (16,17). Several studies 
found that the immune-related gene signature (IRGS), 
determined by RNA sequencing, has significant predictive 
value in patients with HNSCC. However, the immune-
related molecular profiles of the TME and the signature’s 
predictive value require validation in patients with early-
stage HNSCC.

To address this unmet need, we developed an IRGS for 
risk stratification and prognostication in patients with early-
stage HNSCC. Internal and external sample clinical cohorts 
were applied to validate the IRGS. Finally, the relationship 
between the IRGS score and underlying mechanisms of 
immune cell infiltration, checkpoints, and tumor mutation 
burden (TMB) was analyzed using a bioinformatics 
approach. We present this article in accordance with the 
TRIPOD reporting checklist (available at https://tcr.
amegroups.com/article/view/10.21037/tcr-23-1791/rc).

Methods

Public cohorts and immune genes sets

We examined 230 early-stage HNSCC samples with gene 
expression profiles and clinical information, including  
100 cases from The Cancer Genome Atlas (TCGA) (https://
portal.gdc.cancer.gov/), 49 cases from the Gene Expression 
Omnibus (GEO; GSE65858) (https://www.ncbi.nlm.
nih.gov/geo/), and 81 cases from an independent clinical 
cohort. Transcriptome data of immune-related genes (IRGs) 
in which the fragments per kilo base of transcript per 
million mapped fragments (FPKM) were downloaded for 
further analysis. The remaining data were log2 transformed 
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and quantile normalized for further analysis. An additional 
list of immune genes was acquired from the AmiGO 2 Web 
portal (http://amigo.geneontology.org/amigo/landing).

Clinical specimens

We collected 81 surgically resected, formalin-fixed 
paraffin-embedded (FFPE) HNSCC tissues from a 
surgical specimen database in The First Affiliated Hospital 
of Zhengzhou University. All enrolled patients were 
pathologically diagnosed as early-stage (I and II) HNSCC, 
had no other cancers, and no history of pre-surgical 
treatment. Pathological staging was as per the 8th Edition 
American Joint Committee on Cancer Staging (18). The 
study was conducted in accordance with the Declaration 
of Helsinki (as revised in 2013). The study was approved 
by the ethics board of The First Affiliated Hospital of 
Zhengzhou University (No. KY-2021-0403) and informed 
consent was waived due to retrospective nature of this study. 
Demographic and clinical data are summarized in Table S1.

Quantitative real-time polymerase chain reaction  
(qRT-PCR) analysis

We used qRT-PCR to determine the nine immune gene 
signatures from FFPE surgical specimens. We extracted the 
total RNA from 81 samples using the RNAiso Plus reagent 
(Takara, Beijing, China, #9109). RNA concentration was 
quantified using a NanoDrop 2000C spectrophotometer 
(Thermo Scientific, Waltham, MA, USA), and an A260/
A280 ratio of 1.8:2.1 was considered highly purified 
RNA. Then, cDNA was synthesized, and qRT-PCR 
was performed using SYBR Premix Ex Taq II (Takara, 
#RR820A), further analyzed by Agilent Mx3005P (Los 
Angeles, USA). We used the glyceraldehyde-3-phosphate 
dehydrogenase (GAPDH) expression as a referent for 
quantification assays, and the ΔCt values were considered 
sufficiently stable for further analysis. The primer sequence 
of the selected immune genes is presented in Table S2.

Functional enrichment analyses

Gene Ontology (GO) analyses were used to explore IRGS 
biological processes and pathway enrichment using DAVID 
6.8 (http://david.abcc.ncifcrf.gov/).

Estimation of immune cell infiltration

Immune cell  infi ltration was estimated using the 
Microenvironment Cell Populations-counter (MCP-
counter). This method quantifies immune and stromal cells 
from RNA-sequencing data (19).

Gene set variation analysis (GSVA)

Inflammatory metagenes clusters acted as surrogate markers 
for the diverse immune cells, including seven types of 
LCK, IgG, HCK, STAT1, interferon, MHC-I, and MHC-
II. GSVA was used to transform gene expression values 
into immune-related metagene set scores, followed by 
correlograms to investigate the relationship between IRGS 
and metagenes (20).

Signature construction and statistical analysis

The prognostic IRGS was identified based on training 
cohorts (TCGA), followed by validation of the predictive 
value in the test set (GSE65858) and an external validation 
cohort (clinical samples obtained from The First Affiliated 
Hospital of Zhengzhou University). The Kaplan-Meier 
method estimated relationships between immune genes 
and prognosis in the TCGA and GSE65858 cohorts. 
Prognostic-related immune genes with P<0.05 were 
selected. After the intersection of prognostic immune 
genes was identified in the two datasets, ten immune genes 
were selected. Then, the optimal signature was further 
constructed through least absolute shrinkage and selection 
operator (LASSO) regression analysis. The IRGS score 
was calculated based on the expression values of the nine 
selected immune genes with corresponding coefficients. 
Patients were separated into high- or low-risk groups based 
on the optimal cutoff point. A Kaplan-Meier analysis was 
used to determine the prognostic value of the identified 
signature in the training and validation cohorts, and 
between-group differences were compared using the log-
rank test. The signature’s ability was assessed using time-
dependent receiver operating characteristic (ROC) curves. 
Pearson’s correlation analysis was performed to measure the 
statistical correlation. All statistical analyses were conducted 
using R software version 3.5.3 (https://www.r-project.org) 
with two-tail P values <0.05 considered significant.

https://cdn.amegroups.cn/static/public/TCR-23-1791-Supplementary.pdf
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Results

Identification of differentially expressed genes (DEGs) in 
patients with early-stage HNSCC

To characterize the immune profiles associated with early-
stage HNSCC, we initially included 707 immune genes. 
Through Kaplan-Meier analysis, we identified 83 genes 
with a significant relationship to prognosis from the 
TCGA dataset and 693 genes from GSE65858 dataset. 
After cross-referencing all prognosis related genes from 
the two databases, we retained ten immune genes capable 
of estimating prognosis for HNSCCs, including three 
with HR >1 and seven with HR <1 (Figure 1A,1B). Then, 
we used a LASSO COX regression analysis to screen out 
the most important prognostically related genes in early-
stage HNSCC. The nine-immune-gene signature was 
constructed based on the optimum λ value (Figure 1C,1D). 
The corresponding coefficients of nine IRGs are shown 
in Figure 1E and six protective and three risk-enhancing 
genes were included. The IRGS was constructed based on 
the following formula: Risk score = (−0.5284 × METTL3 
expression) + (−0.4777 × PRKCH expression) + (−0.4107 
× NLRC5 expression) + (−0.1916 × IRAK4 expression) 
+ (−0.0986 × PLD1 expression) + (−0.0273 × IFNE 
expression) + (0.1128 × NLRP2 expression) + (0.1602 × 
HLA-DQA2 expression) + (0.1734 × TNFSF9 expression). 
The correlation matrix also showed a close relationship 
between the nine selected genes and corresponding risk 
scores. This suggested a close functional relationship among 
the genes (Figure 1F). 

Construction of the IRGS in patients with early-stage 
HNSCC

Each patient’s IRGS score was determined based on the 
model formula. We used these scores to stratify patients into 
high- and low-risk groups according to the optimal cutoff 
point (−13.523) in TCGA dataset. Figure 2A depicts the 
relationships among gene expression, IRGS score, and survival 
status. Then, a principal component analysis (PCA) showed 
significant heterogeneity between the high- and low-risk 
IRGS groups (Figure 2B). We further explored the prognostic 
significance of the IRGS score in the training cohort [hazard 
ratio (HR) =13.795, 95% confidence interval (CI): 3.275–
58.109, P<0.001]. Here, patients with scores indicating high-
risk demonstrated significantly worse overall survival (OS) 
(Figure 2C). This was true for patients with either stage I or 
II HNSCC (Figure 2D,2E). The Kaplan-Meier curve also 

showed significant between-group differences in relapse-free 
survival (RFS) (optimal cutoff point =−12.471, HR =10.520, 
95% CI: 3.094–35.771, P<0.001) (Figure 2F). 

Validation of IRGS score in multiple early-stage HNSCC 
cohorts

To further validate the reliability, robustness, and predictive 
value of the IRGS score in patients with early-stage 
HNSCC, 49 cases from the GEO dataset (GSE65858) 
and 81 cases from an independent clinical cohort with 
qRT-PCR data were integrated into our study. In the 
GSE65858 dataset, patients with early-stage HNSCC were 
divided into high- and low-risk score groups based on the 
optimal cutoff point (Figure 3A). The IRGS score showed 
excellent predictive stability, and patients with high-risk 
scores exhibited shorter OS than those with low scores for 
stage I and II HNSCC (OS, HR 19.940, 95% CI: 2.280–
174.299; RFS, HR 3.588, 95% CI: 1.284–10.026, P<0.001)  
(Figure 3B,3C). The clinical application of IRGS was also 
validated in an independent clinical FFPE cohort with 
quantitative polymerase chain reaction (qPCR) data from 
The First Affiliated Hospital of Zhengzhou University. We 
calculated IRGS scores based on the same formula, and 
patients were classified into high-and low-score groups 
using the optimal cutoff point (Figure 3D). As expected, 
the IRGS score accurately estimated OS in patients with 
early-stage HNSCC (Figure 3E). Once again, we observed 
significant between-group differences in RFS (HR =9.995, 
95% CI: 3.027–33.002, P<0.001) (Figure 3F). 

We additionally explored the prognostic value of the 
IRGS score across different clinical subgroups based on age, 
sex, smoking status, alcohol consumption, tumor stage, and 
IRGS score. Our signature demonstrated strong and stable 
predictive value for estimating OS and RFS in patients 
with early-stage HNSCC, with remarkably consistent 
results noted across cohorts. Patients with low IRGS scores 
experienced better clinical outcomes across different clinical 
subtypes, including age (old/young), sex (male/female), 
smoking status (smoker/non-smoker), alcohol (drinker/
non-drinker), and tumor stage (stage I/II HNSCC). These 
results are presented in Figures S1-S3. 

Evaluation of the predictive performance of the IRGS score 
in patients with early-stage HNSCC

We further evaluated the predictive performance of IRGS 
on early-stage HNSCCs using time-dependent ROC 

https://cdn.amegroups.cn/static/public/TCR-23-1791-Supplementary.pdf
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Figure 1 Identification of IRGS in patients with early-stage HNSCC. (A) Venn diagram showing immune-related prognostic genes with HR 
>1. (B) Venn diagram showing immune-related prognostic genes with HR <1. (C) 10-fold cross-validation for the tuning parameter lambda (λ) 
selection. Mark a dotted line at the optimal λ value. (D) LASSO coefficient profiles. (E) LASSO Cox coefficient of prognostic IRGs in TCGA 
cohort. (F) Correlation between IRGS risk score and expression of selected genes. Blue indicates a negative correlation, and red indicates a 
positive correlation. TCGA, The Cancer Genome Atlas; LASSO, least absolute shrinkage and selection operator; IRGS, immune-related gene 
signature; HNSCC, head and neck squamous cell carcinoma; HR, hazard ratio; IRG, immune-related gene.
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curves and C-indices. The area under the curves (AUCs) 
for predicting 1-, 3-, and 5- year OS were 0.738, 0.661, 
and 0.715 in the training cohort, and outperformed than 
other clinical recognized risk factors (Figure 4A-4C). 
Thus, the IRGS score could accurately predict survival in 
patients with early-stage HNSCC. Subsequently, we also 
determined the predictive performance of the IRGS score 

in the validation and clinical cohorts. The IRGS scores 
achieved AUCs for estimating 3-, 5-year OS of 0.766 
and 0.822 in the validation cohort and 0.755 and 0.714 
in the independent clinical cohort (Figure 4D-4G). The 
C-index further confirmed the predictive value of the IRGS 
score compared with other clinical factors (Figure 4H,4I).  
The IRGS score  C-index was  higher  than other 
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Figure 2 Performance of individualized immune prediction model IRGS score in the training group. (A) The distribution of IRGS score and 
patients’ survival status in the training cohort. (B) PCA analysis of high- and low-risk patients based on gene expression within the training 
cohort. (C) Kaplan-Meier curves of OS in patients with early stage HNSCC, including stage I (D) and stage II (E). (F) Kaplan-Meier curves 
of RFS in patients with early-stage HNSCC. Comp., component; IRGS, immune-related gene signature; PCA, principal component analysis; 
OS, overall survival; HNSCC, head and neck squamous cell carcinoma; RFS, relapse-free survival.
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Figure 3 Validation of IRGS in different clinical cohorts. (A) Distribution of IRGS score, patients’ survival status, and heatmap of identified 
genes in IRGS. (B,C) K-M analysis curves of OS and RFS in GSE65858 among early stage HNSCC. (D) Relative IRGS score in 81 patients 
from Zhengzhou cohort with qPCR data. (E,F) K-M analysis curves of OS and RFS among early-stage HNSCC. IRGS, immune-related gene 
signature; OS, overall survival; RFS, relapse-free survival; K-M, Kaplan-Meier; HNSCC, head and neck squamous cell carcinoma; qPCR, 
quantitative polymerase chain reaction.
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Figure 4 Evaluation of the predictive performance of IRGS score in multiple cohorts. (A-C) ROC analysis of IRGS for survival prediction 
at 1, 3, and 5 years in comparison with other clinical recognized risk factors in TCGA datasets. (D-G) ROC analysis of IRGS for survival 
prediction at 3, 5 years with comparison between clinical factors in GEO dataset and an independent clinical cohort. (H,I) C-index values of 
IRGS and clinical parameters for OS in the training and validation cohort, respectively. ROC, receiver operating characteristic; AUC, area 
under the curve; CI, confidence interval; TNM, tumor-node-metastasis; IRGS, immune-related gene signature; TCGA, The Cancer Genome 
Atlas; GEO, Gene Expression Omnibus; OS, overall survival.
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clinicopathological parameters (Figure 4H). C-index values 
of IRGS and clinical parameters for OS is in the training 
and validation cohort, respectively (Figure 4I).

To determine if the IRGS score independently predicted 

prognosis in patients with early-stage HNSCC, we carried 
out univariate and multivariable analyses. These revealed 
that disease stage and IRGS score demonstrated predictive 
value in patients with early-stage HNSCC included 
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within the training cohort. IRGS score and drinking were 
predictive within the validation cohort. Finally, IRGS 
score and stage were predictive within the clinical cohort. 
After integrating the important clinical parameters in 
multivariable Cox regression analysis, IRGS score was the 
only stable predictor of prognosis in patients with early-
stage HNSCC (Tables S3,S4). 

IRGS score-related biological pathways and inflammation

The mechanisms contributing to IRGS score were 
examined using Pearson correlation analysis to identify 
707 strongly associated genes (|R|≥0.3), and heatmap 
is presented in Figure 5A. Then we found the selected 
genes were enriched in immune response pathways  
(Figure 5B). We also enrolled seven metagenes to investigate 
the relationship between IRGS and inflammation  
(Figure 5C). Heatmaps and correlation matrix indicated 
a close relationship with IRGS score; IRGS score was 
positively correlated with HCK, IgG, and MHC-II and 
negatively correlated with interferon, MHC-I, and STAT1 
(Figure 5D).

Exploration of IRGS score related immune landscape and 
immune checkpoints

The MCP-counter method was used to examine immune 
cell and stromal cell infiltration relative to IRGS score 
(Figure 6A); there was a positive correlation between IRGS 
score and immune cell infiltration—especially fibroblasts 
and myeloid dendritic cells (Figure 6B,6C). Considering the 
importance of immune checkpoints for maintaining immune 
homeostasis, we investigated the relationship between the 
IRGS score and typical immune checkpoints from the B7-
CD28 and other families. We found a positive relationship 
between the IRGS score and TNFSF4, TNFRSF4, CD70, 
TNFSF9, TNFRSF9, SIGLEC15, CD276, ICOSLG, 
VTCN1, and HAVCR2 (Figure 6D,6E). 

Discussion 

Patients with early-stage HNSCC are at high risk of 
recurrence, metastasis, and death, even after radical surgery. 
There is increasing interest in finding reliable prognostic 
biomarkers capable of identifying patients at increased 
survival risk. Many studies have found the TME influences 
tumor progression, highlighting its potential clinical 
application. In contrast, little is known about the predictive 

role of IRGs in early-stage HNSCC. Therefore, there is a 
pressing need for exploring and developing an IRGS score 
for prognostication in patients with early-stage HNSCC.

This is the first integrative analysis of IRGs among 194 
patients with early-stage HNSCC using three large-scale 
cohorts. This analysis identified a nine-gene IRGS that 
accurately stratified patients into high- and low-risk groups. 
The IRGS score accurately estimated OS and RFS in the 
training cohort, and its predictive performance further 
validated using internal and external cohorts. Furthermore, 
the IRGS score could independently predict prognosis in 
patients with early-stage HNSCC and even performed 
better—across cohorts—than multiple clinical parameters. 
Lastly, we investigated inflammatory profiles related to the 
IRGS score. 

We first screened out ten genes correlated with tumor 
initiation and progression that could act as biomarkers 
for diagnosis or prognostication. Then, using LASSO cox 
regression, the prognostic signature of nine-immune genes 
was constructed, including three risk-enhancing genes 
(NLRP2, TNFSF9, and HLA-DQA2) and six protective genes 
(METTL3, PRKCH, NLRC5, IRAK4, PLD1, and IFNE). 
TNFSF9—also known as 4-1BBL or CD137L—belongs to 
the tumor necrosis factor (TNF) family and is expressed on 
the surface of antigen-presenting cells and various tumor 
cells. The interaction between TNFRSF9 and TNFSF9 
could create bidirectional signals between activated and 
antigen-presenting cells. This process may mediate complex 
immune responses in cancer, autoimmune, infectious, 
and inflammatory diseases (21). TNFSF9 is identified 
as a prognostic risk factor for HNSCC due to immune 
cell regulation or cytokine release within the TME (22). 
NLRP2 belongs to the nucleotide-binding and leucine-rich 
repeat receptor (NLR) family. High NLRP2 expression has 
been associated with poor prognosis in HNSCC; however, 
its biological mechanisms require further exploration (23).  
HLA-DQA2, belonging to the HLA class II alpha 
chain family, is associated with worse prognosis (24). 
PRKCH belongs to the protein kinase C family and helps 
regulate apoptosis and anti-apoptosis (25,26). PRKCH is 
associated with better survival in patients with head and 
neck cancer, which is consistent with our findings (27).  
NLRC5 is an essential transcriptional regulator for 
MHC class I genes (28) and its overexpression has been 
found to link to CD8+ T cell activation, enhanced tumor 
immunogenicity, and the immune escape response (29).  
NLRC5 is a prognostic marker for various types of 
cancer (30,31). IRAK4 is a serine/threonine kinase and 

https://cdn.amegroups.cn/static/public/TCR-23-1791-Supplementary.pdf
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Figure 5 IRGS score-related biological pathways and inflammatory activities. (A) Heatmap of IRGS demonstrating strong correlations. 
(B) Biological pathway of GO analysis. (C) Heatmap of IRGS score and seven metagenes. (D) Correlation between IRGS score and seven 
metagenes in the training cohort. IRGS, immune-related gene signature; NA, not applicable; GO, Gene Ontology. 
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Figure 6 IRGS score is related to the TME and immune checkpoints. (A) Heatmap of IRGS-related immune cell infiltration profile using 
the MCP method. (B,C) Correlation scatter plot of IRGS score and immune cells, including fibroblasts and myeloid dendritic cells. (D,E) 
Correlation between risk score and immune checkpoint expression. IRGS, immune-related gene signature; NA, not applicable; TME, tumor 
microenvironment; MCP, Microenvironment Cell Populations.
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aids scaffolding and phosphorylation in Toll-like receptor 
(TLR) and interleukin (IL)-1R pathways (32). IRAK4 
is associated with less-favorable cancer types, including 
pancreatic ductal adenocarcinoma (33) and glioma (34). 
In contrast, IRAK4 has a protective function in patients 
with early-stage HNSCC, influenced mainly by tumor 
heterogeneity. PLD1 hydrolyzes phosphatidylcholine and 
is involved in thrombosis and cancer (35). PLD1 has a 
protective function in patients with early-stage HNSCC 
(although the relevant mechanisms require further 
elucidation). METTL3 is the main catalytic enzyme in 
the N6-adenosine-methyltransferase system (36,37) and is 
upregulated in several cancers. Its presence has therefore 
been correlated with worse prognosis (38,39). METTL3 
may suppress some tumor types (40) and corresponds with 
a better prognosis in patients with early-stage HNSCC. 
IFNE regulates apoptosis and may inhibit colorectal cancer 
cell proliferation (41). It participates in immune system and 
cytokine signaling pathways (42). IFNE is associated with 
a better prognosis in patients with early-stage HNSCC; 
however, its mechanisms require further investigation.

In terms of clinical relevance, the IRGS score along with 
clinical parameters was significantly correlated to OS and 
RFS in patients with HNSCC. In tumor stage subgroups 
(including stage I and II), the IRGS score could predict OS 
in the training, internal, and external validation cohorts. 
Alcohol and tobacco intake are established risk factors 
for HNSCC and influence nutrient status and immune  
system (43). Thus, we explored the application of the 
IRGS in those subgroups. As excepted, the IRGS score was 
better at estimating prognosis among drinking and non-
drinking and smoking and non-smoking groups. Next, 
considering lymph node metastasis is a crucial risk factor for 
prognostication, we explored the association of the IRGS 
score and clinical outcome (OS and RFS) in positive (LN+) 
and negative (LN−) lymph node metastasis groups. Due to 
the limitation of sample size after subgrouping, we found 
that the IRGS score still demonstrated stable prognostic 
ability in the external validation cohort. We also tested its 
predictive value in sex- and age-based subgroups where 
it performed well across males and females and old and 
young patients. Collectively, these results confirmed the 
predictive value of the IRGS score in patients with early-
stage HNSCC. 

Our biological pathway analysis indicated that the 
IRGS score was closely associated with the inflammatory 
response and immune system process pathways, both of 
which contribute to the immune response. The IRGS 

score was consistently and positively related to HCK, IgG, 
and MHC-II. Considering the importance of immune cell 
infiltration of the TME for tumor growth, MCP was used 
to examine the proportions of 12 types of immune cells 
in HNSCC based on gene expression. The abundance 
of immune cells reflects a patient’s immune status. High-
risk patients had more immune cell infiltration, including 
fibroblasts and myeloid dendritic cells. Previous studies 
reported fibroblasts are associated with increased recurrence 
risk and poor prognosis in certain solid tumors (44-46). As 
an essential component of the TME, fibroblasts play critical 
roles in tumor transformation, progression, and drug 
resistance, consistent with our results.

We also explored potential links between the IRGS score 
and immune checkpoints—including members from the 
B7-CD28, TNF, and other families. Here, IRGS score was 
positively correlated with molecules from the B7-CD28 
(Siglec-15, CD276, ICOSLG, VTCN1, and HAVCR2) 
and TNF families (TNFSF4, TNFRSF4, CD70, TNFSF9, 
and TNFRSF9). These molecules are involved in the 
transmission of negative or positive signals to T-cells and 
may determine the nature of the immune response when 
an antigen is required for T-cell activation (47,48). Our 
results alert us that the high-risk patients were more likely 
to benefit from ICI-based therapies.

There are several limitations in our study. First, the 
signature was established based on retrospective data, and 
large, well-designed, prospective studies are necessary to 
further optimize the IRGS score. Additionally, the signature 
was identified using public datasets and constructed using 
bioinformatics analysis. Finally, the results may have also 
been influenced by noise.

To summarize, the IRGS score identified by our team 
may provide a legitimate approach for clinical management 
in patients with early-stage HNSCC. The signature can 
accurately and effectively predict survival. Furthermore, 
exploring the signature-related immune landscape 
suggests a positive correlation between immune cells and 
the inflammatory response; this link is relevant to future 
development of personalized treatments in the era of 
immunotherapy. 

Conclusions

Our novel IRGS is a reliable and robust classifier for 
accurate patient stratification and prognostic evaluation. 
Future studies will attempt to affirm the signature’s clinical 
application to early-stage HNSCC.
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