
BRIEF RESEARCH REPORT
published: 23 April 2021

doi: 10.3389/fpsyg.2021.655884

Frontiers in Psychology | www.frontiersin.org 1 April 2021 | Volume 12 | Article 655884

Edited by:

Adam B. Barrett,

University of Sussex, United Kingdom

Reviewed by:

Michael Schartner,

Université de Genève, Switzerland

Henry Railo,

University of Turku, Finland

*Correspondence:

Johan Frederik Storm

j.f.storm@medisin.uio.no

Arnfinn Aamodt

arnfinn.aamodt@medisin.uio.no

Specialty section:

This article was submitted to

Consciousness Research,

a section of the journal

Frontiers in Psychology

Received: 19 January 2021

Accepted: 18 March 2021

Published: 23 April 2021

Citation:

Aamodt A, Nilsen AS, Thürer B,

Moghadam FH, Kauppi N, Juel BE

and Storm JF (2021) EEG Signal

Diversity Varies With Sleep Stage and

Aspects of Dream Experience.

Front. Psychol. 12:655884.

doi: 10.3389/fpsyg.2021.655884

EEG Signal Diversity Varies With
Sleep Stage and Aspects of Dream
Experience
Arnfinn Aamodt*, André Sevenius Nilsen, Benjamin Thürer,

Fatemeh Hasanzadeh Moghadam, Nils Kauppi, Bjørn Erik Juel and Johan Frederik Storm*

Brain Signalling Lab, Division of Physiology, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo,

Oslo, Norway

Several theories link consciousness to complex cortical dynamics, as suggested by

comparison of brain signal diversity between conscious states and states where

consciousness is lost or reduced. In particular, Lempel-Ziv complexity, amplitude

coalition entropy and synchrony coalition entropy distinguish wakefulness and REM

sleep from deep sleep and anesthesia, and are elevated in psychedelic states, reported

to increase the range and vividness of conscious contents. Some studies have even

found correlations between complexity measures and facets of self-reported experience.

As suggested by integrated information theory and the entropic brain hypothesis,

measures of differentiation and signal diversity may therefore be measurable correlates

of consciousness and phenomenological richness. Inspired by these ideas, we tested

three hypotheses about EEG signal diversity related to sleep and dreaming. First,

diversity should decrease with successively deeper stages of non-REM sleep. Second,

signal diversity within the same sleep stage should be higher for periods of dreaming

vs. non-dreaming. Third, specific aspects of dream contents should correlate with

signal diversity in corresponding cortical regions. We employed a repeated awakening

paradigm in sleep deprived healthy volunteers, with immediate dream report and rating

of dream content along a thought-perceptual axis, from exclusively thought-like to

exclusively perceptual. Generalized linear mixed models were used to assess how signal

diversity varied with sleep stage, dreaming and thought-perceptual rating. Signal diversity

decreased with sleep depth, but was not significantly different between dreaming

and non-dreaming, even though there was a significant positive correlation between

Lempel-Ziv complexity of EEG recorded over the posterior cortex and thought-perceptual

ratings of dream contents.
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INTRODUCTION

While there is still no universally accepted theory of
consciousness, or full consensus on what the neural correlates
of consciousness may be, there seems to be some points of
approximate convergence. Many researchers and models
of consciousness have (to varying degree) emphasized the
informative and integrated1 aspects of conscious experience
(Baars, 1988; Crick and Koch, 1990; Chalmers, 1995; Llinás
et al., 1998; Tononi and Edelman, 1998; Dehaene and Naccache,
2001; Edelman, 2003; Mashour, 2004; Seth et al., 2005; Barrett,
2014; Carhart-Harris et al., 2014; Ruffini, 2017; Mashour
et al., 2020), a point that has perhaps been most clearly
expressed and developed in Tononi’s Integrated Information
Theory (IIT) (Tononi, 2004; Oizumi et al., 2014). In line
with this idea, it is widely believed that conscious experience
depends on (i.e., supervenes on) complex neural dynamics
in richly interconnected thalamocortical networks (Tononi
and Edelman, 1998; Dehaene and Naccache, 2001; Seth et al.,
2005; Buzsáki, 2007; Baars et al., 2013; Tononi et al., 2016)
[but see Merker (2007, 2013) for an account emphasizing
subcortical structures]. Over the last couple of decades, this
hypothesis has received substantial empirical support (Shaw
et al., 1999; Massimini et al., 2005; Casali et al., 2013; Sitt
et al., 2014; Casarotto et al., 2016; Schartner, 2017; Mashour
and Hudetz, 2018). Not only do measures of complexity,
differentiation and/or integration decrease from wakefulness
to states where conscious experience is severely impoverished
or completely lost, and increase in psychedelic states, there is
also emerging evidence that such measures may correlate with
ratings of aspects of phenomenology within the same state (Boly
et al., 2015; Schartner et al., 2017a; Timmermann et al., 2019;
Farnes et al., 2020).

In terms of reliable stratification of different states and
conditions according to their clinically or conventionally
ascribed level of consciousness,2 the perturbational complexity
index (PCI), which captures elements of both integration and
differentiation, is perhaps the most impressive of the proposed
measures of consciousness (Casali et al., 2013; Sarasso et al.,
2015; Casarotto et al., 2016). However, PCI is based on
the complexity of the average, source-reconstructed cortical
response to hundreds of targeted electromagnetic pulses, usually
delivered by transcranial magnetic stimulation (TMS), making it
technically more demanding than indicators calculated directly
from spontaneous brain signals [but see Comolatti et al.
(2019)]. Motivated by this, Schartner et al. applied measures

1This is not to say that these authors exclusively emphasize (one or both of)

these two properties, or that all proposals are uniform in their ambitions,

metaphysical commitments and detailed descriptions. Furthermore, there are also

models primarily emphasizing different aspects of consciousness, e.g., higher order

thought (HOT) theories of consciousness (Brown et al., 2019).
2It is less clear whether PCI faithfully reflects variation in richness of experience

within (approximately) the same state (Railo et al., 2017; Farnes et al., 2020;

Tuominen et al., 2021), or whether it should even be expected to do so, given that

ongoing activity is averaged out in the calculation of PCI. However, (Nieminen

et al., 2016) suggests that TMS-evoked activity may still index within-state

differences in experience, which would also seem to be consistent with IIT’s

emphasis on possible transitions of the system, over actual activity.

of complexity and entropy to spontaneous multichannel brain
signals, suggesting that Lempel-Ziv complexity (LZC), amplitude
coalition entropy (ACE) and synchrony coalition entropy (SCE)
may serve as indicators of consciousness (Schartner et al.,
2015; Schartner, 2017). While these diversity measures do not
(directly) capture cortical integration, they have nevertheless
shown promise in distinguishing states associated with conscious
experience, such as wakefulness and REM sleep, from states
were conscious experience is degraded or possibly lost, such
as slow wave sleep and propofol anesthesia (Schartner et al.,
2015, 2017b). In particular, stereo-EEG signal diversity from
ten epileptic patients was shown to be higher in wakefulness
and REM sleep than NREM3 sleep (with intermediate values
for NREM2, in a single patient for which data was available)
(Schartner et al., 2017b). Single channel LZC has also been shown
to decrease with sleep depth in humans (Andrillon et al., 2016),
and to be higher in wakefulness and REM sleep than non-REM
sleep in rats (Abásolo et al., 2015), in line with evidence from
studies using alternative measures of (temporal) complexity and
entropy (Ma et al., 2018).

Intriguingly, MEG and EEG signal diversity was elevated
in psychedelic states induced by LSD, psilocybin, DMT, and
subanesthetic doses of ketamine, in line with reports of increased
range and intensity of conscious contents in psychedelic states,
and has even been found to correlate with some subjective
ratings of psychedelic phenomenology (Schartner et al., 2017a;
Timmermann et al., 2019; Farnes et al., 2020). Hence, signal
diversity (of a system) may be a correlate of consciousness and
richness of subjective experience (supported by that system), at
least under certain conditions and within a limited range, as
suggested by complexity theories such as IIT and Carhart-Harris’
speculative entropic brain hypothesis (Marshall et al., 2016;
Tononi et al., 2016; Carhart-Harris, 2018) [but see Papo (2016)].

Inspired by this general idea,3 we here derive and test
three specific hypotheses about how multi-channel EEG signal
diversity relates to sleep and dreaming.4 First, we hypothesize
that signal diversity should decrease with successively deeper
stages of NREM sleep, in line with reported incidence of
dreaming across sleep stages, and subjective ratings of dream
experience richness (Siclari et al., 2013). Second, within the
same sleep stage (NREM2), signal diversity should be higher
before awakenings with reported dream experience (DE) vs. non-
experience (NE).5 Third, the degree to which specific dimensions
of conscious content dominate the dream experience should
correlate with signal diversity in corresponding cortical regions.
Particularly, we suggest that signal diversity in posterior cortical
areas should correlate with higher ratings of dream experience on

3We are not suggesting that richness of experience equals signal diversity, we are

merely speculating that signal diversity (within certain bounds) may be a useful

correlate of (brain states favorable to) rich, conscious experience.
4In this paper, we use dream/dreaming to mean any conscious experience during

sleep, without further requirements.
5Reports of dream experience without recall (DEWR) of specific contents could

include non-experience (positive response bias), low-quality experiences, and

forgotten (or withheld) experiences (Fazekas et al., 2019). In any case, signal

diversity for DEWR awakenings should lie (non-strictly) between values for NE

and DE awakenings.
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a thought-perceptual scale, while frontal signal diversity should
be negatively (or less strongly) correlated to thought-perceptual
ratings (Siclari et al., 2013, 2017).

METHODS

The Regional Committees for Medical and Health Research
Ethics approved this research project (ref. 2018/1640), and
informed consent was collected before participation.

We employed a sleep study paradigm with serial awakenings
and dream reports, similar to Siclari et al. (2013), but our
experiments were performed in the morning, after a night of
sleep deprivation. Participants were instructed to avoid caffeine
in the afternoon the day before the experiment, to stay awake
through the whole night, and to meet in the lab at 7 a.m. Before
the experiment started, participants received an explanation
of the questions they would be asked when awakened by
the alarm. Experimenters stayed in the room throughout the
experiment to monitor the EEG recording. Background sounds
were masked by brown noise played through ear plugs in the
participant’s ears. The participant was intermittently awakened
by an electronic alarm and immediately asked about any dream
experience they might have had right before the alarm sound,
by the prompt: “What was the last thing going through your
mind?”. Awakenings were classified as no experience (NE),
dream experience without recall (DEWR), or dream experience
(DE). If the participant reported experiencing something, they
were also asked to rate their experience on a five-point scale
from exclusively thought-like (thinking or reasoning, with no
sensory content) to exclusively perceptual (vivid sensory content,
without thinking or reasoning) (Siclari et al., 2013). To optimize
the balance of NE and DE awakenings for within-state analysis,
awakenings were mainly performed during NREM2 sleep.

We recruited 17 healthy, non-smoking participants between
18 and 35 years, with normal sleep habits. One participant
was excluded from the analysis due to inability to sleep during
the experiment. For each of the 16 remaining participants, we
recorded EEG from multiple sleep trials, defined as the period
from the participant was told that they could go (back) to sleep,
until they were (again) awakened by the alarm, for a total of 97
sleep trials. For each sleep trial, wemarked non-overlapping sleep
epochs, defined as 30 s segments of EEG, aligned to the time of
awakening. We scored the sleep stage of the last ten sleep epochs
before awakening according to the AASMManual for Scoring of
Sleep and Associated Events (Berri et al., 2018), for a total of 9606

scored sleep epochs (wake = 72, NREM1 = 206, NREM2 = 619,
NREM3 = 53, REM = 10). There were 62 awakenings (NE = 9,
DEWR= 9, DE= 41, unclear/missing report= 3) from NREM2
sleep, which were used for within-state analysis of whether signal
diversity was different for dreaming vs. non-dreaming. Of these,
only the 41 reports of dream experiences (exclusively thought-
like = 3, mostly thought-like = 11, equally perceptual and
thought-like = 10, mostly perceptual = 7, exclusively perceptual

6To avoid large artifacts/saturation of channels due tomovements, recordings were

sometimes started after the participant fell asleep, and a few recordings ended up

being shorter than 300 s.

= 8, unclear/missing report = 2) from NREM2 sleep were
included in the analysis of the thought-perceptual dimension of
dream content.

EEG was sampled at 1,000Hz, using two 32 channel amplifiers
to record 62 EEG channels and two electrooculogram (EOG)
channels (BrainAmp DC, Brain Products GmbH, Gilching,
Germany). The reference and ground electrodes were placed
medially on the forehead. Electromyogram (EMG) was recorded
by two bipolar electrodes on the chin.

Data was processed using MNE Python and EEGLAB
(Delorme and Makeig, 2004; Gramfort et al., 2013). After
sleep scoring and marking of bad segments, datasets were
automatically preprocessed using the EEG-Clean-Tools
EEGLAB-plugin (Bigdely-Shamlo et al., 2015). Independent
component analysis (ICA) was performed using the extended
infomax algorithm (Bell and Sejnowski, 1995), and bad
components were rejected by heuristic rules based on the source
probabilities assigned by the IClabel-plugin (Pion-Tonachini
et al., 2019). After band-pass filtering (0.75–40Hz), the data was
Laplace transformed by a spherical spline algorithm (Perrin et al.,
1989) implemented in the CSD Toolbox (Kayser and Tenke,
2006; Fitzgibbon et al., 2015), and imported back into Python.

EEG was divided into regular 8 s windows with 7 s overlap.
LZC, ACE and SCEwas calculated for each 8 s window (Schartner
et al., 2015), using a selection of 12 EEG channels (AF3, AF4, FC5,
Fz, FC6, C1, C2, CP5, Pz, CP6, PO3, PO4) covering large parts
of the scalp (Figure 1A), and then averaged over each 30 s sleep
epoch. The calculation was repeated for a selection of 12 frontal
channels (AF3, Fpz, AF4, F7, F1, F2, F8, FC3, FCz, FC4, C1, C2)
and a selection of 12 posterior channels (C5, CPz, C6, TP7, CP3,
CP4, TP8, P5, POz, P6, O1, O2).

All three diversity measures are based on the complex
valued analytic representation of the recorded EEG signal.
Before calculating LZC, the analytic signal for each window was
binarized by thresholding on the single-channel median absolute
value. All the observations in an window were concatenated
together timepoint by timepoint to form one long binary string.
The LZC algorithm itself can be viewed as a way to compress
such a binary string into a shorter description, by exploiting
repeating patterns. The algorithm works by iteratively building
a dictionary of unique substrings, that allows reconstruction of
the full string. The length of the resulting dictionary serves as a
measure of how complex the original string is. Normalizing by
the dictionary length for a randomly permuted version of the
original binary string, yields a LZC value between zero and one
(almost always).

ACE used the same binarization of the analytical signal
as LZC, but we did not concatenate observations together.
Instead, the 12 channel binary vectors for each timepoint, which
we may call amplitude coalitions, are themselves considered
states. Within each window, we approximate the probability
distribution of these states by the observed incidence of each
amplitude coalition. The ACE is the Shannon entropy of this
estimated probability distribution, normalized by the entropy for
a randomly permuted copy of the original binary matrix.

For SCE, we (iteratively) choose a single reference channel,
and we binarize each of the remaining 11 channels by
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FIGURE 1 | EEG channel selection and variation in signal diversity with sleep stage. (A) Central, posterior and frontal channel selections. Electrode fill color indicates

associated cortical lobe [adapted from illustration by Laurens R. Krol, distributed under a CC0 1.0 license (Krol, 2020)]. (B) Mean LZC, ACE and SCE for all 30 s sleep

epochs vs. sleep stage for the central channel selection. Observations are randomly jittered along x-axis to reduce overlap, and participant number (S0, …, S16) is

indicated by marker fill color. Grand mean values for each sleep stage is indicated by black diamond markers. Most of the data is from NREM2 sleep, because we

prioritized the within-state analysis of dream-reports from NREM2. In particular, all REM sleep epochs are from a single sleep trial for Participant 12. (C) Mean central

LZC, ACE and SCE for the 30 s sleep epochs vs. sleep stage (0 = W, 1 = NREM1, 2 = NREM2, 3 = NREM3, 4 = REM), plotted separately for each study participant

(S0, …, S16). Fill color indicates sleep stage, and diamond markers indicates participant mean values for each stage.
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thresholding on the absolute phase difference of their analytic
signal relative to the current reference channel (at ∼45◦). The
11 channel binary vectors for each timepoint may be considered
synchrony coalitions of the system, describing the state of the
system in terms of which channels are currently in phase with
the reference channel. Just like for ACE, we can estimate the
probability distribution for the synchrony coalitions (relative to
the current reference), and calculate the normalized Shannon
entropy based on this distribution. The overall SCE is then
obtained by averaging over the 12 different choices of reference
channel. For further information about the calculation of LCZ,
ACE and SCE, see (Schartner, 2017).

Statistical analysis was performed using IBM SPSS version 26.
The relationship between sleep stage and signal diversity was
assessed using generalized linear mixed models (GLMMs) with
sleep stage as a fixed factor7 (including intercept), and participant
and trial (nested within participants) as random intercepts.
Epochs were entered as repeated measures with heterogeneous
first-order autoregressive residual variance-covariance.

For awakenings in NREM2 sleep, the relationship between
experience report (NE, DEWR or DE) and signal diversity of the
last sleep epoch before awakening was assessed using GLMMs
with experience classification as the fixed factor (including
intercept) and subject as random intercept.

Finally, for NREM2 awakenings with reported dream
experience (DE), the correlation between subjective ratings of
experience on a five-point scale from exclusively thought-like to
exclusively perceptual, and frontal and posterior signal diversity
were assessed using GLMMs with thought-perceptual rating as
a fixed continuous covariate (including intercept) and subject as
random intercept.

We used the inheritance procedure (Goeman and Finos,
2012) to adjust for multiple comparisons and control the family-
wise error rate. Starting with significance level α = 0.05, this
yielded an adjusted significance level α/12 = 0.0042 for the
effect of sleep stage, experience classification and thought-
perceptual rating on signal diversity, and α/(12·10) = 0.00042
for each of the 10 pairwise comparisons between different
sleep stages.

For further details, see Supplementary Material.

RESULTS

First, we analyzed variation in signal diversity with sleep stage.
Figures 1B,C show overall and individual trends. Results of the
mixed model analysis are summarized in Table 1. Sleep stage
was a significant factor in the model for both LZC [F(4,139)
= 32.5, p < 0.0001], ACE [F(4,169) = 67.7, p < 0.0001] and
SCE [F(4,235) = 37.4.0, p < 0.0001]. Pairwise comparisons of
estimated marginal means indicated that diversity for NREM3
sleep was lower than for NREM2, and diversity for NREM2
was lower than for wake and NREM1 sleep, but the difference
in LZC between stages NREM2 and NREM3 was no longer

7More precisely, we used GLMMs with 1-SD (SD = signal diversity) as the

response variable, identity link function and gamma-distributed response (see

Supplementary Material).

significant after adjusting for multiple comparisons. Estimated
differences in mean signal diversity between wake and NREM3
sleep (1LZC = 0.029, 1ACE = 0.078, 1SCE = 0.044) were
around 3–4 times the estimated between-participant standard
deviations (sLZC = 0.0069, sACE = 0.0173, sSCE = 0.0141).
Estimates for the participant × trial random effect were similar
(sLZC = 0.0066, sACE = 0.0100, sSCE = 0.0141). The contrast
between wakefulness and NREM1 sleep was not significant. This
data set only included a single trial of REM sleep, because
we were mostly interested in variation in signal diversity with
depth of non-REM sleep, and within-state analysis of dreaming
in NREM2 sleep. However, estimated marginal mean signal
diversity was mostly higher for REM sleep than for NREM2
and NREM3 (but the estimated difference in SCE between REM
and NREM2 sleep was not significant). Estimated mean ACE
was also higher for REM than for stages W and NREM1. Only
the LZC REM-NREM3 contrast, the ACE REM-NREM2 and the
ACE REM-NREM3 contrasts remained significant after multiple
comparison correction.

Next, we analyzed whether experience classification was a
significant factor in models of signal diversity within NREM2
sleep. Figure 2 shows signal diversity vs. experience classification
for the last 30 s sleep epoch before awakening and report. Results
of the statistical analysis are summarized in Table 1 (but see
footnote about possible model-fitting problems for the LZC
model). Experience classification was not a significant factor in
the models for LZC [F(2,40) = 0.516, p = 0.601], ACE [F(2,56) =
0.254, p = 0.777] or SCE [F(2,54) = 1.03, p = 0.363]. Looking
at the estimated marginal means, only SCE had monotonically
increasing signal diversity going from no experience (NE) to
dreaming (DE). The difference in SCE between DE and NE
was just over half the estimated between-participant standard
deviation. Given the ongoing debate about the extent to which
(pre)frontal and posterior cortex directly contribute to the
contents of conscious experience (see Discussion), we also re-
ran the analysis with a posterior channel selection (Figure 1A),
but experience classification was still not a significant factor
(Supplementary Material).

Finally, we explored whether signal diversity from a posterior
and a frontal channel selection (Figure 1A) correlated with
subjective ratings of dream experience on a thought-perceptual
axis. Figure 3 shows posterior and frontal signal diversity vs.
thought-perceptual ratings. Statistical results are summarized
in Table 1. Thought-perceptual rating was a significant positive
covariate of posterior LZC [F(1,34) = 9.96, p = 0.0033] and ACE
[F(1,32) = 4.27, p = 0.0472], as well as frontal LZC [F(1,31) =
4.45, p = 0.0432]. Estimated slope for these models (βLZC,back
= 0.0076, βACE,back = 0.0074, βLZC,front = 0.0067) corresponded
to an increase from “exclusively thought-like” to “exclusively
perceptual” of about 1.5–3 times the estimated between-
participant standard deviation (sLZC,back = 0.010, sACE,back =

0.020, sLZC,front = 0.0173). Estimated coefficients for thought-
perceptual rating were slightly smaller (or more negative in the
case of SCE) for frontal signal diversity, compared to posterior
signal diversity. Only the correlation between thought-perceptual
rating and posterior LZC remained significant after adjusting for
multiple comparisons.
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TABLE 1 | Summary of results.

Response Fixed effect df1 df2 F sig.

LZC Sleep stage 4 139 32.5 <0.0001

sig. (pairwise comparison)

EMMs Estimate std. err. CIlower CIupper NREM1 NREM2 NREM3 REM

Wake 0.976 0.002 0.971 0.981 0.2068 <0.0001 <0.0001 0.5575

NREM1 0.974 0.002 0.970 0.979 <0.0001 <0.0001 0.4016

NREM2 0.959 0.002 0.955 0.963 0.0049 0.0065

NREM3 0.947 0.005 0.937 0.956 0.0002

REM 0.981 0.008 0.965 0.997

Response Fixed effect df1 df2 F sig.

ACE Sleep stage 4 169 67.7 <0.0001

sig. (pairwise comparison)

EMMs Estimate std. err. CIlower CIupper NREM1 NREM2 NREM3 REM

Wake 0.906 0.005 0.896 0.916 0.1295 <0.0001 <0.0001 0.0491

NREM1 0.902 0.005 0.893 0.912 <0.0001 <0.0001 0.0228

NREM2 0.873 0.004 0.864 0.883 <0.0001 <0.0001

NREM3 0.828 0.007 0.814 0.843 <0.0001

REM 0.932 0.013 0.906 0.959

Response Fixed effect df1 df2 F sig.

SCE Sleep stage 4 235 37.4 <0.0001

sig. (pairwise comparison)

EMMs Estimate std. err. CIlower CIupper NREM1 NREM2 NREM3 REM

Wake 0.755 0.005 0.745 0.765 0.1163 <0.0001 <0.0001 0.5363

NREM1 0.751 0.004 0.742 0.760 <0.0001 <0.0001 0.3901

NREM2 0.740 0.004 0.731 0.749 <0.0001 0.1111

NREM3 0.711 0.005 0.700 0.721 0.0008

REM 0.765 0.016 0.734 0.796

Response Fixed effect df1 df2 F sig.

LZCa Experience class 2 40 0.516 0.6009

sig. (pairwise comparison)

EMMs Estimate std. err. CIlower CIupper DEWR DE

NE 0.956 0.007 0.941 0.971 0.6889 0.6679

DEWR 0.960 0.007 0.947 0.974 0.3266

DE 0.953 0.004 0.945 0.960

Response Fixed effect df1 df2 F sig.

ACE Experience class 2 56 0.254 0.7766

sig. (pairwise comparison)

EMMs Estimate std. err. CIlower CIupper DEWR DE

NE 0.866 0.011 0.843 0.889 0.4808 0.6535

DEWR 0.856 0.010 0.835 0.877 0.6362

DE 0.861 0.006 0.848 0.875

Response Fixed effect df1 df2 F sig.

SCE Experience class 2 54 1.03 0.3626

sig. (pairwise comparison)

EMMs Estimate std. err. CIlower CIupper DEWR DE

NE 0.725 0.008 0.708 0.741 0.6944 0.2224

DEWR 0.728 0.007 0.714 0.743 0.3764

DE 0.734 0.005 0.724 0.745

(Continued)
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TABLE 1 | Continued

Response Fixed effect df1 df2 F sig. Estimate std. err. t CIlower CIupper

LZCback Thought-percept 1 34 9.96 0.0033 0.0076 0.0024 3.16 0.0027 0.0124

LZCfront Thought-percept 1 31 4.45 0.0432 0.0067 0.0032 2.11 0.0002 0.0132

ACEback Thought-percept 1 32 4.27 0.0472 0.0074 0.0036 2.07 9.89e-5 0.0147

ACEfront Thought-percept 1 29 2.31 0.1398 0.0055 0.0036 1.52 0.0019 0.0128

SCEback Thought-percept 1 34 0.021 0.8864 0.0004 0.0029 0.144 0.0055 0.0063

SCEfront Thought-percept 1 29 0.370 0.5478 −0.0016 0.0026 −0.608 −0.0070 0.0038

Signal diversity (back transformed from identity link gamma GLMM for 1–SD) as a function of sleep stage, experience class and thought-perceptual rating of dreams.
aThe CI for the between-participant variance in this model was gigantic, indicating possible problems with model fitting. Excluding/winsorizing the smallest one/two LZC values lead

to plausible CI, and gave otherwise similar results, as did a beta GLMM with logit link (Supplementary Material). NE, no experience; DEWR, dream experience without recall; DE,

dream experience.

FIGURE 2 | EEG signal diversity vs. dream experience classification. Mean central LZC, ACE and SCE of the last 30 s sleep epoch before NREM2 awakenings, vs.

experience classification of subsequent dream reports (DE = dream experience, DEWR = dream experience without recall of contents, NE = non-experience).

Observations plotted on top of corresponding boxplots. Participant number (S0, …, S16) is indicated by marker fill color, and observations are displaced slightly along

x-axis to avoid overlap.

DISCUSSION

We found sleep stage to be a significant factor in determining

signal diversity of scalp EEG, for all diversity measures used.

The reductions in estimated marginal mean LZC, ACE and SCE
between wake and NREM3 were large compared to between-
participant variation, and for all three diversity measures,
estimated marginal means became progressively lower going
from wakefulness to NREM3, consistent with the hypothesis that
signal diversity decreases with depth of NREM sleep. Our results
thus support and extend the findings in Schartner et al. (2017b)
from comparison of stereo-EEG signal diversity between wake,
REM andNREM3 in epileptic patients, as well as previous studies
indicating that single channel LZC varies with sleep depth in
humans and animals (Shaw et al., 1999; Abásolo et al., 2015;
Andrillon et al., 2016). Studies using TMS-EEG (Massimini et al.,
2005; Casali et al., 2013), or different measures of (temporal)
complexity and entropy, point in the same direction (Ma et al.,
2018). However, sleep-cycle changes in (dispersion) entropy is

time-scale dependent, and correlated to the slope of the power
spectrum, both possibly reflecting excitatory-inhibitory balance
(Miskovic et al., 2019). The decrease in signal diversity with
increasing depth of NREM sleep does not necessarily reflect
a (direct) relationship between signal diversity and richness
of experience. It may instead (primarily) reflect physiological
changes, e.g., in level of arousal, as potentially suggested by
the widespread increases in fMRI brain entropy observed after
administration of caffeine (Chang et al., 2018).

Conversely, experience classification was not a significant
factor in the models of how LZC, ACE and SCE varies between
awakenings within NREM2 sleep, and there were no significant
contrasts between NE, DEWR and DE awakenings, even before
correcting for multiple comparisons. Signal diversity was not
consistently higher for DE than NE awakenings. However, there
is an ongoing debate about the extent to which (pre-)frontal
cortex (directly) supports conscious experience, with some
evidence indicating that the neural correlates of consciousness
may be mostly located in posterior cortex (Koch et al., 2016;
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FIGURE 3 | EEG signal diversity vs. thought-perceptual ratings of dream experience. (A) Mean posterior (see Figure 1A) signal diversity of the last 30 s sleep epoch

before NREM2 awakenings with recalled dream experience, vs. thought-perceptual ratings of dream contents (1 = exclusively thought-like, 5 = exclusively

perceptual). Participant number (S0, …, S16) is indicated by marker fill color, and observations are displaced slightly along x-axis to avoid overlap. (B)Mean frontal (see

Figure 1A) signal diversity of the last 30 s sleep epoch before NREM2 awakenings with recalled dream experience, vs. thought-perceptual ratings of dream contents.

Boly et al., 2017; Odegaard et al., 2017; Storm et al., 2017). In
particular (Siclari et al., 2017), found that dream experience was
associated with local decreases in 1–4Hz activity in the posterior
cortex relative to awakenings with no dream experience, and
a later study found that a subset of large, steep slow waves in
frontal cortical regions were associated with successful dream
recall (Siclari et al., 2018). We therefore re-ran the analysis using
a posterior channel selection, as a post-hoc test to see if that
would have changed results. While estimated marginal means
were always higher for DE than NE, differences between NE
and DE were still small and far from statistical significance.

It should be noted that the sample sizes for NE and DEWR
awakenings were small, due to higher frequency of dreaming
in NREM2 than expected. Furthermore, we cannot exclude the
possibility that some reports may be inaccurate due to memory
failure. In fact, some researchers consider the question of whether
phenomenal consciousness is ever lost during sleep to be an
open question (Windt et al., 2016). While the current result does
not allow us to reject the null hypothesis that signal diversity
is the same for NE and DE awakenings, other studies suggest
that cortical bi-stability, posterior low-frequency power, and
(posterior) cortical connectivity at low frequencies may differ
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between dreaming and non-dreaming (Nieminen et al., 2016;
Siclari et al., 2017; Lee et al., 2019), although a recent study failed
to classify dreaming from non-dreaming using EEG spectral
power (Wong et al., 2020).

Thought-perceptual rating of NREM2 dream experiences
was a positive covariate of both posterior and frontal signal
diversity, except for frontal SCE, which was negatively related
to thought-perceptual ratings. The coefficient estimates were
significantly different from zero for posterior LZC and ACE,
as well as frontal LZC, but only remained significant for
posterior LZC after adjusting for multiple comparisons. This
novel finding complements the previously reported positive
correlation between thought-perceptual ratings and posterior
high-frequency power in REM sleep (Siclari et al., 2017), and
adds to emerging evidence that signal diversity may correlate
with aspects of conscious contents (Schartner et al., 2017a;
Timmermann et al., 2019; Farnes et al., 2020).

In interpreting the results of this study, one should keep in
mind that there are many physiological changes between sleep
stages, and it is unlikely that all of these directly relate to changes
in conscious experience. Furthermore, exactly how richness of
experience varies with sleep stage is not well-established. Hence,
we cannot exclude alternative interpretations of the relationship
between sleep stage and signal diversity, that do not require a link
between signal diversity and richness of experience. Similarly,
the significant correlation between thought-perceptual rating and
posterior LZC could in principle be influenced by unmeasured
confounding variables, since NREM2 sleep is not a monolithic
state. As with any study of dream reports, we cannot guarantee
that subjective reports are reliable. We tried to minimize the risk
that unreliable reporting could impact our results by carefully
instructing participants before the experiment, and by excluding
from the analysis dream reports that were too unclear to be
categorized. Finally, a small sample size, particularly for NE
awakenings, is an important limitation of this study, as is the
failure to collect subjective ratings of dream experience richness,
which could have allowed a more direct test of the entropic
brain hypothesis.

To what extent do signal diversity measures provide
independent information relative to the information already
contained in the EEG power spectrum? Previous studies suggest
that brain signal entropy is correlated with the slope of the
power spectrum (Miskovic et al., 2019), but that signal diversity
measures nevertheless provides additional information beyond
the spectral properties of the EEG signal (Schartner et al., 2015,
2017b). Plots of relative EEG power in different frequency bands
(see Supplementary Figures 2–4) seem to suggest, as expected,
that increased power in high frequency bands and decreased
power in low frequency bands is associated with increased
signal diversity. We have not analyzed this question in more
detail in this small study, but the relationship between signal
diversity and spectral properties should be further investigated
in future studies.

Both between-states and within-state studies of measures of
consciousness could be improved by simultaneous independent
measurement of important covariates of brain activity and/or
experience, e.g., arousal and/or apical drive (Aru et al., 2020).

The discovered relationship between thought-perceptual ratings
and posterior LZC should be confirmed in follow-up studies,
both for NREM2 sleep and other states, such as waking
imagination with eyes closed. This result could also conceivably
be extended to more fine-grained categories of experience,
relating (time domain) signal diversity of single channels or
source reconstructed EEG in clearly delineated regions (e.g.,
fusiform face area) to specific percepts (e.g., faces) (Siclari
et al., 2017). Within-state differences in signal diversity between
experience and non-experience should be tested with larger
sample sizes, and should be supplemented by more informative
graded ratings of phenomenological richness. In particular,
multi-dimensional ratings of experience (e.g., along dimensions
of diversity and vividness) would give a multivariate description
of richness of experience, to be approximately reproduced by
candidate measures (say, spatial and temporal LZC).

Supporting and extending the results from previous studies,
we found that signal diversity of scalp EEG in healthy volunteers
changed significantly with sleep stage, and was progressively
reduced with deeper stages of non-REM sleep. On the other
hand, we failed to find any significant difference in signal
diversity between NREM2 periods followed by dream reports
and those that were not. We did, however, find a significant
positive correlation between LZC in a channel selection covering
the posterior cortex, and more perceptual ratings of dream
content on a thought-perceptual scale. This novel result
adds to a growing body of evidence suggesting a potential
link between measures of neural differentiation and contents
of experience.

Overall, our findings are consistent with the hypothesis that
signal diversity is a correlate of phenomenological richness (or
brain states that favor such richness), but results are somewhat
mixed, and alternative interpretations cannot be ruled out.
Therefore, further studies are needed, with larger sample sizes
and explicit subjective rating of richness of experience.
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