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ABSTRACT

Biofilms play an important role in the antibiotic
drug resistance, which is threatening public health
globally. Almost, all microbes mimic multicellular
lifestyle to form biofilm by undergoing phenotypic
changes to adapt adverse environmental condi-
tions. Many anti-biofilm agents have been experi-
mentally validated to disrupt the biofilms during last
three decades. To organize this data, we developed
the ‘aBiofilm’ resource (http://bioinfo.imtech.res.in/
manojk/abiofilm/) that harbors a database, a predic-
tor, and the data visualization modules. The database
contains biological, chemical, and structural de-
tails of 5027 anti-biofilm agents (1720 unique) re-
ported from 1988–2017. These agents target over 140
organisms including Gram-negative, Gram-positive
bacteria, and fungus. They are mainly chemicals,
peptides, phages, secondary metabolites, antibod-
ies, nanoparticles and extracts. They show the di-
verse mode of actions by attacking mainly signal-
ing molecules, biofilm matrix, genes, extracellular
polymeric substances, and many more. The QSAR
based predictor identifies the anti-biofilm poten-
tial of an unknown chemical with an accuracy of
∼80.00%. The data visualization section summarized
the biofilm stages targeted (Circos plot); interac-
tion maps (Cytoscape) and chemicals diversification
(CheS-Mapper) of the agents. This comprehensive
platform would help the researchers to understand
the multilevel communication in the microbial con-
sortium. It may aid in developing anti-biofilm thera-
peutics to deal with antibiotic drug resistance men-
ace.

INTRODUCTION

Biofilms are the assembled colony of microbes encapsulated
with self-secreted cocoon (1,2). These are the major sur-
vival strategy adapted by almost all bacterial species against
severe environments (3). In biofilms, unicellular bacteria
mimic multicellular behavior by division of labor and cell-
to-cell communication (4). Historically, Van Leeuwenhoek
first detected microbial colonies from tooth surface using
a simple microscope in 1676 (5). Later, Costerton et al.
in 1978 coined the term ‘biofilm’ for the colonial form of
bacteria (6). The biofilms formed on living or nonliving
like human body, plants, medical devices, rocks, etc. (7–
9). The main constituent of a biofilm is the extracellular
polymeric substances (EPS). This EPS matrix comprised of
polysaccharides, proteins, extracellular DNA, lipids etc and
its composition varies according to growth conditions, sub-
strates, medium, and species (10).

The microbial colonization is either mono or polyspecies
and driven through signaling molecules (11,12). For ex-
ample, autoinducer-2 helps to develop the oral biofilms
formed by Streptococcus gordonii, Porphyromonas gingivalis
(11); and acyl homoserine lactones assist the growth of
Pseudomonas aeruginosa and Burkholderia cepacia micro-
colonies (13). Similarly, competence stimulating peptides
contribute in the biofilm formation of Streptococcus mutans
(14); and tyrosol aids colonization among Candida albicans
(15). Simultaneously, these microcolonies are difficult tar-
gets for the antibiotics to inhibit that pathogen.

Currently, drug resistance is the major crisis before
scientific community in infectious diseases according to
World Health Organization (WHO) report (http://www.
who.int/mediacentre/factsheets/antibiotic-resistance/en/)
(16). In biofilms, the bacteria display 10–1000-fold in-
crease in antibiotic resistance. It happens because of the
specialized features like efflux pumps, modifying enzymes,
evading the immune system and target mutations (17–20).
Sakhtah et al. in 2016 proved the role of multidrug efflux
pump (MexGHI-OpmD) through a natural phenazine in
the biofilm development of P. aeruginosa, an opportunistic
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pathogen (21). The pathogenicity of the facultative anaer-
obe Vibrio cholerae increased due the biofilm formation in
the environment as well as during outbreaks (22). Similarly,
switching to biofilm form increases the persistence of C.
albicans during mucosal to systemic infection (23). The
exoproteins of the biofilm EPS matrix corroborated as
multivalent vaccine candidate against biofilm-associated
chronic infections of Staphylococcus aureus (24). How-
ever, stubborn nature of biofilms helps the pathogens to
overcome the host innate response as well as antibiotics
(25).

Many studies (1988-till date) reported the experimental
testing of anti-biofilm agents against different microorgan-
isms. These anti-biofilm agents have varied actions like tar-
geting the quorum sensing (QS) signaling molecules (26),
EPS matrix (27,28), genes involved in biofilm formation and
adhesion (29) etc. The anti-biofilm agents verified as adju-
vants or alternatives to conventional antibiotic treatments.
Simultaneously, they also act synergistically with antibiotics
and improve their inhibitory action against chronic infec-
tions (30).

The biofilm’s universal distribution, varied composition,
virulence and resistance towards antibiotics make them
among one of the highly explored field. Since, there is
no platform available to understand the diversified anti-
biofilm agents; therefore, we developed the first comprehen-
sive resource ‘aBiofilm’ in this concern. It harbors biologi-
cal, chemical and structural details of 5027 entries belonged
to varied anti-biofilm agents. It contains a database, a pre-
dictor (qualitative), and the data visualization modules.

MATERIALS AND METHODS

aBiofilm resource structure

The aBiofilm has three sub-categories namely a database,
a predictor, and the data visualization. The database cov-
ers the chemical, biological, and structural information of
anti-biofilm agents. Using curated anti-biofilm chemicals,
we developed a Quantitative structure–activity relationship
(QSAR) based predictor employing the Support Vector
Machine (SVM), a machine learning technique. Further, we
also carried out diverse analyses to better understand the
anti-biofilm agents. The ‘aBiofilm’ architecture is available
in the Supplementary Figure S1.

Database
Data acquisition and curation. We performed an intensive
literature search to extract the relevant information about
anti-biofilm agents for developing a database. We scanned
the PubMed using a query (by combining suitable keywords
and Boolean operators) to fetch the relevant articles:

((biof ilm) AND (inhibi t ∗ OR antagonist OR inter f erence OR modulator OR quench∗))

The query resulted in ∼7500 articles till 15 September
2017 spread over last three decades. After the early screen-
ing, we filtered ∼3500 articles that may contain the data of
biofilm inhibitors (excluding reviews and non-potential ar-
ticles). Finally, the aBiofilm database composes the manu-
ally curated agents from 526 articles having the needed in-
formation. Finally, 5027 entries belonged to 1720 unique

anti-biofilm agents targeting as many as 140 microorgan-
isms with an average discovery rate of ∼167 entries and ∼57
unique anti-biofilm agents yearly.

Database organization. The records in the aBiofilm
database include the biological, chemical and structural in-
formation. The biological details include the fields like anti-
biofilm agents, type of anti-biofilm agents, organism/strain
targeted, concentration of agent, percentage (%) inhibition.
In addition, it also has the stage of biofilm targeted, mech-
anism of action, media and apparatus used to detect the
biofilm inhibition, etc. Since the percentage inhibition was
not directly provided in the maximum articles, therefore we
calculated it using the absorbance readings by the following
formula (31,32):

% Inhibition = (
OD(control) − OD(experimental)

)
/OD(control)

where OD (control) is the optical density of a control and
OD (experimental) is the optical density of an experimental
setup.

We manually extracted the chemical informa-
tion from various chemical repositories like Pub-
Chem (https://pubchem.ncbi.nlm.nih.gov/), Chem-
Spider (http://www.chemspider.com/) and chemicalize
(https://chemicalize.com/) (33,34). The chemical details
include International Union of Pure and Applied Chem-
istry (IUPAC name), simplified molecular-input line-entry
system (SMILES), Molecular formula, Molecular weight,
IUPAC International Chemical Identifier (InCHl) and
Lipinski rule for five. The structural details include the
2-dimensional and 3-dimensional view of each chemical.
We manually sketched the compounds using chemicalize
module available in ChemAxon package. Further, we
calculated the chemical properties and the structure (.sdf
format) of each chemical. Last, displaying the agents on
the web server was accomplished through the mol2ps (http:
//merian.pch.univie.ac.at/~nhaider/cheminf/mol2ps.html)
and JavaScript-Based Molecular Viewer (JSmol) from Jmol
(http://jmol.sourceforge.net/).

Predictor. In our database, there are 896 unique anti-
biofilm agents (chemicals) with SMILES and defined inhi-
bition efficiencies either low to high or 0–100%. We need
a positive and a negative data sets to develop a classifier
for predicting the biofilm inhibition efficiency of any com-
pound. We found that in the literature >60% and <20%
biofilm inhibition were considered ‘high’ and ‘low’ respec-
tively for these extracted chemicals. Therefore, we have se-
lected experimentally confirmed 492 chemicals with high
(>60%) and low (<20%) inhibition efficiency as positive
(271) and negative (221) datasets respectively for the classi-
fication based SVM model development. For a better clas-
sifier, we have not included the chemicals having moderate
efficiency (35). We subdivided the 492 chemicals into T450

training/testing and V42 independent/validation datasets
using a randomization method. This procedure was re-
peated in triplicates and all datasets performed equally well.
Therefore, for the model development, we opted one of
these random datasets.

First, we fetched the descriptors of all the chemicals us-
ing PaDEL software (36,37) that led to the 15352 sized vec-
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tor. Further, the most contributing 40 features were selected
using two filters, i.e. ‘Remove Useless’ available in Weka
package (38) followed by minimum redundancy and max-
imum relevance (mRMR) algorithm (39). The SVM tech-
nique was used for the model development employing 10-
fold cross validation (40). We evaluated the developed mod-
els using sensitivity, specificity, accuracy, Matthews corre-
lation coefficient (MCC) and receiver operating character-
istic (ROC) (35,40). Similarly, the robustness of the devel-
oped model was checked through independent/validation
dataset. We provided the flowchart depicting the methodol-
ogy of the predictor development in Supplementary Figure
S2.

Analyses and data visualization. In the aBiofilm, we did
three types of analyses to explore the anti-biofilm agents.
First, we analyzed the data for highlighting the biofilm
stages of the microbes targeted by different agents using
CIRCOS software (41,42). Second, the interrelationship be-
tween four important fields of the database was highlighted
i.e. the anti-biofilm agent acting on the particular stage of
the biofilm of a microorganism through interaction net-
work by Cytoscape software (43). Third, we evaluated the
diversity of anti-biofilm chemicals using chemical cluster-
ing through k-means clustering method available in Ches-
Mapper (44). We provided these analyses on the webserver
under ‘analyses’ menu.

Web server implementation. The aBiofilm web server was
designed using LAMP software bundle (35,45,46). It uses
Linux as the operating system; Apache for the web server;
MySQL as the relational database management system and
PHP (occasionally Perl or Python) as an object-oriented
scripting language. The front-end of the web server was de-
veloped using scripting languages like HTML, CSS, XML,
Javascript, etc. Similarly, we used PHP, MySQL, Perl,
Python, in the back-end to make the server functional.

RESULT AND DISCUSSION

Database

Database statistics. Currently, the aBiofilm database
harbors 5027 anti-biofilm agents (1720 unique) from 526
articles. Among the topmost anti-biofilm agents, we found
3-(4-fluorophenyl)-5-(3-ethoxy-4-hydroxybenzylidene)-
2-thioxothiazolidin-4-one has 86 entries. Followed by
3-(pyridin-3-yl)-5-(3-ethoxy-4-hydroxybenzylidene)-2-
thioxothiazolidin-4-one; 3-(4-fluorophenyl)-5-(3-(allyloxy)-
4-hydroxybenzylidene)-2-thioxothiazolidin-4-one; 3-(3-
fluorophenyl)-5-(3-ethoxy-4-hydroxybenzylidene)-2-
thioxothiazolidin-4-one; 5-Fluorouracil; AHL lactonases;
Norspermidine with 79; 79; 79; 58; 46 and 41 records
(Figure 1A). Database has maximum anti-biofilm agents
checked against Staphylococcus aureus i.e. 1044, followed
by Pseudomonas aeruginosa, Candida albicans, Escherichia
coli, Staphylococcus epidermidis, Streptococcus mutans with
1026, 380, 321, 263, and 239 hits (Figure 1B).

We noted that maximum anti-biofilm agents belonged
to a chemical category with 2445 entries. Further, Phy-
tochemical, Peptide, Amino Acids, Bacterial extract, En-
zymes, Nanoparticles have 1109, 619, 236, 227, 84, and 67

Figure 1. Diagrammatic representation of (A) topmost anti-biofilm agents
in aBiofilm resource, (B) top-10 organism targeted with anti-biofilm agents
available in aBiofilm resource.

records (Supplementary Figure S3A). Similarly, the stages
of the biofilm targeted with anti-biofilm agents scanned and
depicted in the Supplementary Figure S3B. The formation
stage of biofilms targeted in 3940 instances, followed by ad-
hesion, and pre-formed stages with 502 and 235 entries re-
spectively.

Data retrieval. We have integrated the ‘Browse’ to explore
and retrieve the overall data through six major fields, i.e.
anti-biofilm agents, types of anti-biofilm agents, targeted or-
ganism, types of organism, preliminary assay, and journal
names. User can click any of the six choices to display list of
unique entries and the frequency. User will get an interactive
tabular output of any sub categories displaying the impor-
tant fields. It includes anti-biofilm ID hyperlinked to details
of individual entry and anti-biofilm agent linked to an ex-
ternal chemical repository. Other fields are molecular for-
mula of anti-biofilm agents, agent type, targeted organism
(linked to NCBI-taxonomy browser), strain, inhibition ef-
ficiency, biofilm stages, growth media and reference PMID
(hyperlinked to PubMed). Each anti-biofilm ID linked to
the detailed biological, chemical, and structural informa-
tion. The Supplementary Figure S4 has depicted the use of
‘browse’.

We have also included a ‘Search’ tool to fetch the needed
information according to user’s requirement. User can en-
ter the query for searching in all the fields, or any spe-
cific fields like anti-biofilm ID, anti-biofilm agent, SMILES,
anti-biofilm agent type, targeted organism, preliminary as-
say, and PubMed ID. The search will display ten fields as
provided in the browse choice. Further, detailed individual
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Figure 2. CIRCOS plot showing the information of stages of the biofilm among the organism targeted with anti-biofilm agents. CIRCOS plot divided into
two parts. Rightmost part showed the organisms targeted through anti-biofilm agents while leftmost part represented the stages of the organism affected
with anti-biofilm agents. The band color of the rightmost part is depicted in five different colors viz. yellow (Fungus), purple (Gram-negative bacteria),
black (Gram-positive bacteria), orange (Gram variable bacteria), and dark gray (a mixed culture of bacteria and/or fungus). Whereas, leftmost part and
rays (links) of circos is divided into five different colors according to the stages like light green (Pre-formation), blue (Adhesion), red (Formation), orange
(Maturation), and green (Pre-formed).
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web page of the entry is available by clicking on any anti-
biofilm ID.

Predictor. We have developed a QSAR based predic-
tor for identification of the inhibition efficiency of any
chemicals against biofilm. During 10-fold cross-validation
on T450 dataset, the predictive model achieved the sen-
sitivity, specificity, accuracy, MCC, and ROC of 77.92%,
80.77%, 79.18%, 0.58 and 0.83 respectively. Similarly,
the developed model performed equally well on the
independent/validation dataset (V42) with sensitivity, speci-
ficity, accuracy, MCC, and ROC of 86.36%, 75.00%,
80.95%, 0.62 and 0.88 correspondingly. We have also given
the experimental and predicted anti-biofilm efficiency of the
independent/validation dataset (V42) for comparison in the
Supplementary Table S1. It suggested good correlation be-
tween the experimental and the predicted anti-biofilm ac-
tivity. A user can provide the input chemical in the form
of SMILES/sdf/mol format for predicting the anti-biofilm
potential. Further, a user can also draw the query chem-
ical in the integrated JSME window (47). The output is
displayed in a tabular format including query SMILES,
predicted anti-biofilm efficacy (low or high) with a color
gradient, 2D (with marked stereochemistry) and 3D struc-
ture, and a few drug-likeness properties. Beside, we are also
checking the query compound in ‘aBiofilm’ database and
displayed the available chemicals including experimental ef-
ficacy and other details.

Analyses and data visualization. We performed biofilm
stages analysis using CIRCOS plot by highlighting three im-
portant fields of the database namely organism, its group
and stages of the biofilm targeted (Figure 2). The CIRCOS
plot has two parts namely organisms and stages of biofilms.
One hundred forty unique organisms further classified into
five different groups and connected to the stages targeted by
the anti-biofilm agents. The plot showed biofilms of maxi-
mum microbes including bacteria (both Gram-positive and
Gram-negative) and fungus targeted at the formation stage
e.g. Burkholderia spp., Candida spp., Staphylococcus spp.,
and many more. Further, some of the pathogenic bacteria
like P. aeruginosa, C. albicans, E. coli, S. aureus, etc. aimed
for more than one stages like adhesion, formation, matura-
tion and pre-formed.

We used cytoscape software based interaction maps to
represent the four important fields of the aBiofilm database
i.e. anti-biofilm agents, inhibition efficiency, stage of biofilm
in the targeted organism. The interaction map displayed
some important pathogens like ESKAPE (Enterococcus fae-
cium, S. aureus, Klebsiella pneumoniae, A. baumannii, P.
aeruginosa and Enterobacter species) and non-ESKAPE
(top-10). For example, the two stages of biofilm (forma-
tion and pre-formed) of the K. pneumoniae targeted by
eighteen different anti-biofilm agents namely phenanthrene,
norspermidine, myristic acid, cyanidine, etc. with high and
medium inhibition efficiency (Figure 3). All the prokaryotic
(Gram-positive and Gram-negative bacteria) and eukary-
otic (fungus or yeast) microbes undergoes biofilm mode of
growth. Remarkably, the biofilm development in the ES-
KAPE pathogens is the primary cause of nosocomial infec-
tions worldwide (48). Various anti-biofilm agents developed

Figure 3. Interaction map of Klebsiella pneumoniae showing the inter-
relationship between anti-biofilm agents, inhibition efficacy and stage of
organism targeted. Green colored box showing targeted organism, pink
colored box means the stage of biofilm, blue boxes depicts anti-biofilm
agents, and yellow box signifies the targeting efficiency.

against ESKAPE and non-ESKAPE pathogens like S. au-
reus (49), P. aeruginosa (50), C. albicans (51), E. faecalis (52)
and many more included in our database. These pathogens
targeted at single or multiple stages of biofilm formation like
adhesion (49), maturation (53), pre-formed (54), etc.

We carried out Chemical Spacing analysis to check the
chemical diversity of the anti-biofilm agents (Supplemen-
tary Figure S5). Clustering represented as a concentric cir-
cle in which, the core shows the embedded chemicals in
3D space and highlighting the superimposed structure of
each cluster. While the outer circle showed the zoomed
view of each cluster called the maximum common sub-
graph (MCS). The chemical clustering is providing the in-
formation of a total number of the chemicals in every
cluster with Pearson’s correlation coefficient (0.93) of the
embedding. The anti-biofilm agents present wide-ranging
chemical diversity and MCS. They consist of aliphatic
core backbone namely propane, pentane, and 2-amino-1-
(2-methylpyrrolidin-1-yl)propan-1-one which target impor-
tant biofilm stages like formation, and pre-formed in the
pathogens like P. aeruginosa, C. albicans, S. aureus.
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CONCLUSION

Antibiotic drug resistance threat aggravated because of the
faster rate of the resistance development in the microbial
community. Relatively the discovery of novel antibiotics
is slow (55). Intriguingly, biofilm adaptation among the
microbes is one of the leading causes of antibiotic resis-
tance (56,57). Therefore, aBiofilm would be very helpful to
the researchers struggling to develop effective and broad-
spectrum anti-biofilm agents. This is the first resource hav-
ing all types of anti-biofilm agents reported in literature, i.e.
chemicals, phytochemicals, amino acids, antibiotics, pep-
tides, antibody, phages and many more. We are providing
the platform for chemical, biological and structural infor-
mation of anti-biofilm agent from three decades. The re-
searchers can pick up the extensive information of single
and multi-species biofilm targeting agents. Beside, a gen-
eralized predictor can identify the anti-biofilm activity of
any chemical. However, this tool has limit in predicting
organism/strain specific anti-biofilm activity. Varied data
visualization support the users by exploring the mechanism
and diversity of the anti-biofilm agents. Last, this would
aid the researchers to understand, explore, and design novel
and effective biofilm targeting approaches and would fur-
ther intensify the research on biofilm specifically to tackle
the menace of drug resistance.
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The aBiofilm resource is an open access web server and
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