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Diffusion maps approximate the generator of
Langevin dynamics from simulation data. They
afford a means of identifying the slowly evolving
principal modes of high-dimensional molecular
systems. When combined with a biasing mechanism,
diffusion maps can accelerate the sampling of the
stationary Boltzmann–Gibbs distribution. In this
work, we contrast the local and global perspectives
on diffusion maps, based on whether or not the data
distribution has been fully explored. In the global
setting, we use diffusion maps to identify metastable
sets and to approximate the corresponding committor
functions of transitions between them. We also discuss
the use of diffusion maps within the metastable sets,
formalizing the locality via the concept of the quasi-
stationary distribution and justifying the convergence
of diffusion maps within a local equilibrium. This
perspective allows us to propose an enhanced
sampling algorithm. We demonstrate the practical
relevance of these approaches both for simple models
and for molecular dynamics problems (alanine
dipeptide and deca-alanine).

1. Introduction
The calculation of thermodynamic averages for
complex models is a fundamental challenge in
computational chemistry [1], materials modelling [2] and
biology [3]. In typical situations, the potential energy
U of the system is known, and the states are assumed
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Figure 1. (a–c) Folding of deca-alanine: three metastable conformations. (Online version in colour.)

to be distributed according to the Boltzmann–Gibbs distribution with density

ρβ = Z−1e−βU.

The difficulty arises due to the high-dimensional, multimodal nature of the target distribution in
combination with limited computational resources. The multimodality of the target distribution
causes that the high-likelihood conformational states are separated by low-probability transition
regions. In such a setting, the transitions between critical states become ‘rare events’, meaning
that naive computational approaches converge slowly (if at all) or produce inaccurate results.
Moreover, standard MD simulations of large proteins (more than 500 residues) run on regular
CPUs allow to simulate dynamics over hundreds of nanoseconds (or a few micrometre max) in a
reasonable amount of time. This time scale is often not enough to sample relevant conformational
transitions which may occur on the millisecond time scale.

As an illustration, consider the problem of exploring all folded configurations of a deca-alanine
molecule in vacuum at a specific temperature (300 K). This short peptide is a common model
for illustrating the difficulties of folding due its very complicated free energy landscape [4].
Three typical states are shown in figure 1. The many interactions between atoms of the molecule
mean that changes in structure are the result of a sequence of coordinated moves. Because the
transitions between the states occur infrequently (they are ‘rare events’) the results of short
Langevin dynamics simulation will typically constitute a highly localized exploration of the
region surrounding one particular conformational minimum.

The goal of enhanced sampling strategies is to dramatically expand the range of observed
states by modifying in some way the dynamical model. Typical schemes [5–11] rely on the
definition of collective variables (CVs) in order to drive the enhanced sampling of the system
only in relevant low-dimensional coordinates describing the slowest time scales.

In this article, we discuss the automatic identification of CVs for the purpose of enhancing
sampling in applications such as molecular dynamics. In some cases, the natural CVs relate to
underlying physical processes and can be chosen using scientific intuition, but in many cases, this
is far from straightforward, as there may be competing molecular mechanisms underpinning a
given conformational change. Methods capable of automatically detecting CVs have, moreover,
much wider potential for application. Many Bayesian statistical inference calculations arising in
clustering and classifying datasets, and in the training of artificial neural networks, reduce to
sampling a smooth probability distribution in high dimension and are frequently treated using
the techniques of statistical physics [12,13]. In such systems, a priori knowledge of the CVs is
typically not available, so methods that can automatically determine CVs are of high potential
value.

Diffusion maps [14,15] provide a dimensionality reduction technique which yields a
parametrized description of the underlying low-dimensional manifold by computing an
approximation of a Fokker–Planck operator on the trajectory point-cloud sampled from a
probability distribution (typically the Boltzmann–Gibbs distribution corresponding to prescribed
temperature). The construction is based on a normalized graph Laplacian matrix. In an
appropriate limit (discussed below), the matrix converges (point-wise) to the generator of
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overdamped Langevin dynamics. The spectral decomposition of the diffusion map matrix thus
yields an approximation of the continuous spectral problem on the point-cloud [16] and leads
to natural CVs. Since the first appearance of diffusion maps [14], several improvements have
been proposed including local scaling [17], variable bandwidth kernels [18] and target measure
maps (TMDmap) [19]. The latter scheme extends diffusion maps on point-clouds obtained from a
surrogate distribution, ideally one that is easier to sample from. Based on the idea of importance
sampling, it can be used on biased trajectories, and improves the accuracy and application of
diffusion maps in high dimensions [19]. Diffusion maps can be combined with the variational
approach to conformation dynamics in order to improve the approximation of the eigenfunctions
and provide eigenvalues that relate directly to physical relaxation timescales [20].

Diffusion maps underpin a number of algorithms that have been designed to learn the CV
adaptively and thus enhance the dynamics in the learned slowest dynamics [21–24]. These
methods are based on iterative procedures whereby diffusion maps are employed as a tool
to gradually uncover the intrinsic geometry of the local states and drive the sampling toward
unexplored domains of the state space, either through sequential restarting [24] or pushing [22]
the trajectory from the border of the point-cloud in the direction given by the reduced coordinates.
In [25], time structure-based independent component analysis was performed iteratively to
identify the slowest degrees of freedom and to use metadynamics [8] to directly sample them. All
these methods try to gather local information about the metastable states to drive global sampling,
using ad hoc principles. In this paper, we provide a rigorous perspective on the construction
of diffusion maps within a metastable state by formalizing the concept of a local equilibrium
based on the quasi-stationary distribution (QSD) [26]. Moreover, we provide the analytic form of the
operator which is obtained when metastable trajectories are used in computing diffusion maps.

Diffusion maps can also be used to compute committor functions [27], which play a central
role in transition path theory [28]. The committor is a function which provides dynamical
information about the connection between two metastable states and can thus be used as a
reaction coordinate (importance sampling function for biasing or splitting methods, for example).
Committors, or the ‘commitment probabilities’, were first introduced as ‘splitting probability for
ion-pair recombination’ by Onsager [29] and appear, for example, as the definition of pfold, the
probability of protein folding [30,31]. Markov state models can in principle be used to compute
committor probabilities [32], but high dimensionality makes grid-based methods intractable. The
finite temperature string method [33] approximates the committor on a quasi-one-dimensional
reaction tube, which is possible under the assumption that the transition paths lie in regions of
small measure compared to the whole sampled state space. The advantage of diffusion maps is
that the approximation of the Fokker–Planck operator holds on the whole space, and therefore
we can compute the committor outside the reaction tube. Diffusion maps have already been used
to approximate committor functions in [27,34]. In [27], in order to improve the approximation
quality, a new method based on a point-cloud discretization for Fokker–Planck operators is
introduced (however without any convergence result). A more recent work [34] uses diffusion
maps for committor computations. Finally, we mention that artificial neural networks were
used to solve for the committor in [35], although the approach is much different than that
considered here.

The main conceptual novelty of this article lies in the insight on the local versus global
perspective provided by the QSD. Thus, to be precise, compared to the work of [27], we clarify
the procedure for going from the local perspective to designing an enhanced sampling method
and we apply our methods to much more complicated systems (only toy models are treated in
[27]). The second, more practical, contribution is the demonstration of the use of diffusion maps
to identify the metastable states and to directly compute the committor function. We consider,
for example, the use of the diffusion map as a diagnostic tool for transition out of a metastable
state. A third contribution lies in drafting an enhanced sampling algorithm based on QSD and
diffusion maps. A careful implementation and application for small biomolecules shows the
relevance and potential of this methodology for practical applications. Algorithm 1 detailed in §5
will provide a starting point for further investigations. The current article serves to bridge works
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in the mathematical and computational science literatures, thus helps to establish foundations for
future rigorously based sampling frameworks.

This paper is organized as follows: in §2, we start with the mathematical description of
overdamped Langevin dynamics and diffusion maps. In §3, we formalize the application of
diffusion maps to a local state using the QSD. We present several examples illustrating the
theoretical findings. In §4, we define committor probabilities and the diffusion map-based
algorithm to compute them. We also apply our methodology to compute CVs, metastable states
and committors for various molecules, including the alanine dipeptide and a deca-alanine system.
In §5, we show how the QSD can be used to reveal transitions between molecular conformations.
Finally, we conclude by taking up the question of how the QSD can be used as a tool for the
enhanced sampling of large-scale molecular models, paving the way for a full implementation of
the described methodology in software framework.

2. Langevin dynamics and diffusion maps
We begin with the mathematical description of overdamped Langevin dynamics, which is used to
generate samples from the Boltzmann distribution. By introducing the generator of the Langevin
process, we make a connection to the diffusion maps which is formalized in the following section.
We review the construction of the original diffusion maps and define the target measure diffusion
map, which removes some of its limitations.

(a) Langevin dynamics and the Boltzmann distribution
We denote the configuration of the system by x ∈D, where, depending on the application, D = R

d,
D is a subset of R

d or D = (R/Z)d for systems with periodic boundary conditions. Overdamped
Langevin dynamics is defined by the stochastic differential equation

dxt = −∇V(xt) dt +
√

2
β

dWt, (2.1)

where Wt is a standard d-dimensional Wiener process, β > 0 is the inverse temperature and V(x)
is the potential energy driving the diffusion process. The Boltzmann–Gibbs measure is invariant
under this dynamics:

μ(dx) = Z−1e−βV(x) dx and Z =
∫
D

e−βV(x) dx. (2.2)

The ergodicity property is characterized by the almost sure (a.s.) convergence of the trajectory
average of a smooth observable A to the average over the phase space with respect to a probability
measure, in this case μ:

lim
t→∞

Ât = Eμ(A) a.s., Ât := 1
t

∫ t

0
A(xs) ds. (2.3)

The infinitesimal generator of the Markov process (xt)t≥0, a solution of (2.1), is the differential
operator

Lβ = −∇V · ∇ + β−1�, (2.4)

defined for example on the set of C∞ functions with compact support. The fact that Lβ is the
infinitesimal generator of (xt)t≥0 means that (e.g. [36]):

∀x,
d
dt

[
E(A(xt) | x0 = x)

]∣∣∣∣
t=0

=LβA(x),

where A is C∞ compactly supported function and x0 = x is the initial condition at time t = 0.
Another way to make a link between the differential operator (2.4) and the stochastic differential
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equation (2.1) is to consider the law of the process xt. Let us denote by ψ(t, x) the density of xt at
time t. Then ψ is a solution of the Fokker–Planck equation

∂tψ =L∗
βψ and ψ(0) =ψ0,

where ψ0 is the density of x0 and L∗
β is the L2 adjoint of Lβ . Under the assumption on the

smoothness of the potential and the compactness of the domain D, the solution for positive time
can be written as

ψ(t, x) =
∞∑

k=0

ckeλktφk(x), (2.5)

with eigenvalues {λk}∞k=0 with λ0 = 0>λ1 ≥ λ2 ≥ . . . and eigenfunctions {φk}∞k=0 of L∗
β. The

eigenfunctions are smooth functions and the sum (2.5) converges uniformly in x for all times
t> t0 > 0 [15]. The ergodicity implies that ψ(t, x) → c0φ0(x) as t → ∞, and therefore the first term
c0φ0 in the sum (2.5) is equal to μ. The convergence rate is determined by the next dominant
eigenfunctions and eigenvalues. A k-dimensional diffusion map at time t is a lower dimensional
representation of the system defined as a nonlinear mapping of the state space to the Euclidean
space with coordinates given by the first k eigenfunctions:

Gk(t, x) := (eλ1tφ1(x), . . . , eλktφk(x)).

The diffusion distance is then the Euclidean distance between the diffusion map coordinates (DC).
Finally, we would like to stress that although the eigenfunctions of the kernel matrix

do approximate point-wise the spatial eigenfunctions of the Fokker–Planck operator for the
dynamics (2.1), there is not necessarily a relationship between the diffusion map matrix
eigenvalues and the eigenvalues the eigenvalues of the dynamics used to generate the samples
distributed according to μ, which is typically the underdamped Langevin dynamics as shown
in [20] (see also remark 2.1 below). This connection would be provided by constructing a diffusion
map-based approximator of the generator of underdamped Langevin dynamics (with finite
friction).

(b) Diffusion maps
The diffusion map [14] reveals the geometric structure of a manifold M from given data D

(m)

by constructing a m × m matrix that approximates a differential operator. The relevant geometric
features of M are expressed in terms of the dominant eigenfunctions of this operator.

The construction requires that a set of points D
(m) := {x1, x2, . . . , xm} ⊂ R

N (N> 0) which have
been sampled from a distribution π (x) lie on a compact d-dimensional differentiable submanifold
M⊂ R

N with dimension d<N. The original diffusion maps introduced in [14,37] are based on
the isotropic kernel hε(x, y) = h(‖x − y‖2/ε), where h is an exponentially decaying function, ε > 0
is a scale parameter and ‖ · ‖ is a norm1 in R

N . A typical choice is

hε(x, y) = exp
(
−(4ε)−1‖x − y‖2

)
. (2.6)

In the next step, an m × m kernel matrix Kε is built by the evaluation of hε on the set D
(m). This

matrix is then normalized several times to give a matrix Pε that can be interpreted as the generator
of a Markov chain on the data. To be precise, the kernel matrix Kε is normalized using the power
α ∈ [0, 1] of the estimate q of the density π , usually obtained from the kernel density estimate
qi = ∑N

j=1 Kij as the row sum of Kε . In some cases, the analytic expression of the density π (x) is
known and we can set directly q(x) = π (x). After obtaining the transition matrix

Pε = D−1
α Kε , (2.7)

where Dα = diag(q−α), we compute in the last step the normalized graph Laplacian matrix

Lε = ε−1(Pε − I). (2.8)

1For example, Euclidean or RMSD, which is the most commonly used norm in molecular simulations [20].
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As reviewed in [16], for given α and sufficiently smooth functions f , the matrix Lε converges
in the limit m → ∞ point-wise to an integral operator describing a random walk in continuous
space and discrete time, which in the limit ε→ 0 converges to the infinitesimal generator of the
diffusion process in continuous space and time. Using the notation [ f ] = ( f (x1), . . . , f (xm))T for
representing functions evaluated on the dataset D

(m) as vectors such that [ f ]i = f (xi), we formally
write the point-wise convergence: for α ∈ [0, 1], for m → ∞ and ε→ 0,

(Lε[f ])j →Lf (xj), for all xj ∈ D
(m),

where L is the operator

Lf =�f + (2 − 2α)∇f · ∇π
π

, (2.9)

where � is the Laplace–Beltrami operator on M and ∇ is the gradient operator on M. Note that
in the special case α = 1/2, and for the choice π = Z−1e−βV (Boltzmann–Gibbs), the approximated
operator corresponds to the generator of overdamped Langevin dynamics (2.4), such that

L= βLβ . (2.10)

For this reason, we focus on the choice α= 1/2 throughout this work.
Consequently, if there are enough data points for accurate statistical sampling, eigenvectors of

Lε approximate discretized eigenfunctions of L. Then eigenvectors of Lε approximate solutions to
the eigenproblem associated with L : Lε[ψ] = λ[ψ], an approximation of

Lψ(x) = λψ(x), ∀x ∈M⊂ supp(π ).

The spectral decomposition of Lε provides real, non-positive eigenvalues 0 = λ0 >λ1 ≥ λ2 ≥ · · · ≥
λm sorted in decreasing order. The dominant eigenfunctions allow for a structure preserving
embedding Ψ of D

(m) into a lower dimensional space and hence reveal the geometry of the data.
Singer [37] showed that for uniform density π , the approximation error for fixed ε and m is

(Lε[f ])j =Lf (xj) + O
(
ε, m−1/2ε−1/2−d/4

)
. (2.11)

Remark 2.1 (Infinite friction limit). In molecular dynamics, trajectories are usually obtained
by discretizing [38] the (underdamped) Langevin dynamics:

dxt = M−1pt dt

dpt = −∇V(xt) dt − γM−1pt dt +
√

2γ
β

dWt,

}
(2.12)

where x ∈ R
d are positions, p ∈ R

d momenta, Wt is a standard d-dimensional Wiener process, β > 0
is proportional to the inverse temperature, M = diagm1, . . . , md is the diagonal matrix of masses,
and γ > 0 is the friction constant. The generator of this process is

Lγ = M−1p · ∇x − ∇V(x) · ∇p + γ

(
−M−1p · ∇p + 1

β
�p

)
.

Recall that the diffusion maps approximate the generator (2.9) which is the generator of
the overdamped Langevin dynamics, an infinite-friction-limit dynamics of the Langevin
dynamics (2.12). Diffusion maps therefore provide the dynamical information in the large friction
limit γ → +∞, rescaling time as γ t, or in a small mass limit (M → 0).

Remark 2.2. Note that diffusion maps require the data to be distributed with respect to π (x) dx,
which appears in the limiting operator (2.9). It implies that even though diffusion maps eventually
provide an approximation of the generator of overdamped Langevin dynamics (2.10), one can use
trajectories from any ergodic discretization of underdamped Langevin dynamics to approximate
the configurational marginal π (x) dx as, for example, the BAOAB integrator [39].
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(c) The target measure diffusion map
If π is particularly difficult to sample, it might be desirable to use points which are not necessarily
distributed with respect to π in order to compute an approximation to the operator

L= ∇ log(π ) · ∇ +�. (2.13)

For this purpose, the target measure diffusion map was recently introduced [19]. The main
advantage is that it allows construction of an approximation of L even if the data points are
distributed with respect to some distribution μ such that supp π ⊂ supp μ. The main idea is to
use the previously introduced kernel density estimator qε , already obtained as an average of the
kernel matrix Kε . Since we know the density of the target distribution π , the matrix normalization
step can be done by re-weighting q with respect to the target density, which allows for the matrix
normalization in an importance sampling sense. More precisely, the target measure diffusion map
(TMDmap) is constructed as follows: the construction begins with the m × m kernel matrix Kε
with components (Kε)ij = kε(xi, xj) and the kernel density estimate qε(xi) = ∑m

j=1(Kε)ij. Then the

diagonal matrix Dε,π with components (Dε,π )ii = π1/2(xi)q−1
ε (xi) is formed and the kernel matrix

is right normalized with Dε,π :
Kε,π = KεDε,π .

Let us define D̃ε,π as the diagonal matrix of row sums of Kε,π , that is,

(D̃ε,π )ii = (Kε,π [1])i =
m∑

j=1

(Kε,π )ij.

Finally, the TMDmap matrix is built as

Lε,π = ε−1
(

D̃−1
ε,πKε,π − I

)
. (2.14)

In [19], it is shown that Lε,π converges point-wise to the operator (2.13).

Remark 2.3 (Nyström extension of the eigenvectors [40]). Note that the jth eigenvector [ψ] of
the matrix Lε can be extended on x ∈M as

ψj(x) = 1
λj

N∑
i=1

hε(x, xi)
D(x)

[ψj]i,

where λj �= 0 is the corresponding eigenvalue, D(x) = ∑N
i=1 hε(x, xi) and [ψj]i =ψj(xi).

(d) Dirichlet boundary problems
Diffusion maps provide a matrix Lε , which converges point-wise to the generator L defined
in (2.9). This method can be used to solve the following eigenvalue problem with homogeneous
Dirichlet boundary conditions: find (λ, f ) such that Lf = λf in Ω , f = 0 in ∂Ω . In the following
example, we solve a linear eigenvalue problem with Dirichlet boundary conditions. In the first
step, we construct Lε as the diffusion map approximation of L on the point-cloud {xi}m

i=1. In
order to express the Dirichlet boundary condition, we identify points outside the domain Ω that
we define as C := {xj}j∈J where the set of indices J := {j : xj /∈Ω}. Finally, we solve the eigenvalue
problem with matrix Lε , in which rows with indices in J have been set to zero.

Let us illustrate this on the following one-dimensional eigenvalue problem:

Lv = λv, v ∈ (−1, 1), v = 0, v ∈ {−1, 1}, (2.15)

with L= −x∂ + ∂2. The eigenfunctions are ψk(x) = (1/2) sin(π (x + 1)(k + 1)). To approximate the
solution of (2.15) using diffusion maps with α= 1/2, we have generated 106 points from
a discretized overdamped Langevin trajectory with potential V(x) = x2/2, using a second-
order numerical scheme [39]. In figure 2a, we show the diffusion map approximation of the
eigenfunctions ψk/‖ψk‖2. From figure 2b, we observe that the decay of the mean absolute error of
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Figure 2. (a) Eigenvectors obtained from diffusion maps. (b) Mean absolute error on the first five eigenfunctions over the
number of samples. (Online version in colour.)

the normalized eigenfunctions is asymptotically proportional to N−1/2, where N is the number of
samples. Different numbers N of samples were obtained by sub-sampling the trajectory.

3. Defining a ‘local’ perspective in diffusion-map analysis
We now concentrate on the case when diffusion maps are built using trajectories of the
Langevin dynamics. As we have reviewed in the Introduction, many iterative methods aim at
gradually uncovering the intrinsic geometry of the local states. The information obtained from the
metastable states can then be used, for example, to accelerate the sampling towards unexplored
domains of the state space.

The approximation error of diffusion maps (2.11) scales in O(m−1/2), m being the number of
samples. In order to provide an approximation of a Fokker–Planck operator (2.4) using a point-
cloud obtained from the process xt, a solution of (a discretized version of) (2.1), the time averages
should have converged with a sufficiently small statistical error. In this section, using the notion of
the QSD, we explain to which operator converges a diffusion map approximation constructed on
the samples in a metastable subset of the state space and why it is possible to obtain convergence
of the approximation in this set-up.

(a) Quasi-stationary distribution
The QSD is a local equilibrium macro-state describing a process trapped in a metastable state
Ω ⊂ R

d (e.g. [26]). The QSD ν can be defined as follows: for all smooth test functions A : R
d → R,

∀X0 ∈Ω , lim
t→∞

E(A (Xt) | τ > t) =
∫
Ω

A dν,

where Ω is a smooth bounded domain in R
d, which is the support of ν and the first exit time τ

from Ω for Xt is defined by
τ = inf{t> 0 : Xt �∈Ω}.

The following mathematical properties of the QSD were proved in [41]. The probability
distribution ν has a density v with respect to the Boltzmann–Gibbs measure π (dx) =
Z−1e−βV(x) dx. The density v is the first eigenfunction of the infinitesimal generator L of the
process Xt, with Dirichlet boundary conditions on ∂Ω :{

Lv = −λv, in Ω ,

v = 0, on ∂Ω ,
(3.1)

where −λ< 0 is the first eigenvalue. The density of ν with respect to the Lebesgue measure is thus

∀x ∈Ω , ν(x) = v(x)e−βV(x)∫
Ω v(x)e−βV(x) dx

. (3.2)
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Let us consider the situation when Ω is a metastable state for the dynamics (Xt), and X0 ∈Ω .
Then, for a long time, the process remains in Ω . If the diffusion map is built using those samples
in Ω , it then provides an approximation of the Kolmogorov operator (2.9) where π is replaced by
the QSD ν, namely

LΩ f :=�f + (2 − 2α)∇f · ∇ν
ν

=�f + (2 − 2α)∇f · (∇ln(v) − β∇V) , on supp(Ω). (3.3)

Notice that if Ω =D, ν = π and we recover the operator (2.9) with respect to the distribution
π . In the case when Ω is in the basin of attraction of a local minimum x0 of V for the dynamics
ẋ = −∇V(x), the QSD with density ν defined by (3.2) is exponentially close to π (x) = Z−1e−βV(x) dx
on any compact inΩ : the two distributions differ essentially on the boundary ∂Ω . More precisely,
as proved in [42, (Lemma 23, Lemma 85)] for example (see also [43, (Theorem 3.2.3)]), for any
compact subset K of Ω , there exists c> 0 such that, in the limit β → ∞,∥∥∥∥ 1K exp(−βV)∫

K exp(−βV)
− ν

∥∥∥∥
L2(Ω)

=O(exp(−βc)).

In order to illustrate these ideas, we compare the diffusion map constructed from a trajectory
in a metastable state and points from a trajectory which has covered the whole support of the
underlying distribution. As explained above, the distribution of the samples in the metastable
state is the QSD and diffusion maps provide an approximation of the operator (3.3).

Let us next illustrate the QSD and explain how it differs from the stationary distribution
on a simple one-dimensional example. The density of the QSD (3.2) can be obtained using
accurate numerical approximation of the solution v of the Dirichlet problem (3.1) by a pseudo-
spectral Chebyschev method [44,45] in interval [−L, L] with L> 0, with the grid chosen fine
enough to provide sufficient numerical accuracy. We consider a simple double-well potential
V(x) = ((x − 1)2 − 1)2. To illustrate the convergence of the QSD ν = Z−1

ν ve−V to π = Z−1e−V we
increase the interval size by plotting the approximation for increasing values of L. In figure 3a,
we plot the approximation of the solution v of the Dirichlet eigenvalue problem (3.3) on [−L, L]
for several values of L> 0. As expected, we observe that v(x) → 1 as L → ∞. In figure 3b, we
plot the corresponding quasi-stationary densities. As the size of the domain increases, the QSD
converges to π .

In the next example, we sample from the Boltzmann distribution with a two-dimensional
double-well [36, (Section 1.3.3.1)]:

VDW(x, y) = 1
6 (4(−x2 − y2 + w)2 + 2h(x2 − 2)2 + ((x + y)2 − w)2 + ((x − y)2 − w)2), (3.4)

with h = 2 and w = 1. We employ a second-order discretization of Langevin dynamics (2.1) at
low temperature (β = 10). Due to this low temperature, the samples are trapped in the first well
long enough to locally equilibrate to the QSD. We compute the statistical error of averages of
various observables such as the configurational and the kinetic temperatures, because of the
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knowledge of the exact expected values of these observables.2 We also track the first dominant
eigenvalues from the diffusion map, in order to detect when the sampling has reached a local
equilibrium. From this short trajectory, the diffusion map uncovers the geometry of the local state:
the dominant eigenvector clearly parametrizes the y-coordinate, i.e. the slowest coordinate within
the metastable state (figure 4). On the other hand, when the trajectory explores also the second
well and hence covers the support of the distribution, the diffusion map parametrizes x as the
slowest coordinate (figure 5).

These examples demonstrate that diffusion maps can be constructed using points of the QSD
to uncover the slowest local modes. As we will show in §5 this property will eventually allow us
to define local CVs which can guide the construction of sampling paths that exit the metastable
state.

4. Global perspective: identification of metastable states and committors
We illustrate in this section how diffusion maps applied to global sampling can be used
to approximate the generator of Langevin dynamics and committor probabilities between
metastable states in infinite-friction limit.3 We also use diffusion maps to automatically identify
metastable sets in high-dimensional systems.

The committor function is the central object of transition path theory [28,47]. It provides a
dynamical reaction coordinate between two metastable states A ⊂D and B ⊂D. The committor

2The following equalities hold, respectively, for the kinetic and configurational temperatures: kBT = Eπ [p · ∇U(p)] =
(Eπ [|∇V(x)|2])/(E[�V(x)]), where kB is the Boltzmann constant, T is temperature and U(p) = 1/2p∧TM−1p is kinetic
temperature.
3We are aware that diffusion maps do not provide access to dynamical properties. However, having access to a better reaction
coordinate such as the committor can be used to obtain dynamical properties (for example in combination with Adaptive
Multilevel Splitting [46]).
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function is the probability that the trajectory starting from x �∈ A ∪ B reaches first B rather than A,

q(x) = P(τB < τA | x0 = x).

The committor q is also the solution of the following system of equations:⎧⎪⎪⎨⎪⎪⎩
Lq = 0, in D \ (A ∪ B),

q = 0, in A,

q = 1, in B.

(4.1)

From the committor function, one can compute the reaction rates, density and current of transition
paths [48].

In the spirit of [27], we use diffusion maps to compute committors from the trajectory data.
Given a point-cloud on D, diffusion maps provide an approximation of the operator L and can
be used to compute q. After computing the graph Laplacian matrix (2.8) (choosing again α = 1/2),
we solve the following linear system, which is a discretization of (4.1):

Lε[c, c]q[c] = −Lε[c, b]q[b], (4.2)

where we defined by c and b indices of points belonging to the set C =D \ (A ∪ B) and B,
respectively, and Lε[I, J] the projection of the matrix or vector on the set of indices I = {Ik}#I

k=1

and J = {Jk}#J
k=1.

First, we compute the committor function for a one-dimensional double-well potential V(x) =
(x2 − 1)2. We use a second-order discretized Langevin scheme with step size �t = 0.1 to generate
105 points and compute the TMDmap with ε = 0.1. We fix the sets A = [−1.1, −1] and B = [1, 1.1]
(figure 6a). In figure 6b, we compare the committor approximation with a solution obtained with a
pseudo-spectral method [45], which would be computationally too expensive in high dimensions.

(a) Algorithmic identification of metastable subsets
The most commonly used method for identifying metastable subsests is the Perron-cluster cluster
analysis (PCCA), which exploits the structure of the eigenvectors [49–52]. In this work, we use
the eigenvectors provided by diffusion maps in order to automatically identify the metastable
subsets. The main idea is to compute the dominant eigenvectors of the transfer operator P, which
are those with eigenvalues close to 1, excluding the first eigenvalue. We approximate P by Pε
defined in (2.7). The metastable states can be clustered according to the ‘sign’ structure of the first
dominant eigenvector, which is moreover constant on these states. More precisely, we find the
maximal and the minimal points of the first eigenvector, which define the centres of the two sets.
In the next step, we ‘grow’ the sets by including points with Euclidean distance in diffusion space
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smaller than a fixed threshold. See, for example, figure 5b for an illustration in the case of the
two-dimensional double-well potential.

In the second example, we consider a two-dimensional problem with potential (3.4) with h = 2
and w = 1. We generate m = 105 samples using discretized Langevin dynamics with timestep
�t = 0.1. We use 104 points obtained by sub-sampling of the trajectory for the diffusion maps,
which is chosen with kernel (2.6) and ε= 0.1. We compute the first two dominant eigenvectors
and define the metastable subsets A and B using the first dominant eigenvector as described
earlier.4 In figure 7a, we see the sampling and the chosen sets. We compute the committor by
solving the linear system (4.2) and extrapolate linearly the solution on a two-dimensional grid of
x and y; this is illustrated in the right panel of figure 7b. The representation of the committor in
the diffusion coordinates is depicted in figure 8b.

(b) High-dimensional systems
We now use diffusion maps to compute dominant eigenfunctions of the transition operator,
identify metastable sets and approximate the committors of small molecules: alanine dipeptide
and deca-alanine. We discuss the local and global perspective by computing diffusion maps
inside the metastable states. For the example of deca-alanine, we use a trajectory from biased
dynamics and use the TMDmap to approximate committor, comparing the dynamics at various
temperatures.

4The results suggest that the method is robust with respect to the variation of the definition domains, under the assumption
that the domains A and B are within the metastable state.



13

royalsocietypublishing.org/journal/rspa
Proc.R.Soc.A476:20190036

...........................................................

0
0
f

YY

2–20
f

2–2

–2
–3

–2

–1

1

2

3

0

D
C

 1

2

0.025

0.015

0.005

0

–0.005

0.020

0.010

(b)(a)

0

0.2

0.4

0.6

0.8

1.0

co
m

m
itt

or

Figure 9. Alanine dipeptide. (a) The two metastable states uncovered by the first diffusion coordinate. (b) The committor
function over sets A (red) and B (blue). The first eigenvector has a very high correlation with the committor function.
(Online version in colour.)

fr
ee

 e
ne

rg
y 

(k
T

)

0

2

4

6

8

0.25 0.750.50 1.000
committor

Figure 10. Extrapolated free energy profile along the committor function for alanine dipeptide.

(i) Alanine dipeptide in vacuum

Alanine dipeptide (CH3–CO–NH–CαHCH3–CO–NH–CH3) is commonly used as a toy problem
for sampling studies since it has two well-defined metastable states which can be parametrized
by the dihedral angles φ between C, N, Cα, C and ψ defined between N, Cα, C, N.

We simulate a 20 ns Langevin dynamics trajectory (using the BAOAB integrator [38]) at
temperature 300 K with a 2 fs stepsize, friction γ = 1 ps−1 and periodic boundary conditions using
the openmmtools (OpenMMTools) library where the alanine dipeptide in vacuum is provided by
the AMBER ff96 force field. We sub-sample and RMSD-align the configurations with respect to a
reference one leaving only 5 × 104 points for the diffusion map analysis. We use kernel (2.6) with
ε= 1 and the Euclidean metric.

In figure 9a, we show the first diffusion coordinate, which has opposite signs on the two
metastable states. Since the transition is very rare, there are only very few points in the vicinity
of the saddle point, the dominant eigenvector, however, clearly parametrizes the dihedral angles,
and separates the two metastable sets. In order to define the reactive sets, we use the first diffusion
coordinate as described in §4. Figure 9a shows the dominant diffusion coordinate, whereas the
figure 9b shows the committor function. We observe that the committor strongly correlates with
the first eigenvector, which is expected due to the definition of the metastable state given by
the dominant eigenvector. Figure 10 shows the free energy profile of the committor function,
which was extended from the sub-sampled points to the trajectory of length 20 ns using nonlinear
regression (a multi-layer perceptron).5

5More precisely, the subset served as a training set and fitted model was evaluated on the full trajectory. We have performed
cross-validation to find the right parameters of the neural network.
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Figure 12. The embedding in the first two diffusion coordinates, coloured by the committor values. The sets A, B are shown in
blue and red, respectively. (Online version in colour.)

In the previous example, we have used a globally converged trajectory. The diffusion map
analysis therefore describes the dynamics from the global perspective. In order to illustrate the
local perspective, we compute the diffusion maps and the committor approximation from a
trajectory which has not left the first metastable state. The first eigenvector parametrizes the
two wells of this metastable state and we define the reactive states as before using the first DC.
The approximated committor assigns the probability 0.5 correctly to the saddle point between
the two wells. Figure 11a shows the dominant eigenvector, figure 11b depicts the committor
approximation with the automatically chosen sets. Figure 12 shows the corresponding diffusion
map embedding coloured with respect to the committor values. Note that the diffusion maps
used on the samples from this metastable state, whose distribution is the QSD, correlate with the
dihedral angles. This observation suggests that alanine dipeptide in vacuum is a trivial example
for testing enhanced dynamics methods using CVs learned on-the-fly because it is likely that the
slow dynamics of the metastable state are similar to the global slow dynamics, which might not
be the case in more complicated molecules.

(ii) Deca-alanine

In the following example, we use a long trajectory of the deca-alanine molecule. This molecule
has 132 atoms and a very complex free-energy landscape. A kinetic analysis was done in [53]
showing the force-field-dependent slowest dynamics processes. A representation of the molecular
conformations associated with the two main metastable states are shown in figure 1. The system is
highly metastable: a standard simulation at 300 K requires at least 5 μs to converge [53]. Therefore,
the trajectory studied here was obtained using the infinite-swap simulated tempering (ISST) [54]
method with temperatures in the range from 300 K to 500 K (nominal stepsize 2 fs and nominal
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Figure 13. Committor of deca-alanine. Sets A (blue) and B1 (red, top) and B2 (red, bottom) were obtained from the first DC.
The transition region is shown by committor isosurface lines at [0.4, 0.6]. The grey scale contours show the free-energies. Note
that the slowest dynamics is different between low temperatures (300 K and 354 K) and high temperatures (413 K and 485 K).
(a) 300 K, (b) 354 K, (c) 413 K and (d) 485 K. (Online version in colour.)

simulation length 2 μs). This method is incorporated into the MIST [55] library which is coupled
to the GROMACS and Amber96 forcefields. ISST provides the weights which are necessary to
recover the Boltzmann distribution at a given temperature. We use the weights within TMDmap
allowing us to efficiently compute the committor iso-surfaces at various temperatures. We extend
the committors in the root-mean-square deviation (RMSD) and the radius of gyration (Rg) for
better visualization in figure 13 (however, note that the diffusion maps were applied to all degrees
of freedom). We automatically identify the metastable sets using the dominant eigenvector. Note
that at lower temperatures of 300 K and 354 K, the two states are A and B1, while at higher
temperatures they are A and B2. See figure 1 for the corresponding conformations. The reason
is that at the lower temperature, the dominant barrier is enthalpic and at higher temperatures, it
is rather entropic, suggesting that the slowest transition is between the states A and B2, a state
which is not very probable at low temperatures. The different dynamical behaviours can be also
seen by the varying 0.5-committor probability shown in figure 13. The same result is also shown
in the space of the first two diffusion map coordinates in figure 14.

5. From local to global: defining metastable states and enhanced sampling
In this section, we first illustrate how the spectrum computed from diffusion maps converges
within the QSD. Next, we use diffusion coordinates built from samples within the metastable
state to identify local CVs, which are physically interpretable and valid over the whole state
space. Finally, we demonstrate that when used in combination with an enhanced dynamics such
as metadynamics, these CVs lead to more efficient global exploration. The combination of these
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Figure 14. Committor of deca-alanine in diffusion coordinates. (a) 300 K, (b) 354 K, (c) 413 K and (d) 485 K. (Online version
in colour.)

three procedures defines an algorithm for enhanced sampling which we formalize and briefly
illustrate.

(a) On-the-fly identification of metastable states
The local perspective introduced in §3 allows us to define a metastable state as an ensemble of
configurations (snapshots) along a trajectory, for which the diffusion map spectrum converges.
The idea is that, when trapped in a metastable state, one can compute the spectrum of the
infinitesimal generator associated with the QSD, which will typically change when going to a
new metastable state.

To illustrate this, we analyse an alanine dipeptide trajectory. Every 4000 steps, we compute
the first dominant eigenvalues of the diffusion map matrix Lε (with α= 1/2) by sampling
2000 points from the trajectory {xn}m

n=0 until the end of the last iteration τ = m�t. We observe
in figure 15a, that the sampling has locally equilibrated during the first three iterations within
the metastable state, and the eigenvalues have converged. The transition occurs after the fourth
iteration, which we can see in figure 15c which shows the values of the dihedral angle φ

during the simulation step. In figure 15a, we clearly observe a change in the spectrum at
this point, with an increase in the spectral gap. After the trajectory has exited the metastable
state, the eigenvalues begin evolving to new values, corresponding to the spectrum of the
operator on the whole domain. The change in the spectrum allows us to detect the exit from
the metastable state. Instead of tracking each of the first eigenvalues separately, we compute the
average and the maximal difference of the dominant eigenvalues, the values of which we plot
in figure 15b.

This example illustrates the local perspective on the diffusion maps: their application on a
partially explored distribution provides an approximation of a different operator since the used
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samples are distributed with respect to a QSD. It is therefore possible to use samples from the
local equilibrium to learn the slowest dynamics within the metastable state.

This observation can be used together with biasing techniques to improve sampling.

(b) Enhanced sampling procedure for complex molecular systems
We now describe an outline of an algorithm for enhanced sampling.

Sampling from the QSD allows us to build high-quality local CVs (within the metastable state)
by looking for the most correlated physical CVs to the DCs. In typical practice, the CVs are chosen
from a list of physically relevant candidates, as, for example, the backbone dihedral angles or
atom–atom contacts. There are several advantages to using physical coordinates instead of the
abstract DC. First, the artificial DCs are only defined on the visited states, i.e. inside the metastable
state. Extrapolated DCs outside the visited state lose their validity further from points used for
the computation. By contrast, the physical coordinates can typically be defined over the entire
state space. Second, the slowest physical coordinates might provide more understanding of the
metastable state.

Once the best local CVs have been identified, we can use metadynamics to enhance the
sampling, effectively driving the dynamics to exit the metastable state. In the next iteration,
we suggest to use TMDmap to unbias the influence of metadynamics on the newly generated
trajectory.

The above strategy can be summarized in the following algorithm:

Algorithm 1. Enhanced sampling algorithm based on local-global analysis.

1 Run molecular dynamics until the spectrum is converged (the reference walker is trapped);
2 [Optional] Refine the convergence of the spectrum and the DC by using a Fleming–Viot [56]

process within the metastable state (each replica being initialized with the whole initial
trajectory of the reference dynamics, for the diffusion map computation);

3 Identify CVs which are the most correlated with DCs;
4 Build an effective bias using, for example, metadynamics based on these CVs;
5 When an exit is observed for the reference walker (through a change in the spectrum),

restart the procedure from step 1, keeping in memory the bias built using TMDmap;

As proof of concept, we will illustrate this method in a simplified setup based on
metadynamics in the case of the alanine dipeptide. We stress that the construction of sampling



18

royalsocietypublishing.org/journal/rspa
Proc.R.Soc.A476:20190036

...........................................................

Langevin dynamics(a)

(b)

(c)

f = ACE1C-ALA2N-ALA2C-ALA2C

di
he

dr
a 

an
gl

e 
f

ACE1C-ALA2C-ALA2C-NME3N

simulation time (ps)
1

–2.5
0

2.5

–2.5
0

2.5

–2.5
0

2.5

10 102 103

ACE1C-ACE1O-ALA2N-NME3N

Y = ALA2N-ALA2C-ALA2C-NME3N

Figure 16. Alanine dipeptide: metadynamics with adaptive-CV (c) angles outperforms Langevin dynamics (a). Metadynamics
withφ,ψ angles (b) is also more efficient than standard Langevin.

procedures for general macromolecules is a complex undertaking and many challenges still need
to be addressed to implement the full proposed methodology for larger systems; this is the subject
of current study by the authors.

We first run a short trajectory to obtain samples from the first metastable state.6 This sampling
is done by the Fleming–Viot process [56] with boundary defined by the converged spectrum
which we regularly recompute during the sampling.7 We compute the two dominant DCs and
use them to select the two most correlated from a list of physical coordinates (a similar approach
was presented in [57]). In this case, we looked at the collection of all possible dihedral angles from
all the atoms except the hydrogens. In order to select the two most correlated CVs, we employed
the Pearson correlation coefficient,

ρ(X, Y) = cov(X, Y)
σXσY

,

where σZ is the standard deviation of a random variable Z. We found dihedral angles ACE1C-
ALA2C-ALA2C-NME3N and ACE1C-ACE1O-ALA2N-NME3N to be the best candidates with
highest correlations with the first and the second eigenvector, respectively. Note however, that
there were also several other CVs with high correlations, among these the φ and ψ angles.
In the next step, we use the most correlated physical CVs within metadynamics and track
the φ-angle as a function of time. Moreover, we run metadynamics with a priori chosen CV’s
based on expert knowledge, specifically the φ, ψ angles. As shown in figure 16, there is no
transition for the standard dynamics (a). On the other hand, metadynamics with the learned CVs
exhibits several transitions, see figure 16c, similar to the knowledge-based CVs (b). We have also
compared the least correlated CVs for metadynamics, and this approach was much worse than
Langevin dynamics: we did not observe any exit during the expected Langevin exit time. These
numerical experiments are strongly suggestive of the relevance of the most correlated CVs with
the dominant DCs.8 In conclusion, learning the slowest CVs from a local state provides important

6The ‘first’ state corresponds to the left top double well in figure 9.

7Alternatively, one can define the boundary by the free-energy in φ,ψ angles. We also found that resampling using Fleming–
Viot improves the quality of diffusion maps.
8In this example, we did not compute the full expected exit times since the difference was significant for several realizations.
To estimate the actual speed up of the sampling method, one would need to run thousands of trajectories and perform a
detailed statistical analysis on the results, which is proposed for future study.
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information allowing to escape the metastable state and hence enhance the sampling. Once the
process leaves the first visited metastable state, one keeps the bias, new CVs are computed to
update the bias once trapped elsewhere. This process can be iterated, and the weights from
metadynamics can subsequently be unbiased by TMDmap to compute the relevant physical
coordinates at every iteration.

We have thus demonstrated, at least in this specific case, how the local perspective can be
used together with biasing techniques (metadynamics) to get more rapid sampling of the target
distribution.

6. Conclusion and future work
Diffusion maps are an effective tool for uncovering a natural CV as needed for enhanced
sampling. In this work, we have formalized the use of diffusion maps within a metastable state,
which provides insight into diffusion map-driven sampling based on iterative procedures. The
main theoretical tool for stating an analytical form of the approximated operator is the QSD. This
local equilibrium guarantees the convergence of the diffusion map within the metastable state. We
have also demonstrated that diffusion maps especially the TMDmap, can be used for committor
computations in high dimensions. The low computational complexity aids in the analysis of
molecular trajectories and helps to unravel the dynamical behaviour at various temperatures.

We have used the local perspective to identify the metastable state as a collection of states
for which the spectrum computed by diffusion maps converges. We use the diffusion map
eigenfunctions to learn physical coordinates which correspond to the slowest modes of the
metastable state. This information not only helps to understand the metastable state, but leads
to iterative procedure which can enhance the sampling.

Following the encouraging results we obtained in the last section, other techniques can be
explored to fuel the iterative diffusion map sampling: for example, the adaptive biasing force
method [58], metadynamics or dynamics biasing techniques as adaptive multilevel splitting [46],
Forward Flux Sampling [59]. In the case of AMS, committor can be used as the one-dimensional
reaction coordinate. It will be worth exploring these strategies for more complex molecules.

Finally, as a future work, we point out that the definition of the metastable states using the
spectrum computed by diffusion map could be used within an accelerated dynamics algorithm,
namely the parallel replica algorithm [60,61]. Specifically, one could use the Flemming–Viot
particle process within the state (Step 2 of algorithm 1) to estimate the correlation time, using
the Gelman–Rubin convergence diagnostic [56], restarting the sampling whenever the reference
walker leaves prior to convergence and otherwise using trajectories generated from the FV
process to compute exit times (using the diffusion map spectra to identify exit).
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