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Abstract

The human immunodeficiency virus 1 (HIV-1) transcriptional transactivator (Tat) is essential for synthesis of full-length
transcripts from the integrated viral genome by RNA polymerase II (Pol II). Tat recruits the host positive transcription
elongation factor b (P-TEFb) to the HIV-1 promoter through binding to the transactivator RNA (TAR) at the 59-end of the
nascent HIV transcript. P-TEFb is a general Pol II transcription factor; its cellular activity is controlled by the 7SK small nuclear
RNA (snRNA) and the HEXIM1 protein, which sequester P-TEFb into transcriptionally inactive 7SK/HEXIM/P-TEFb snRNP.
Besides targeting P-TEFb to HIV transcription, Tat also increases the nuclear level of active P-TEFb through promoting its
dissociation from the 7SK/HEXIM/P-TEFb RNP by an unclear mechanism. In this study, by using in vitro and in vivo RNA-protein
binding assays, we demonstrate that HIV-1 Tat binds with high specificity and efficiency to an evolutionarily highly conserved
stem-bulge-stem motif of the 59-hairpin of human 7SK snRNA. The newly discovered Tat-binding motif of 7SK is structurally
and functionally indistinguishable from the extensively characterized Tat-binding site of HIV TAR and importantly, it is
imbedded in the HEXIM-binding elements of 7SK snRNA. We show that Tat efficiently replaces HEXIM1 on the 7SK snRNA in
vivo and therefore, it promotes the disassembly of the 7SK/HEXIM/P-TEFb negative transcriptional regulatory snRNP to
augment the nuclear level of active P-TEFb. This is the first demonstration that HIV-1 specifically targets an important cellular
regulatory RNA, most probably to promote viral transcription and replication. Demonstration that the human 7SK snRNA
carries a TAR RNA-like Tat-binding element that is essential for the normal transcriptional regulatory function of 7SK questions
the viability of HIV therapeutic approaches based on small drugs blocking the Tat-binding site of HIV TAR.
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Introduction

Synthesis of mRNAs by Pol II is tightly controlled at the step of

transcription elongation by the positive transcription elongation

factor b (P-TEFb) that is a cyclin-dependent kinase composed of

Cdk9 and cyclin T1 (CycT1) [1,2,3,4,5]. After transcription

initiation and promoter clearance, Pol II is arrested by the

negative elongation factor (NELF) and the DRB sensitivity-

inducing factor (DSIF). To restore productive Pol II elongation,

P-TEFb phosphorylates NELF, DSIF and the heptapeptide

repeats (YSPTSPS) in the C-terminal domain (CTD) of Pol II at

serine 2. P-TEFb is a general transcription factor that is required

for efficient expression of most protein-coding genes as well as for

production of full-length transcripts from the integrated HIV-1

genome [6,7].

In the nuclei of HeLa cells, about half of P-TEFb forms a

kinase-inactive ribonucleoprotein (RNP) with the 7SK snRNA

[8,9]. The 7SK/P-TEFb snRNP also contains the hexamethylene

bisacetamide (HMBA)-inducible protein HEXIM1 and less often,

HEXIM2 [10,11,12,13], the La-related protein Larp7 [14,15,16]

and the methylphosphate capping enzyme MePCE [17,18]. While

Larp7 and MePCE bind stably to and provide stability for 7SK

snRNA, P-TEFb and HEXIM1/2 show a dynamic, transcription-

dependent association with 7SK. Blocking of Pol II transcription

induces dissociation of P-TEFb and HEXIM proteins from the

7SK snRNP to increase the nuclear level of active P-TEFb

[8,9,10,11]. On the contrary, inhibition of cell growth shifts P-

TEFb from active to inactive 7SK-associated complexes [19,20].

Thus, the 7SK snRNA and HEXIM1/2 proteins function as key

regulators of Pol II transcription through controlling the nuclear

activity of P-TEFb. Malfunction of the 7SK–P-TEFb regulatory

machine that abnormally increases P-TEFb activity can lead to

development of cardiac hypertrophy or to malignant transforma-

tion of the cell [16,21].

The human 7SK is a 331 nt-long Pol III-transcribed abundant

snRNA [22]. P-TEFb is tethered to 7SK through interacting with

HEXIM1 and HEXIM2 that directly bind to the 59 hairpin of 7SK

snRNA in the forms of homo- or heterodimers [11,12,13,23,

24,25,26,27]. HEXIM proteins interact with two copies of P-TEFb

and inhibit their protein kinase activity strictly in a 7SK snRNA-

dependent manner [11,27]. Binding of 7SK to the positively charged

RNA-binding motif of HEXIM1/2 enables the acidic P-TEFb-

binding domain of HEXIM1/2 to interact with CycT1 [28]. In vivo

docking and inactivation of P-TEFb by the 7SK snRNP also requires

the binding of CycT1, either directly or indirectly, to the 39 hairpin of

7SK snRNA [26].
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Transcription initiated from the long terminal repeat (LTR)

promoter of the integrated HIV-1 genome is controlled predom-

inantly at the level of elongation [1,29,30]. The processivity of

HIV transcription depends on the viral transactivator Tat that

recruits P-TEFb to the stalled Pol II [31,32]. To capture P-TEFb,

the activation domain of Tat associates with CycT1 and its RNA-

binding motifs binds to the transactivation response element,

TAR, an RNA hairpin at the 59 end of the nascent HIV LTR

transcript [33,34,35,36]. Besides tethering P-TEFb to the TAR

RNA, recent studies demonstrated that Tat also promotes the

disassembly of the 7SK/HEXIM/P-TEFb snRNP to increase the

nuclear level of active P-TEFb [37,38]. Indeed, efficient

transcription from the HIV LTR promoter requires considerably

higher P-TEFb activity than that is needed for cellular mRNA

production and host cell viability [6,31,39,40,41].

The molecular mechanism of Tat-mediated regulation of

nuclear P-TEFb activity is unclear. Tat has been proposed to

compete with HEXIM to displace it either from the CycT1

subunit of P-TEFb or from the 7SK snRNA [37,38]. In this study,

we demonstrate that in HIV-infected cells, the 7SK transcriptional

regulatory snRNA is the major RNA target of the accumulating

Tat protein. HIV Tat binds with high specificity and efficiency to

an evolutionarily highly conserved TAR RNA-like stem-bulge-

stem motif of the 59 hairpin of 7SK snRNA. We demonstrate that

the newly discovered Tat-binding site of 7SK is imbedded in the

HEXIM-binding elements of 7SK and therefore, Tat promotes

disassembly of the 7SK/HEXIM/P-TEFb negative transcription-

al regulatory snRNP through displacing the HEXIM homodimer

from the 7SK snRNA.

Results

HIV Tat specifically associates with 7SK snRNA in vivo
To test whether Tat can interact with 7SK snRNA in living

cells, Flag-tagged Tat (Tat-FL) was transiently expressed in human

HeLa cells and recovered by immunoprecipitation (IP) with an

anti-Flag antibody (Figure 1A). As demonstrated by Western blot

analysis, the expressed Tat-FL protein interacted with the Paf1

component of the recently reported Tat/P-TEFb-associated

elongation complex, indicating that it was functionally active

[42]. HeLa RNAs co-precipitated with Tat-FL were 39 end-

labeled with [59-32P]pCp and T4 RNA ligase and analyzed on a

denaturing gel (Figure 1B, lane 2). Autoradiography revealed that

Tat-FL bound to a unique RNA with an electrophoretic mobility

corresponding to the 331 nt-long human 7SK snRNA. To

determine unequivocally its identity, the terminally labeled Tat-

associated RNA was partially digested with the G-specific

endoribonuclease T1 or it was moderately hydrolyzed with alkali

before fractionation on a sequencing gel (Figure 1C). Distribution

of the G residues in the 39-terminal part of the Tat-associated

HeLa RNA perfectly matched with the nucleotide sequence of

human 7SK snRNA. The faint band duplications above the

RNase T1 digestion products indicate sequence heterogeneity at

the 39 end of 7SK snRNA [43].

To rule out that Tat-FL associated with 7SK in the cell extract,

we performed in vivo cross-linking experiments (Figure 1D). HeLa

cells expressing Tat-FL were treated with formaldehyde and after

extract preparation, Tat-FL was immunoprecipitated under highly

stringent conditions [44]. RNase A/T1 protection analysis

confirmed that 7SK snRNA was efficiently cross-linked to Tat-

FL in vivo (lane 5). In control IPs performed in the absence of

antibody (lane 4) or from non-cross-linked cell extract (lane 2), no

7SK-Tat-FL interaction was detected under the applied harsh

wash conditions. We concluded that Tat specifically and most

probably, directly interacts with 7SK snRNA in living cells.

The 59 hairpin of human 7SK snRNA carries a conserved
Tat-binding element

To define the region of 7SK snRNA which interacts with Tat,

we assayed the in vivo interaction of transiently expressed truncated

7SK RNAs with Tat-FL by IP with an anti-Flag antibody followed

by Northern blot analysis (Figure 2A). Co-precipitation of the

endogenous HeLa 7SK snRNA with Tat-FL provided a positive

control for each IP reaction. Removal of the 39 hairpin of 7SK,

although largely compromised the stability of the truncated d39HP

RNA (lanes 9 and 11), failed to prevent its association with Tat-FL

(lane 12). In contrast, deletion of the 59 hairpin eliminated the

interaction of d59HP RNA with Tat-FL (lane 8). Finally, the 59HP

RNA that represented the 59 hairpin of 7SK efficiently interacted

with Tat-FL (lane 4), demonstrating that HIV Tat binds to the 59

hairpin of 7SK snRNA.

Tat recognizes an internal stem-bulge-stem motif of HIV TAR

RNA (Figure 2B). The first uridine in the bulge and the G-C and A-

U base-pairs in the upper stem are indispensable for Tat binding

[45,46,47,48]. A structural rearrangement of the bulge loop

provides the specificity for the Tat-TAR interaction. The bulged

U forms a base-triple interaction with the A-U base-pair that

stabilizes the association of the lower G residue in the major grove

with an arginine of Tat [49,50]. We noticed that the 59 hairpin of

human 7SK snRNA carries two internal segments, G18-A27/U84-

C90 and C37–C45/G64–G70, which are highly reminiscent of the

consensus minimal structure of the Tat-binding element of HIV

TAR (Figure 2C, shaded boxes). The putative distal (upper) Tat-

binding element of human 7SK shows a striking conservation in all

known 7SK snRNAs derived from phylogenetically distant species.

To test whether the newly detected potential Tat-binding motifs

of human 7SK snRNA can interact with Tat, we performed

electrophoretic mobility shift assays using in vitro synthesized probe

RNAs representing either the distal (Dist) or the proximal (Prox)

parts of the 59 hairpin of 7SK and a Tat-derived oligopeptide,

Tat(38–72) [51] (Figure 3A). The Tat peptide efficiently bound to

the distal part of the 59 hairpin of 7SK (lanes 2–4), but failed to

associate with its proximal part (lane 7–9). Administration of cold

Dist RNA abolished association of the Tat oligopeptide with 7SK

sequences, confirming that Tat binds specifically to the distal part

of the 59 hairpin of human 7SK snRNA (lane 5).

The 59 hairpin of human 7SK contains two 10 nt-long perfect

repeats (G13–G22 and G64–G73) which overlap the distal and

proximal putative Tat-binding elements (Figure 3A, indicated by

Author Summary

Expression and replication of the human immunodeficien-
cy virus (HIV) is supported by the viral transcriptional
transactivator (Tat) that recruits the host positive tran-
scription elongation factor b (P-TEFb) to the promoter of
the integrated viral genome. Here, we demonstrate that
HIV Tat specifically and efficiently binds to the host 7SK
small nuclear RNA (snRNA) that is a negative regulator of
P-TEFb. Although HIV Tat has been reported to interact
with a plethora of host factors, our results indicate that the
7SK transcriptional regulatory snRNA is a major and
important cellular target of HIV Tat. We demonstrate that
binding of Tat to the 7SK snRNA disrupts the 7SK-P-TEFb
negative transcriptional regulatory complex and releases
active P-TEFb. Thus, we propose that Tat not only targets
P-TEFb for HIV transcription, but also modulates the
nuclear level of active P-TEFb in HIV-infected cells.

HIV Tat Binds to the HEXIM-Binding Site of 7SK
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arrows). The wild-type GAUCUGGCUG repeat sequences were

replaced with complementary sequences in the p59HP expression

plasmid (Figure 3B). The mutant 59HPdm (distal mutant) and

59HPpm (proximal mutant) RNAs were transiently expressed in

HeLa cells and their association with the co-expressed Tat-FL

protein was tested. Northern blot analysis demonstrated that Tat-

FL interacted with 59HPpm RNA (lane 4), but it failed to associate

with the 59HPdm and the double mutant 59HPpm+dm RNAs

(lanes 8 and 12), providing strong support to the notion that Tat

interacts with the distal Tat-binding motif of human 7SK snRNA.

To confirm that Tat binds to the C37–C45/G64–G70 TAR

RNA-like motif of human 7SK, a series of mutant 59HP RNAs

were transiently expressed and their association with Tat-FL was

examined (Figure 3C). Substitution of the U40, U40–U41 bulge

nucleotides or the A43, G42-A43, U63-C67 and U68-G70 stem

nucleotides for complementary sequences fully abolished the in vivo

association of the expressed mutant 59HP RNAs with Tat-FL

(lanes 4, 12, 16, 20, 24 and 28). In contrast, substitution of the

U72-C75 nucleotides failed to interfere with Tat binding (lane 8).

Likewise, replacing the U63 bulge nucleotide, the G60-C62 stem

or the A49-C59 loop sequences with complementary nucleotides

had no effect on in vivo Tat binding (data not shown). We

concluded that Tat binds to the evolutionarily conserved C37–

C45/G64–G70 motif of 7SK that is structurally indistinguishable

from the Tat-binding element of HIV TAR.

The 59 hairpin of human 7SK snRNA carries two HEXIM-
binding sites

The strong evolutionarily conservation of the newly identified

Tat-binding site of human 7SK suggests that this element plays an

important role in the normal function of 7SK snRNA (Figure 2C).

The positively charged arginine-rich TAR-recognition motif of

HIV Tat shows strong similarity to the N-terminal part of the

7SK-binding motif of HEXIM proteins derived from evolution-

arily distant species (Figure S1) [52]. This suggests that Tat and

HEXIM recognize similar, if not identical, target motif(s) in the 59

hairpin of 7SK. HEXIM1 has been reported to be a promiscuous

double-stranded RNA-binding protein that binds to 7SK between

nucleotides 10 to 48 in a sequence-independent manner [53]. In

contrast, we had earlier observed that in HeLa cells HEXIM1

binds to the distal part of the 59 hairpin of 7SK with high

specificity [26]. To clarify these inconsistencies and to define the

precise binding site of HEXIM, we performed electrophoretic

mobility shift assays (Figure 4A). When the entire 59 hairpin of

7SK (59HP) was incubated with increasing amounts of recombi-

nant HEXIM1, two 59HP-HEXIM1 complexes, indicated as shift

1 and 2, were detected on a native gel (lanes 2–6). In the presence

of about two-fold excess of HEXIM1 only the upper low-mobility

complex (shift 2) was formed (lane 6). Administration of cold 59HP

RNA inhibited 59HP-HEXIM1 complex formation (lanes 7–9),

indicating that in accordance with previous reports, the 59 hairpin

Figure 1. In vivo association of HIV Tat with 7SK. A. Transient expression of Tat-FL in HeLa cells. Schematic structure of the pTat-FL expression
construct is shown. The cytomegalovirus promoter (CMV) and the polyadenylation region (PA) are indicated. Tat-FL was immunoprecipitated (a-Flag)
from extracts (E) prepared from transfected or non-transfected (NT) cells. Distribution of Tat-FL and Paf1 was monitored by Western blot analysis. B.
Detection of Tat-associated HeLa RNAs. RNAs co-precipitated with Tat-FL (T) were labeled in vitro and separated on a 6% sequencing gel. Lanes NT
and M, control IP from non-transfected cells and molecular size markers. C. RNA G-tracking. The Tat-associated RNA was partially digested with RNase
T1 or moderately hydrolyzed with formamide (OH2) and analyzed on a 6% gel. G residues and their positions in the human 7SK snRNA sequence are
indicated. Asterisk indicates a fragile U residue. D. In vivo cross-linking of Tat-FL and 7SK. HeLa cells expressing Tat-FL were treated (x link) or not
treated (cont) with formaldehyde before extract (E) preparation. Tat-FL was immunoprecipitated (a-Flag) or mock-precipitated (no Ab) under
stringent conditions. Distributions of Tat-FL and 7SK snRNA were monitored by Western blot analysis and RNase A/T1 mapping, respectively.
doi:10.1371/journal.ppat.1001152.g001
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of 7SK specifically associates with two molecules of HEXIM1

[13,24,25].

When probe RNAs representing the proximal (Prox) and distal

(Dist) regions of the 59 hairpin of 7SK were incubated with

HEXIM1, HEXIM1 specifically associated with both RNAs (lanes

11–13 and lanes 16–18). The resulting Dist-HEXIM1 and Prox-

HEXIM1 complexes co-migrated with the high-mobility complex

(shift1) formed by the full-length 59 hairpin and HEXIM1.

Importantly, neither the Dist nor the Prox probe RNA formed the

large low-mobility complex (shift 2) with HEXIM1, demonstrating

that the 59 hairpin of 7SK contains two structurally and

functionally independent HEXIM-binding sites each recruiting

one HEXIM molecule in an independent fashion in vitro.

We tested whether the newly defined distal Tat-binding element

and the proximal Tat-binding-like motif of the 59 hairpin of 7SK

are essential for HEXIM1 binding. Mutant 59 hairpin RNAs,

59HPdm and 59HPpm (see Figure 3), were incubated with

HEXIM1 and the resulting complexes were analyzed on a native

gel (Figure 4B). Both 59HPdm and 59HPpm RNAs formed only

the high-mobility complex with HEXIM1 (shift 1), indicating that

they bind only one copy of HEXIM1 (lanes 3–4 and 8–9). As

expected, the double-mutant 59HPpm+dm RNA was inactive in

HEXIM-binding (lanes 12–14). These results confirmed that the

newly identified Tat-binding motif in the distal part and the Tat-

binding-like element in the proximal part of the 7SK 59 hairpin

function in HEXIM-binding.

Figure 2. Identification of putative Tat-binding motifs in 7SK snRNA. A. Tat binds to the 59 hairpin of 7SK. Schematic structures of the
p7SK expression construct and the expressed truncated 7SK RNAs are shown. Dashed boxes indicate deletions. Pol III transcription of the 7SK gene
terminates within four consecutive T residues. HeLa cells were transfected with the indicated expression plasmids. After extract (E) preparation,
Tat-FL was immunoprecipitated (IP). Distribution of the endogenous and transiently expressed 7SK RNAs and Tat-FL was monitored by Western
and Northern blotting. B. Consensus structure of the minimal Tat-binding motif of HIV TAR. Nucleotides with essential and moderate contribution
to Tat binding are in red and green, respectively. C. Phylogenetic comparison of the 59 hairpins of 7SK snRNAs. The sequences of lancelet, snail,
fruit fly and tick 7SK snRNAs have been published [65,66]. The potential Tat-binding motifs of human 7SK snRNA are shaded. The evolutionarily
invariant nucleotides are in red. Nucleotides common to the putative proximal Tat-binding motif of 7SK and the Tat-binding site of HIV TAR are in
orange.
doi:10.1371/journal.ppat.1001152.g002
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To further delimit the snRNA elements directing in vitro

HEXIM-binding, the distal A34-C45/G64-A77 and proximal

C12-A27/U84-U95 fragments of 7SK were topped with GGAA

tetraloops and stabilized with artificial basal stems (Figure 4C).

The resulting distal and proximal HEXIM-binding site (DHBS

and PHBS) RNAs specifically associated with HEXIM1 (lanes 4

and 9). Any further truncations or sequence alterations abolished

the HEXIM-binding capacity of the DHBS and PHBS RNAs,

indicating that the A34-C45/G64-A77 and C12-A27/U84-U95

internal segments of the 59 hairpin of 7SK contain the minimal

sequence and structural information required for in vitro recogni-

tion by HEXIM1 (data not shown). This conclusion was further

corroborated by demonstration that similarly to the control wild-

type 59 hairpin (Figure 4D, lane 9), an artificial hairpin RNA

(59HPsyn) encompassing the C12-A25/U86-U95 and A34-C45/

G64-A77 fragments of human 7SK was capable of binding two

HEXIM1 molecules (lane 4).

The distal and proximal HEXIM-binding sites of 7SK work
in an interdependent fashion in vivo

Our in vitro binding studies revealed that the 59 hairpin of

human 7SK snRNA carries two structurally and functionally

independent HEXIM-binding sites. However, we had earlier

observed that mutations predicted to disrupt the distal HEXIM-

binding element of the 59 hairpin fully abolished the in vivo

HEXIM-binding capacity of 7SK snRNA [26]. A possible

interpretation of these contradictory results could be that in vivo

the two HEXIM-binding sites of 7SK function in an interdepen-

dent way. To test this assumption, we investigated the in vivo

HEXIM-binding ability of the mutant 59HPpm and 59HPdm

RNAs which still bind one copy of HEXIM1 under in vitro

conditions (see Figure 4B). The 59HPpm and 59HPdm RNAs were

transiently expressed in HeLa cells and their association with a co-

expressed HA-tagged HEXIM1 was monitored (Figure 5A). The

ectopically expressed HA-HEXIM1 protein efficiently associated

Figure 3. Characterization of the Tat-binding element of human 7SK snRNA. A. Tat binds to the distal part of the 59 hairpin of 7SK.
About 2 fmol of 32P-labeled RNA representing the distal (Dist) or proximal (Prox) part of the 7SK 59 hairpin was incubated with the indicated
amount (fmol) of Tat(38–72) oligopeptide and analyzed on a 4% native gel. B. The distal Tat-binding motif of 7SK directs in vivo binding of Tat.
The 59 hairpin of 7SK (59HP) carrying the pm and/or dm mutations was co-expressed with Tat-FL and their interaction was tested by co-IP and
Northern blotting. Structure of the p59HP expression plasmid with the pm and dm mutations and the expected length of the 59HP RNA is shown.
C. In vivo association of Tat with mutant 7SK 59 hairpin RNAs. Nucleotides indicated by red (essential) or green (dispensable) lines were replaced
with complementary nucleotides in the p59HP expression plasmid. Tat-FL and the mutant 59HP RNAs were co-expressed in HeLa cells and their
interactions were tested.
doi:10.1371/journal.ppat.1001152.g003
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with the endogenous HeLa 7SK snRNA (lanes 4, 8 and 12) and

the transiently expressed wild-type 59HP RNA (lane 4), but it

showed no association with the mutant 59HPdm and 59HPpm

RNAs (lanes 8 and 12), indicating that both HEXIM1-binding

sites are required for in vivo recruitment of HEXIM1.

Next, we assayed the in vivo interaction of HA-HEXIM1 with

transiently expressed full-length 7SK RNAs which, similarly to the

59HPdm and 59HPpm RNAs, carried the pm or dm sequence

alterations (Figure 5B). In order to distinguish between the

ectopically expressed mutant and the endogenous wild-type 7SK

RNAs, RNase A/T1 mappings were performed using antisense

probe RNAs specific for the mutant 7SKdm and 7SKpm snRNAs.

In contrast to the endogenous 7SK snRNA, the transiently

expressed 7SKdm and 7SKpm RNAs failed to efficiently associate

with HA-HEXIM1 in vivo (lanes 5 and 10). Since docking of

HEXIM1 is a prerequisite for P-TEFb binding, neither 7SKdm

nor 7SKpm associated with P-TEFb, as demonstrated by co-IPs

with HA-tagged CycT1 (lanes 14 and 18). The finding that

disruption of either the distal or the proximal HEXIM-binding

motif of 7SK abolishes the recruitment of both HEXIM and P-

TEFb demonstrates that under in vivo conditions the distal and

proximal HEXIM-binding sites of 7SK recruit two copies of

HEXIM1 in a tightly interdependent manner.

Tat competes with HEXIM1 for 7SK snRNA binding
Demonstration that HIV Tat binds to the distal HEXIM-

binding site of human 7SK snRNA is consistent with the idea that

Tat competes with HEXIM for 7SK binding [37]. Indeed,

replacement of one copy of HEXIM with Tat would be expected

to fully disrupt the 7SK-HEXIM interaction, since in vivo

recruitment of a HEXIM-dimer requires both HEXIM-binding

sites of the 7SK snRNA (Figure 5). To confirm this hypothesis,

increasing amounts of Tat-FL was transiently expressed in HeLa

cells (Figure 6A). After IP of equal amounts of HEXIM1, co-

precipitation of 7SK was monitored by Northern blot analysis

followed by PhosphorImager quantification. The ectopically

expressed Tat-FL efficiently disrupted the interaction of the

endogenous HEXIM1 with 7SK snRNA. Since 7SK and HEXIM

can form a stable complex even in the absence of P-TEFb or other

components of the 7SK snRNP [26], we assumed that the

Figure 4. The 59 hairpin of human 7SK snRNA contains two HEXIM-binding sites. A. Detection of HEXIM-binding sites by mobility shift
assays. About 2 fmol of in vitro synthesized probe RNAs representing the entire (59HP) or the distal (Dist) and proximal (Prox) parts of the 59 hairpin of
human 7SK were incubated with increasing amounts (fmol) of recombinant HEXIM1 and analyzed on a 5% native gel. Appropriate cold RNAs were
used as specific competitors. B. In vitro interaction of mutant 7SK 59 hairpin RNAs (59HPdm, 59HPpm, 59HPdm+pm) with HEXIM1. Complexes were
analyzed on a 4% gel. C. The minimal HEXIM1-binding elements of 7SK. The in vitro HEXIM-binding capacity of a distal (DHBS) and proximal (PHBS)
fragment of the 7SK 59 hairpin was tested by mobility shift assay on a 4% gel. Sequences derived from wild-type 7SK are boxed. D. Gelshift analysis of
an artificial hairpin RNA (59HPsyn) carrying the distal and proximal HEXIM-binding motifs of 7SK. Sequences originated from the human 7SK snRNA
are boxed.
doi:10.1371/journal.ppat.1001152.g004
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observed Tat-mediated disruption of the 7SK-HEXIM1 interac-

tion was due to direct competition of Tat and HEXIM1 for 7SK

binding. To confirm this conclusion, mutant Tat-FL proteins, Tat-

FL(K50Q) and Tat-FL(K50A+K51A) [42], lacking TAR RNA-

binding capacity were transiently expressed in HeLa cells

(Figure 6B). Co-IP experiments demonstrated that in contrast to

the wild-type Tat (lane 2), the mutant Tat proteins failed to bind

7SK snRNA and to disrupt the interaction of HEXIM1 with 7SK

and CycT1 (lanes 3 and 4).

The experiments presented thus far demonstrate that the

RNA-binding activity of Tat is crucial for disruption of the 7SK/

HEXIM/P-TEFb snRNP. However, given that Tat can

specifically interact also with CycT1, it remains possible that

binding of Tat to the CycT1 subunit of the 7SK/HEXIM/P-

TEFb snRNP may also contribute to the disassembly of this

particle [38]. To test this possibility, we assayed the 7SK-

HEXIM1 interaction in HeLa cells expressing increasing

amounts of mutant Tat-FL(C22G) and Tat-FL(K41A) proteins

lacking CycT1-binding ability (Figure 6C). Similarly to the wild-

type Tat (see Figure 6A), both mutant Tat proteins reduced the

association of HeLa 7SK snRNA with HEXIM1 in a concen-

tration-dependent fashion. Next, the mutant Tat-FL(C22G) and

Tat-FL(K41A) proteins missing CycT1-binding capacity were

transiently expressed in HeLa G3H cells which stably expressed

HA-CycT1 [54,55] (Figure 6D). After IP of comparable amounts

HA-CycT1, co-precipitation of the endogenous 7SK snRNA and

HEXIM1 as well as the ectopically expressed Tat-FL proteins

was monitored. As expected, HA-CycT1 interacted with the

wild-type Tat-FL, but it failed to bind to the mutant Tat-

FL(C22G) and Tat-FL(K41A) proteins. More importantly,

expression of the wild-type and mutant Tat proteins largely

reduced the association of HA-P-TEFb with 7SK and HEXIM1.

We believe that the intact 7SK/HEXIM/P-TEFb (about 25–

35%) that remained in the extracts likely derived from non-

transfected cells. Thus, we concluded that Tat can promote the in

vivo disassembly of 7SK/HEXIM/P-TEFb independently of its

CycT1-binding capacity.

The concept that Tat efficiently competes with HEXIM for

7SK binding, implies that Tat and HEXIM bind to the 7SK

snRNA in a mutually exclusive manner. To test this, the wild-type

and mutant (C22G and K41A) Tat-FL proteins were expressed in

HeLa cells (Figure 6E). Co-IP experiments showed that all Tat-FL

proteins efficiently associated with HeLa 7SK snRNA but showed

no detectable interaction with HEXIM1, demonstrating that Tat

and HEXIM interact with 7SK snRNA in a mutually exclusive

manner (lanes 4, 6 and 8). As expected, the mutant Tat proteins

failed to associate with CycT1 (lanes 6 and 8), but the wild-type

Tat-FL interacted with CycT1 (lane 4). Apparently, the wild-type

Tat associates with endogenous CycT1 predominantly in a 7SK-

independent manner [42,56], but a minor fraction of Tat may also

be involved in formation of the recently reported 7SK/Tat/P-

TEFb complex [42].

To further confirm that the CycT1-binding activity of Tat is

dispensable for disruption of 7SK/HEXIM/P-TEFb, we assayed

whether expression of Tat-FL(C22G) and Tat-FL(K41A) could

increase the nuclear level of active P-TEFb. The control and

mutant Tat-FL proteins were transiently expressed in G3H cells.

Upon IP with an anti-HA antibody, the beads with immobilized

HA-P-TEFb were incubated with a recombinant GST-CTD

protein carrying 48 C-terminal copies of the consensus CTD

repeat (YSPTSPS) in the presence of [c-32P]ATP (Figure 6D). The

phosphorylated GST-CTD was fractionated on a SDS-polyacryl-

amide gel and the specificity of the phosphorylation reaction was

confirmed by Western blotting with an antibody specific for serine

2-phosphorylated CTD. The phosphorylation level of GST-CTD

was determined by PhosphorImager quantification. Although

Figure 5. In vivo binding of HEXIM1 to 7SK RNA. A. Interaction of HEXIM1 with mutant 7SK 59 hairpin RNAs. HA-HEXIM1 was
immunoprecipitated (IP) from extracts (E) prepared from HeLa cells also expressing 59HP, 59HPpm or 59HPdm RNAs. Interaction of HA-HEXIM1 with
the endogenous 7SK and the ectopically expressed 59HP, 59HPpm, 59HPdm RNAs was monitored by Northern blot analyses. B. Interaction of HEXIM1
and P-TEFb with mutant 7SK snRNAs. 7SKpm and 7SKdm RNAs were expressed in HeLa cells together with HA-HEXIM1 (lanes 1–10) or in G3H cells
accumulating HA-CycT1 (lanes 11–18). After IP, recovery of HA-HEXIM1 and HA-CycT1 was confirmed by Western blot analysis and co-precipitation of
the endogenous and ectopically expressed 7SK RNAs was determined by RNase A/T1 mapping. Lane C, control mapping with E. coli tRNA. Lane B,
control IP with beads alone.
doi:10.1371/journal.ppat.1001152.g005
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comparable amounts of HA-P-TEFb (HA-CycT1) were attached

to the beads, the extracts accumulating the wild-type and mutant

Tat-FL proteins showed about 1.5 to 2-fold higher CTD

phoshorylation activity compared to the non-transfected control

extract. Given that in HeLa cells about 50% of P-TEFb is

sequestered into 7SK/HEXIM/P-TEFb, we concluded that

expression of the wild-type and mutant Tat proteins efficiently

mobilized the nuclear pool of inactive P-TEFb. These results

Figure 6. In vivo disruption of the 7SK/HEXIM/P-TEFb snRNP by HIV Tat. A. Tat disrupts the interaction of 7SK and HEXIM1. About 56106

HeLa cells were transfected with 0.5, 1.5, 2.5 or 3.5 mg of pTat-FL. After 48h of incubation, cell extracts were prepared, HEXIM1 was
immunoprecipitated and association of 7SK snRNA was measured by Northern blotting. NT, control IP from non-transfected cells. B. The TAR RNA-
binding capacity of Tat is essential for 7SK binding and for disruption of the 7SK/HEXIM/P-TEFb snRNP. Transiently expressed wild-type and mutant
(K50Q and K50A+K51A) Tat-FL proteins as well as endogenous HEXIM1 were immunoprecipitated and co-purification of endogenous 7SK snRNA and
CycT1 was monitored. C. Transiently expressed mutant C22G and K41A Tat proteins lacking CycT1-binding ability can disrupt the in vivo interaction of
HEXIM1 and 7SK. (For other details, see the captures to panel A) D. Tat disrupts 7SK/HEXIM/P-TEFb independently of its CycT1-binding capacity. Wild-
type and mutant (C22G and K41A) Tat-FL proteins were expressed in HeLa G3H cells stably expressing HA-CycT1. Association of HA-CycT1 with 7SK,
HEXIM1 and Tat-FL proteins was monitored by co-IP. E. Tat and HEXIM1 bind to 7SK in a mutually exclusive manner. From extracts (E) prepared from
HeLa cells non-transfected (NT) or transfected with the pTat-FL, pTat-FL(C22G) or pTat-FL(K41A) expression plasmids the accumulating Tat-FL
proteins were immunoprecipitated (IP). Distribution of 7SK snRNA and Tat-FL, HEXIM1 and CycT1 proteins was monitored with RNase A/T1 mapping
and Western blot analysis. F. Expression of Tat-FL, Tat-FL(C22G) and Tat-FL(K41A) increases the cellular level of active P-TEFb. From extracts of G3H
cells expressing Tat-FL proteins, the HA-tagged P-TEFb was immobilized on beads saturated with anti-HA antibody and incubated with a
recombinant GST-CTD protein and [c-32P]ATP. Distribution of HA-CycT1 and Tat-FL and phosphorylation of GST-CTD at serine 2 were monitored by
Western blot analysis. CTD phosphorylation was quantified by PhosphorImager.
doi:10.1371/journal.ppat.1001152.g006
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further corroborated the notion that the CycT1-binding capacity

of Tat is not required for the Tat-induced disruption of the 7SK/

HEXIM/P-TEFb snRNP and for increasing the nuclear level of

active P-TEFb.

Tat does not interact with HeLa 7SK/hnRNP particles
In HeLa cells, a fraction of 7SK snRNA is associated with

hnRNP proteins, mainly A1, A2/B1, R and Q [44,57,58]. To

exclude the formal possibility that the newly detected 7SK/Tat

RNP or at least a fraction of 7SK/Tat derived from the hnRNP-

associated pool of 7SK, we tested the effect of Tat expression on

HeLa 7SK/hnRNP complexes (Figure 7A). Transient expression

of wild-type Tat-FL had no detectable effect on the level of

association of hnRNP A1 and A2/B1 with 7SK snRNA (lanes 4

and 6), demonstrating that the hnRNP-associated fraction of 7SK

is not available for in vivo interaction with HIV Tat.

The hnRNP proteins associate with 7SK snRNA after its stress-

induced release from the 7SK/HEXIM/P-TEFb snRNP

[44,57,58]. We tested whether after Tat-mediated disruption of

7SK/HEXIM/P-TEFb, the resulting 7SK/Tat snRNP associates

with hnRNP proteins (Figure 7B). Transiently expressed Tat-FL,

together with 7SK snRNA, was immunoprecipitated and co-

purification of hnRNP A1, A2/B1, R, Q and Larp7 was tested by

Western blot analysis. Although the 7SK/Tat-FL snRNP

interacted with Larp7, none of the tested hnRNP proteins were

detected in the pellet, demonstrating that the newly described

7SK/Tat snRNP contains no hnRNP proteins.

Discussion

HIV Tat is an unconventional transcriptional activator that,

instead of targeting DNA promoter elements, recruits P-TEFb for

HIV transcription through binding to a cis-acting RNA enhancer,

the TAR RNA. Besides tethering P-TEFb to TAR, Tat also

promotes the release of active P-TEFb from the 7SK/HEXIM/P-

TEFb negative transcriptional regulatory snRNP [37,38]. In this

work, we demonstrate that Tat binds specifically to one of the two

HEXIM-binding sites of human 7SK snRNA to displace the

HEXIM homodimer on 7SK and to disrupt the 7SK/HEXIM/P-

TEFb snRNP.

The 59 hairpin of human 7SK snRNA contains two HEXIM-
binding motifs

Although all previous studies agreed that HEXIM binds to the

59 hairpin of 7SK, its precise docking site remained uncertain

[26,27,53]. Here, we demonstrated that the 59 hairpin of human

7SK snRNA contains two distinct HEXIM-binding sites which are

confined to the A34-C45/G64-A77 distal (DHBS) and the C12-

A27/U84-U95 proximal (PHBS) segments (Figure 4). Under in

vitro conditions, each HEXIM-binding motif of 7SK specifically

and independently interacts with one HEXIM molecule.

Both HEXIM-binding sites of the human 7SK snRNA contain

a stem-bulge-stem core motif (C37–C45/G64–G70 and G18-

A27/U84-C90) which are highly reminiscent of the consensus

structure of the minimal Tat-binding element of HIV TAR

(Figure 2B and 2C). Consistent with this, HIV Tat and HEXIM

proteins carry similar, positively charged, arginine-rich RNA-

binding motifs which are essential for interaction with TAR and

7SK RNAs (Figure S1). These observations, together with the

finding that Tat binds to the distal HEXIM-binding site of 7SK

(Figure 3), strongly suggest that HEXIM and Tat use similar

structural and molecular principles to recognize 7SK and TAR

RNAs. Along this line of speculation, given that Tat can bind to

the HEXIM-binding site of 7SK, it seems to be logical to

hypothesize that HEXIM can interact with the Tat-binding site of

HIV TAR [38]. However, contrary to our repeated efforts, we

failed to detect a specific interaction between HEXIM and TAR

(our unpublished data). The lack of TAR-binding ability of

HEXIM could be explained by the observations that binding of

HEXIM to 7SK snRNA, besides the TAR-like C37–C45/G64–

G70 and G18-A27/U84-C90 stem-bulge-stem core motifs, also

requires the adjacent A34-C36/C71-A77 and C12-U17/U1–U95

proximal sequences (Figure 4) [26]. Thus, HEXIM seems to form

a more intricate interaction with 7SK snRNA than it has been

reported for the Tat-TAR complex. The Tat-like RNA-binding

motifs of HEXIM proteins are N-terminally extended by highly

conserved positively charged regions which may contribute to the

specificity of the HEXIM-7SK interaction (Figure S1). Apparently,

understanding of the accurate molecular and structural back-

ground of the interaction of HEXIM and 7SK snRNA requires

further efforts.

Figure 7. The 7SK/Tat snRNP does not interact with hnRNP proteins. A. Expression of Tat has no effect on the interaction of 7SK and hnRNP
proteins. HnRNP A1 and A2/B1 were immunoprecipitated from extracts prepared from HeLa cells expressing or not expressing (NT) Tat-FL. Co-
purification of 7SK was assayed by Northern blotting. Lanes no Ab, control IPs without antibody. B. The 7SK/Tat snRNP lacks hnRNP proteins, but
associates with Larp7. Transiently expressed Tat-FL was immunoprecipitated from extracts (E) prepared from transfected (T) or non-transfected (NT)
HeLa cells. Co-IP of 7SK snRNA and hnRNP and Larp7 proteins was assayed.
doi:10.1371/journal.ppat.1001152.g007
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The two HEXIM-binding sites of 7SK function in an
interdependent manner in vivo

A key achievement of the current study is the demonstration

that in living cells, assembly of the 7SK/HEXIM/P-TEFb snRNP

requires both the distal and proximal HEXIM-binding sites of

7SK, since they recruit a homodimer of HEXIM in an strictly

interdependent fashion (Figure 5). Most probably, concerted

binding of two HEXIM molecules increases the 7SK-binding

affinity of the tethered HEXIM-dimer. For example, structural

rearrangements of HEXIM induced by dimerization may promote

formation of additional molecular contacts with 7SK snRNA [59].

Interestingly, the 59 hairpins of non-vertebrate 7SK snRNAs seem

to carry only one HEXIM-docking site, suggesting that these

RNAs interact with one copy of HEXIM and P-TEFb (Figure 2C).

Acquisition of a second HEXIM-binding site that occurred

probably through sequence duplication at the early stage of

vertebrate evolution seems to be advantageous for P-TEFb

regulation, since a single 7SK/HEXIM/P-TEFb dissociation

event can mobilize two active P-TEFb molecules.

Tat binds to the distal HEXIM-binding motif of human
7SK snRNA

Transiently expressed HIV Tat specifically and efficiently

interacts with the endogenous human 7SK snRNA, indicating

that the 7SK transcriptional regulatory snRNA is the major RNA

target of Tat in the host cell (Figure 1). Tat binds to the

evolutionarily conserved C37–C45/G64–G70 internal stem-loop-

stem region of the 59 hairpin of human 7SK snRNA (Figure 3).

The newly identified Tat-binding motif of 7SK perfectly conforms

to the consensus structure of the Tat-binding motif of HIV TAR

and it is part of the distal HEXIM-binding site of 7SK.

Most of the available data are consistent with the idea that HIV

Tat competes with HEXIM1 for 7SK snRNA binding to promote

disassembly of the 7SK/HEXIM/P-TEFb snRNP and to increase

the nuclear pool of active P-TEFb. Previous in vitro reconstitution

experiments showed that Tat could disrupt pre-assembled 7SK/

HEXIM/P-TEFb complexes, resulting in stable 7SK/Tat com-

plex and free HEXIM and P-TEFb [38]. Unfortunately, because

of the high tendency of recombinant Tat protein for oxidation and

aggregate formation [48,60], in vitro competition experiments

require the usage of a great eccess of recombinant Tat, making it

difficult to measure and compare the correct in vitro 7SK-binding

affinities of Tat and HEXIM [38, our unpublished data].

Nevertheless, the in vivo competition experiments presented in this

study confirmed that Tat efficiently disrupts the association of

HEXIM1 and 7SK snRNA upon formation of 7SK/Tat snRNP

(Figure 6). Given that both HEXIM-binding sites of 7SK are

necessary for in vivo recruitment of a HEXIM homodimer,

disruption of the 7SK-HEXIM interaction at the distal HEXIM-

binding site by docking Tat is expected to release both copies of

HEXIM (Figure 5). Providing strong support to this idea, Tat and

HEXIM bind to 7SK in a mutually exclusive manner, neither the

7SK/Tat RNP contains HEXIM nor the 7SK/HEXIM complex

associates with Tat (Figure 6) [42].

Binding of HEXIM to 7SK is the first and decisive step in the

assembly of the 7SK/HEXIM/P-TEFb negative transcriptional

regulatory snRNP, because association of HEXIM and P-TEFb is

strictly 7SK-dependent [11,27,28]. Free HEXIM cannot bind to

CycT1, because its negatively charged CycT1-binding domain

forms intramolecular interactions with the adjacent positively

charged 7SK-binding motif [28]. Docking 7SK disrupts this

autoinhibitory interaction and turns HEXIM into an active

conformation ready to bind and inhibit P-TEFb. Thus, disruption

of the interaction of 7SK and HEXIM by Tat is predicted to

mobilize the 7SK/HEXIM-associated inactive pool of P-TEFb by

triggering its release from HEXIM1. In an alternative model, Tat

has been proposed to mediate 7SK/HEXIM/P-TEFb disruption

through competing with HEXIM for binding to CycT1 [37].

Arguing against this scenario, amino acid alterations which

abolished the interaction of Tat with CycT1 only slightly reduced

the ability of the mutant Tat proteins to disrupt 7SK/HEXIM/P-

TEFb and to increase P-TEFb activity in vivo (Figures 6D and 6F).

In contrast, disruption of the 7SK-binding capacity of Tat fully

abolished its ability to replace HEXIM1 and to disrupt 7SK/

HEXIM/P-TEFb (Figure 6B). Thus, although it remains possible

that the CycT1-binding activity of Tat slightly contributes to the

Tat-mediated disassembly of 7SK/HEXIM/P-TEFb, our results

indicate that the P-TEFb mobilization capacity of Tat depends

mostly, if not exclusively, on its 7SK-binding activity.

During revision of the current manuscript, the human 7SK

snRNA has been reported to form a stable complex with Tat and

P-TEFb [42]. Since 7SK can bind only one molecule of Tat and

consequently, one copy of P-TEFb (Figure 3), Tat-induced

disruption of 7SK/HEXIM/P-TEFb is expected to release at

least half of the associated P-TEFb in the form of free P-TEFb.

However, we and others observed that Tat expression converted

the nuclear pool of inactive 7SK/HEXIM1/P-TEFb into free,

active P-TEFb with a very high (75–95%) efficiency, suggesting

that the newly described 7SK/Tat/P-TEFb accumulates at low

levels (Figure 6D) [37,38]. Nevertheless, the functional significance

of the novel 7SK/Tat/P-TEFb RNP played in HIV expression

remains to be established.

Demonstration that the distal HEXIM-binding site of the

human 7SK snRNA encompasses a perfect Tat-binding motif has

an important biomedical impact. Targeting the Tat-binding site of

HIV TAR RNA with small-molecule drugs to block Tat-mediated

transactivation is a very attractive approach for anti-viral therapy

[61]. However, potential anti-HIV drugs with strong TAR-

binding capacity are expected to interact also with the distal

HEXIM-binding motif of 7SK and therefore, to promote the

disassembly of 7SK/HEXIM/P-TEFb that shifts the P-TEFb

equilibrium toward the active form. Since increased P-TEFb

activity may have deleterious effects [16,62], therapeutic targeting

of HIV TAR requires the design of ligands which are highly

specific for the TAR RNA. So, our results suggest that drug-

mediated therapeutic inhibition of Tat-TAR interaction requires

more precautions than anticipated before.

Materials and Methods

General procedures
Unless stated otherwise, all techniques used for manipulation of

DNA, RNA oligonucleotides and proteins were performed

according to standard laboratory procedures. The identity of all

plasmid constructs was verified by sequence analysis. Human

HeLa and G3H cells, the latter was provided by Dr Q. Zhou [63],

were grown in Dulbecco’s modified Eagle medium supplemented

with 10% fetal calf serum (Invitrogen). Expression plasmids were

introduced into HeLa and G3H cells by using the FuGENE

transfection reagent (Roche).

Plasmid construction
Construction of the p7SK, p59HP and pHA-HEXIM1 expression

plasmids has been described [26]. The pTat-FL, pTat-FL(C22G),

pTat-FL(K41A), pTat-FL(K50Q) and pTat-FL(K50A+K51A) plas-

mids have been provided by Dr M. Benkirane [42,64]. The p7SKdm,

p7SKpm, p59HPdm, p59HPpm, p59HPpm+dm, p59HP(U40–U41),
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p59HP(U72-C75), p59HP(U68-G70), p59HP(G64-U68), p59HP(U40),

p59HP(A43) and p59HP(G42-A43) 7SK expression plasmids were

generated by PCR-mediated mutagenesis using p7SK and p59HP as

templates.

RNA analysis
RNA isolation from HeLa and G3H cells and cell extracts has

been described [26]. RNAs co-immunoprecipitated with Tat-FL

were 39 end-labeled with [59-32P]pCp and T4 RNA ligase before

fractionation on a 6% sequencing gel. After elution from the gel,

the labeled 7SK snRNA was partially digested with RNase T1 in

25 mM Na-citrate, pH 5.0, and 7 M urea at 55uC. Partial RNA

hydrolysis was performed in deionized formamide containing

0.4 mM MgCl2 at 100uC. For Northern blot analysis, RNAs were

size-fractionated on a 6% denaturing gel and electroblotted onto a

Hybond-N nylon membrane (Amersham Biosciences). The filters

were probed with labeled oligonucleotides complementary to the

human 7SK snRNA from U92 to G111, from G272 to C291 or

from C48 to C67. To generate sequence-specific antisense RNA

probes for mapping of 7SK, 7SKpm, and 7SKdm RNAs, the

corresponding expression plasmids were linearized with PstI and

used as templates for in vitro transcription with T7 RNA

polymerase. RNase A/T1 protection analysis has been described

[26].

Complex formation and bandshift assays
To generate template DNAs for in vitro synthesis of internally

32P-labeled 59HP, Dist, 59HPdm, 59HPpm and 59HPdm+pm

probe RNAs, the corresponding fragments of the p59HP,

p59HPdm, p59HPpm and p59HPdm+pm plasmids were amplified

with appropriate oligonucleotides which also incorporated the T7

promoter. Template DNAs for synthesis of Prox, DHBS, PHBS

and 59HPsyn were obtained by annealing of appropriate synthetic

oligonucleotides followed by cloning into the pBluescribe plasmid.

Recombinant HEXIM1 was purified as described [26]. Tat(38–

72) peptide was synthesized by PolyPeptide Group [51]. RNA-

protein complexes were formed in 50 mM Tris-HCl, pH 8.0,

100 mM NaCl, 14.4 mM 2-mercaptoethanol in the presence of

20 ng/ml of E. Coli tRNA at RT. The complexes were analyzed

on 4% or 5% polyacrylamide gels (29:1 acrylamide:bis-acrylamide)

containing 2.5% glycerol in 0.56TBE.

In vitro CTD phosphorylation
Human G3H cells transiently expressing wild-type or mutant

(C22G and K41A) Tat-FL proteins were lysed in buffer A (20 mM

HEPES, pH 7.9, 150 mM NaCl, 1.5 mM MgCl2, 1 mM DTT,

0.5 mM EDTA, 0.05% Nonidet P40) supplemented with 10 U/

ml of RNasin (Promega) and protease inhibitor cocktail (Roche).

After centrifugation at 10,0006 g for 10 min, the extracts were

incubated with anti-HA-agarose beads (Sigma) for 1 hour. The

beads were washed five times in buffer A, resuspended in 100 ml of

buffer A and incubated with 2 mg of recombinant GST-CTD

containing 48 consensus CTD repeats (YSPTSPS) and 10 mCi of

[c-32P]ATP (6000 Ci/mmol) at 30uC. Phosphorylation of GST-

CTD was measured by PhosphorImager quantification after

fractionation on 8% SDS/polyacrylamide gel.

Supporting Information

Figure S1 Comparison of the positively charged RNA-binding

motifs of HIV Tat and HEXIM proteins. HIV Tat (AAC29057),

human (NM_006460; NM_144608), Xenopus laevis (NP_001090038),

Salmo salar (NP_001133431), Danio rerio (NP_001091859), Ciona

intestinalis (XP_002128947), Ixodes scapularis (XP_002408010), Strongylo-

centrotus purpuratus (XP_792438) and Nematostella vectensis (XP_

001636835) HEXIM proteins were obtained from the GenBank.

The regions conserved in Tat and HEXIM proteins are boxed.

Found at: doi:10.1371/journal.ppat.1001152.s001 (0.17 MB

TIF)
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