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Prosociality is one of the most distinctive features of human beings but there are
individual differences in cooperative behavior. Employing the twin method, we examined
the heritability of cooperativeness and its outcomes on public goods games using a
strategy method. In two experiments (Study 1 and Study 2), twin participants were
asked to indicate (1) how much they would contribute to a group when they did
not know how much the other group members were contributing, and (2) how much
they would contribute if they knew the contributions of others. Overall, the heritability
estimates were relatively small for each type of decision, but heritability was greater
when participants knew that the others had made larger contributions. Using registered
decisions in Study 2, we conducted seven Monte Carlo simulations to examine genetic
and environmental influences on the expected game payoffs. For the simulated one-shot
game, the heritability estimates were small, comparable to those of game decisions.
For the simulated iterated games, we found that the genetic influences first decreased,
then increased as the numbers of iterations grew. The implication for the evolution of
individual differences in prosociality is discussed.
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Introduction

Prosociality is one of the most distinctive features of human beings.We behave cooperatively, even
altruistically, toward our conspecifics. On some occasions, we even behave altruistically toward
individuals from other species. However, human prosocial behavior is not universal. While some
people are strongly prosocial, others are not (Yamagishi et al., 2014).

Studies of prosociality have advanced largely with the employment of experimental economic
games in which participants interact with each other over real monetary reward. A number of
studies have examined individual differences in prosociality using the experimental economic
games. Among them, several have reported genetic influences (for a review see Cesarini et al.,
2009b; Navarro, 2009; Ebstein et al., 2010). These studies employed the classic twin method, which
employs the fact that identical twin [(monozygotic twin (MZ)] pairs share all their genes, while fra-
ternal twin (dizygotic twin, hereafter DZ) pairs share, on average, half their genes. As bothMZ pairs
and DZ pairs share a common family environment (i.e., shared environment, C) genetic influences
can be inferred if we observe a larger within-pair correlation for MZ pairs than for DZ pairs. Large

Abbreviations: HC, Highest conditional decision in Study 1; HC2, Highest conditional decision in Study 2; LC, Lowest con-
ditional decision in Study 1; LC2, Lowest conditional decision in Study 2; MC,Mediumconditional decision in Study 2;MHC,
Middle to high conditional decision in Study 1; MLC, Middle to low conditional decision in Study 1; UC, Unconditional
decision in Study 1; UC2, Unconditional decision in Study 2.
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within-pair correlations for both MZ and DZ pairs suggest the
existence of shared environmental influences. Dissimilarity in
twin pairs can be attributed to the effects of non-shared environ-
ment and error, which are unique to each individual (Neale and
Maes, 2002; Plomin et al., 2008).

Wallace et al. (2007) examined heritability of responses to an
ultimatum game, which are expected to reflect the participants’
sense of fairness. They reported that 42% of the variation in the
responses is genetically influenced. The remaining phenotypic
variances (58%) can be explained by non-shared environmen-
tal factors. Cesarini et al. (2009a) conducted a modified dictator
game that concerns altruism toward unknown people and found
that individual variation in responses was explained by 31% of
genetic factors and 69% of non-shared environmental influences.
Cesarini et al. (2008) have conducted trust game experiments in
the US and Sweden. The game measures the level of trust and the
level of trustworthiness of the participants. It was shown that a
large proportion of phenotypic variance was explained by non-
shared environment (trust, 82% for the US, 68% for Sweden;
trustworthiness, 71% for the US, 66% for Sweden). Genetics
explained a relatively smaller proportion of variance. For trust,
genetic influences were estimated to be 10% for the US studies
and 20% for the Swedish; for trustworthiness, genetic influences
were 17 and 32%, respectively.

The above-mentioned studies have successfully demonstrated
genetic and environmental influences on prosociality (i.e., fair-
ness, altruism, trust, and trustworthiness) with experimental eco-
nomic games. This was consistent with the first of the “three laws
of behavior genetics” (Turkheimer, 2000), which states that every
human behavioral trait is heritable. To the authors’ knowledge,
however, there have been no classic twin studies using the social
dilemma scenario.

Formation of the highly cooperative group is one of the dis-
tinctive characteristics of human beings (Sober andWilson, 1998;
Fehr and Fischbacher, 2003; Silk and House, 2011). In such
cooperative groups, benefit of individuals and benefit of the
group often contradict each other. This is called social dilem-
mas. An example is environmental problems: one can benefit
from exploiting environmental resources while damaging the
environment as a whole. In social dilemmas, it is better for indi-
viduals to free ride on the contribution by other members of the
group. However, if everyone free rides, group cooperation will be
collapsed (Diamond, 2005).

Large numbers of studies have been conducted to clarify the
condition under which group cooperation is maintained. One
necessary condition is repeated interaction. As far as the interac-
tion is one-shot, free riding is the best strategy in social dilemmas.
When there is a chance of future interaction, cooperation could
be a better strategy because it could elicit cooperation from
the partners, resulting in a reciprocal exchange of cooperation
(Trivers, 1971; Axelrod, 1984; Nowak, 2006).

In the current study, we focus on the etiology of individ-
ual differences in N-person social dilemmas where more than
three individuals are involved. Preceding studies with twins have
used economic games that modeled the dyadic social interaction.
However, humans often interact in a larger group. Knowledge
of the genetics of cooperative behavior in groups would provide

insight into the evolution of human prosociality that was driven
by genes. In addition, it would also be useful to understand indi-
vidual variation in our daily life where N-person social dilemma
prevails (tax paying, waste disposal, social loafing, etc.).

We examined how much, and in what way, individual dif-
ferences in N-person social dilemma responses are heritable
using the strategy method employed by Fischbacher et al. (2001).
They examined phenotypic individual differences in public goods
games, a type of N-person social dilemma. In a public goods
game, participants can make a contribution to the group from
a pre-endowed amount of money. The sum of the contributions
from group members is multiplied by (typically) two, and then
divided equally among the members. Fischbacher et al. (2001)
used the strategy method: They asked participants to indicate
how much they would contribute to the group if (1) they did
not know the contribution by other members (unconditional
decision), and (2) they did know the contribution by others
(conditional decision). Several response patterns were observed
for the conditional decisions. The majority of responders were
conditional cooperators who increased their contribution as the
contributions by others increased. These responses were econom-
ically “irrational” because the game was one-shot. Some were
free riders who consistently made small contributions regard-
less of others’ contributions, which was considered economi-
cally “rational” decision. Similar patterns have been reported
by Kurzban and Houser (2001, 2005) who conducted circu-
lar public goods games which examined individual differences
in a more interactive setting. Ishii and Kurzban (2008) also
reported the similar patterns with a Japanese undergraduate
sample.

Based on the first law of behavior genetics and evidence from
twin studies on other types of economic games, it was predicted
that a proportion of phenotypic individual variances in the game
would be explained by genetics; however, the exact heritability
estimate was unpredictable. We also examined patterns of change
in heritability. It has been shown that there are at least two types
of strategies adopted in N-person social dilemmas—free riding
and conditional cooperation—that differ in their responses to
cooperative others. When others are not cooperative, neither type
cooperates. When others are cooperative, conditional coopera-
tors similarly cooperate but free riders do not. In other words,
greater cooperativeness by others is linked with greater pheno-
typic variance. Large phenotypic variance does not necessarily
lead to higher heritability because heritability is the proportion
of phenotypic variance that can be explained by genetic variance.
In fact, heritability is smaller when phenotypic variance is larger if
genetic variance remains constant. The level of genetic variation
is affected by natural selection; put simply, when a trait is under
strong selection pressure genetic variation decreases, leading to
a drop in heritability. However, under certain conditions, such
as negative frequency dependent selection, environmental homo-
geneity, and selection-mutation balance, fitness-related genetic
variance can bemaintained through natural selection (Buss, 1991,
2009; Penke et al., 2007; Hiraishi et al., 2008). We examined the
patterns of change in heritability as the level of cooperativeness
by others increased. This was made possible by the employment
of the strategy method.
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Two possibilities were considered. The first was that genetic
variance would be constantly low regardless of the coopera-
tiveness of others. Cooperation is always disadvantageous in
a one-shot N-person social dilemma. Therefore, nature could
have selected out those genetic factors that make organisms
cooperative. If this were the case, heritability would be smaller
when others were cooperative compared with when they were
uncooperative. In other words, this pattern would suggest that
it is the environment, not genetics, that makes people “irra-
tionally” cooperate with cooperators in one-shot games. The
second possibility was that the increase of phenotypic variance
was, at least partly, explained by an increase in genetic vari-
ance. The tendency to cooperate with cooperative others could
have a fitness advantage in the real world where repeated inter-
action is usual. That means the genetic factors are maintained
through natural selection. Those genetic factors may lead organ-
isms to be cooperative with cooperators even in a one-shot
interaction. If this were the case, heritability would be equal or
greater when others were cooperative. To test these two pos-
sibilities, we conducted two social dilemma games with twin
participants (Study 1 and Study 2). Study 1 was an on-site
group experiment that followed the procedures of Fischbacher
et al. (2001). Participants could meet other participants even
though they did not know who exactly were their game part-
ners. Study 2 was a web-based experiment where participants’
anonymity was highly confirmed because they interacted via
Internet.

One of the weaknesses of the strategy method is that it only
measures strategies. Even conditional cooperators will behave
uncooperatively if others are not cooperative at all. Actual behav-
ior is determined by the interaction between an individual’s
strategy and the social environment, which consists of deci-
sions by others. Even in a society composed of both conditional
cooperators and free riders, members may choose not to coop-
erate if group cooperation is low; therefore, even if heritability is
found for some strategies, their payoffs from the social dilemma
game may not be as heritable. To observe the effect of strate-
gies on behavior and payoffs from the social dilemma game,
we conducted Monte Carlo simulations using strategies regis-
tered by twin participants (Study 3). In this way, we computed
twin participants’ expected payoffs from the game and exam-
ined genetic influences on them. This approach enabled us to run
“virtual” iterated games. As mentioned above, cooperativeness
toward cooperators is beneficial only when repeated interaction
is expected. By changing the number of iterations, we examined
the influences of strategies and genetic factors on expected payoffs
from the games with shorter and longer repeated interaction.

Study 1: Group Experiment

In Study 1, we conducted a public goods game, a type of N-person
social dilemma, with twin participants. We followed the proce-
dures employed by Fischbacher et al. (2001), who conducted a
public goods game using the strategy method with university stu-
dents. The experiment was conducted at a university campus in a
group setting.

Method
Participants
The Keio Twin Study (KTS) recruited twin participants, aged 14–
30 years, through population-based registries in some parts of
the Tokyo area in 1998–2002. Participation in the project was
voluntary, and of 6,000 pairs of twins to whom we sent letters
approximately 1,000 pairs agreed to participate. Zygosity of the
registrants was initially determined using a questionnaire consist-
ing of three questions about twins’ physical resemblance (e.g., As
a toddler, were you and your twin “as alike as two peas in a pod”?)
demonstrated to have 93.2% accuracy (Ooki et al., 1993). For
twin pairs from whom DNA information was available through
blood or buccal smears, zygosity was diagnosed by examining
gene polymorphisms. The KTS recruited new registrants in 2007
and 2009 and now has approximately 2,000 pairs of twin reg-
istrants (for a detailed description of the KTS, see Ando et al.,
2013).

In September 2006, the KTS registrants were asked to attend
an on-campus session held at Keio University, where we con-
ducted a computer-assisted psychological experiment, the pub-
lic goods game experiment, and finally a questionnaire survey,
which asked about personality, eating, and sexual behaviors.
Twins were asked to participate in the session as a pair; how-
ever, some co-twins failed to attend. As a result, 317 twins (225
female and 92male twins) participated in the session. Participants
were paid�5,000 excluding tax (∼US$60) for attending and par-
ticipating in the study. In addition, monetary reward were paid
according to participant outcomes on the public goods game
experiment.

Procedure
The experiment was conducted in a campus conference hall with
the capacity to hold 116 individuals. We ran 10 experimen-
tal sessions, each of which had 15–41 participants (M = 31.8,
SD = 10.1). Twin siblings participated in the same session and
co-twins were seated on opposite sides of the room. At the start of
the on-campus session, the information regarding the study was
provided to the participants and informed consent was obtained.

The game instructions were presented on a screen at the
front of the room and read aloud by an experimenter. The
same instructions were presented on a laptop computer in front
of each participant. Upon reading the instructions, participants
were required to answer four control questions on the laptop
to check their understanding of the game structure. Only those
who passed the control questions filled in a response sheet on
which they wrote their game decisions. If participants had diffi-
culty understanding the instructions, they could direct questions
to the experimental assistants who were told not to use the words
“cooperation,” “defection,” or “contribution” in their explana-
tions. Participants were asked not to talk to each other during the
experiment.

The participants were told that they would be grouped with
three other participants in the room. It was emphasized that
group membership would be kept anonymous. Each partici-
pant was given 20 points at the outset. They could contribute
as many/few points as they wanted to the group. To avoid
unnecessary implications, we used the word “invest” instead of
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“contribute” to explain the procedure. The aggregate investment
of the four members of each group was multiplied by 1.6 and dis-
tributed equally among members. The sum of the points gained
from the investments and the points retained was the outcome for
the participants. Each point was converted to�20 (about $0.20).

Participants were asked to make two kinds of decisions in
the public goods game. One was the unconditional contribution:
how many points they would invest if they did not know what
others had invested. We named these UC decisions. The other
was the conditional contribution: how many points participants
would invest if they knew the average investment by the others
was 1, 2,... 20 points. We named these C1, C2, . . . C20 deci-
sions, respectively. Participants were told that for three group
members, the UC decisions would be used to calculate the out-
come. For the remaining member, the conditional decision was
used according to the average UC decision by the other three.
After making their decisions, participants placed their response
sheet in an envelope that was retrieved by an assistant who then
gave them the booklet containing the personality questionnaire
and the eating and sexual behavior survey. It took about 30 min
to complete the public goods game. After participants had com-
pleted the questionnaire, they were informed of their outcome
from the public goods game. The sum of the attendance fee and
the game outcome was paid to participants’ bank accounts within
one month. All procedures were explained to participants before
they made their decisions. Experimental procedures for all three
studies were approved by the ethics committee at the Faculty of
Letters, Keio University.

Results
Simple Statistics
Some of the participants required extensive help from the assis-
tants to complete the control questions. Removing those 21 par-
ticipants, data from 296 individuals were analyzed (209 females
and 87 males, 213 MZ twins, 61 same sex DZ twins, and 22 oppo-
site sex DZ twins). Age ranged from 18 to 37 years (M = 25.42,
SD = 4.27).

Mean conditional decisions increased in accordance with the
investment by other group members (Table 1). We regressed
sample mean decisions on others’ investment. The regression
coefficient was positive and highly significant (b∗ = 0.986,
p < 0.001; R2 = 0.973, p < 0.001). This indicated that, on aver-
age, participants displayed a conditional cooperation strategy.We
also observed that the variances (SD) of the decisions became
larger as the contributions by others increased (i.e., C20 decision).
The regression of SD on others’ investment showed strong posi-
tive relationship (b∗ = 0.921, p < 0.001; R2 = 0.849, p < 0.001).
This showed that the degree of conditionality was not mono-
tonic, especially when others were behaving cooperatively. In fact,
47 (15.8%) participants did not change their investment through
C1–C20. These differences in the pattern contributed to the larger
variances in the greater contribution settings.

Genetic Analysis
We conducted genetic analyses for 98 MZ pairs and 29 DZ pairs
of which both co-twins had participated in the study. To qual-
itatively analyze the genetic and environmental influences, we

TABLE 1 | Mean and SD of game decisions in Study 1.

Decisions M SD

C1 2.38 4.85

C2 2.82 4.59

C3 3.25 4.54

C4 3.87 4.43

C5 4.35 4.45

C6 4.69 4.35

C7 5.09 4.37

C8 5.56 4.53

C9 5.99 4.75

C10 6.73 5.24

C11 7.11 5.59

C12 7.35 5.79

C13 7.51 6.02

C14 7.76 6.28

C15 8.13 6.68

C16 8.32 7.06

C17 8.28 7.33

C18 8.61 7.70

C19 9.01 8.11

C20 9.73 8.72

UC (Unconditional) 7.25 5.74

LC (C1–C5) 3.34 4.31

MLC (C6–C10) 5.61 4.27

MHC (C11–C15) 7.57 5.81

HC (C16–C20) 8.79 7.38

LC, lowest conditional; MLC, middle-low C; MHC, middle-high C; HC, highest C

calculated four scores from the conditional decisions and sub-
jected them to genetic analyses: lowest C (LC) scores (average of
C1 to C5 decisions), middle-low C (MLC) scores (average of C6–
C10), middle-high C (MHC) scores (average of C11–C15), and
highest C (HC) scores (average of C16–C20). Table 2 shows the
within-pair intraclass correlations for the four conditional scores
and UC scores for MZ pairs and DZ pairs. The correlation coef-
ficients were small even for MZ pairs, suggesting relatively small
genetic influences. The differences between MZ pair correlations
and DZ pair correlations were largest for the HC scores, which
suggests that genetic influences were greater for decisions made
in higher cooperativeness settings.

To further analyze genetic and environmental influences,
we conducted univariate genetic model-fitting analyses using

TABLE 2 | Within-pair intraclass correlations and 95% credible intervals
for decision scores in Study 1.

MZ 95% CI DZ 95% CI

UC 0.05 [0.15, 0.25] −0.45 [−0.69, −0.10]

LC 0.09 [−0.11, 0.28] −0.07 [−0.41, 0.30]

MLC 0.12 [−0.08, 0.31] 0.15 [−0.22, 0.48]

MHC 0.14 [−0.06, 0.33] 0.07 [−0.29, 0.42]

HC 0.21 [0.01, 0.39] 0.02 [−0.34, 0.38]

MZ, monozygotic twin; DZ, dizygotic twin; CI, credible interval; UC, unconditional;
LC, lowest conditional; MLC, middle-low C; MHC, middle-high C; HC, highest C.
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Markov chain Monte Carlo (MCMC) algorithms (van den Berg
et al., 2006). For each decision score, we constructed a Bayesian
ACE model, in which the influences of additive genetic factors
(A), familial shared environmental factors (C) and non-shared
environmental factors were assumed to explain the variances and
covariances of the twin data. Specifically, the model was:

Yij = mu + A1i + A2i + Ci + Eij

where the observed score of an individual i from a family j (Yij,
e.g., UC score) was a sum of the population mean (mu), addi-
tive genetic factors (A1i and A2i), familial shared environment
factors (Ci), and non-shared environment factors and error (Eij).
For MZ pairs, both the A1i and A2i were shared among the twin
siblings whereas for DZ pairs, A1i was shared while A2i was
unique to each twin. As the variances of A1i and A2i were set
to be equal, the genetic covariance in MZ pairs was twice as large
as in DZ pairs. In making the Bayesian inference with MCMC
algorithms, we assumed no prior information about the param-
eter estimates and therefore chose a relatively non-informative
uniform distribution for the variance components. That is, A1i
∼ U (0, 50), A2i ∼ U (0, 50), Ci ∼ U (0, 100), Eij ∼ U (0,
100), and mu ∼ N (0, 100). Therefore, the joint posterior distri-
bution is mainly determined by the likelihood. With the model,
we estimated the posterior distribution of the additive genetic
(A), shared environmental (C), and non-shared environmental
factors (E). It should be noted that E included measurement
error.

The models were implemented in WinBUGS software, which
ran MCMC sampling with the R2WinBUGS package for R soft-
ware. For each model, three Markov chains were produced, each
of which had 100,000 iterations that were thinned by 100. The
first 10,000 iterations were discarded as a “burn-in” period. We
checked if the models reached the stationary posterior distribu-
tion using the Gelman and Rubin (G-R) statistic (values closer to
1 indicate convergence). For all chains, the G-R statistics were less
than 1.1.

Table 3 shows the parameter estimates for each score. The
mean A estimation was largest for the HC score (12.6%), fol-
lowed by the MHC (9.8%) and the MLC scores (9.3%). For the
LC and UC scores, the mean A estimations were quite small (7.8
and 6.3%, respectively). Similarly, meanC estimations were larger
for HC, MHC, and MLC scores (9.6, 9.8, and 9.1% respectively)
compared with the LC andUC scores (5.0 and 4.5%, respectively).

Discussion
Our findings replicated those of Fischbacher et al. (2001) and
showed phenotypic individual differences of our twin partici-
pants that included free rider and conditional cooperator strate-
gies.

For all decision scores, the majority of phenotypic variances
(variances in scores) were explained by non-shared environmen-
tal factors and error (E). Because the experiment employed a
one-shot economic game, moderately large measurement error
might have contributed to the phenotypic variances. We should
be cautious not to overestimate the influences of non-shared
environments such as school, peers, and society.

We observed larger influences of additive genetic factors (A)
on decisions when the other members were more cooperative.
The A for more cooperative settings (MHC and HC scores)
were twice as large as that for the least cooperative setting (LC
score). This suggests that genetic factors that make organisms
conditionally cooperative are maintained through natural selec-
tion. However, in the current study, there was limited anonymity
among participants. Even though group membership was not
revealed, participants could interact with each other before and
after the experiment. This could have affected the results in ways
that we have yet to identify. Another problem was that a part
of the participants (29 out of 317, 6.6%) had difficulty in under-
standing the game structure. We addressed these problems in the
next experiment.

Study 2: Web-Based Experiment

For Study 2, we implemented a web-based strategymethod exper-
iment. Participants logged in to the experiment website and reg-
istered their decisions via the Internet, which ensured anonymity.
In addition, the website interactively showed the expected payoffs
as participants input their decisions, helping them to understand
the game structure.

Method
Participants
We sent recruitment letters to about 3,000 KTS registrants in
November 2009. From these, 282 twins participated in the study
(190 females and 92 males). Ages ranged from 18 to 32 years
(M = 22.69, SD = 3.60). There were 199 MZ twins, 52 same sex
DZ twins, and 31 opposite sex DZ twins. Among them, 73 had
participated in Study 1.

TABLE 3 | Genetic and environmental factor estimations in Bayesian ACE models in Study 1.

Scores G-R A 95% CI C 95% CI E 95% CI

UC 1.02 0.06 [0.00, 0.18] 0.05 [0.00, 0.16] 0.89 [0.76, 0.98]

LC 1.00 0.08 [0.00, 0.22] 0.07 [0.00, 0.20] 0.85 [0.71, 0.97]

MLC 1.02 0.09 [0.00, 0.25] 0.09 [0.00, 0.25] 0.82 [0.66, 0.95]

MHC 1.02 0.10 [0.00, 0.26] 0.09 [0.00, 0.25] 0.81 [0.66, 0.95]

HC 1.01 0.13 [0.01, 0.31] 0.10 [0.00, 0.25] 0.78 [0.63, 0.93]

Mean and 95% credible intervals of parameter estimates are shown. A denotes additive genetic factor; C, shared environmental factor; E, non-shared environmental
factor and error; G-R, Gelman and Rubin statistics; LC, lowest conditional; MLC, middle-low C; MHC, middle-high C; HC, highest C.
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Procedure
We invited participants to access the experiment website
(www.futago-labo.net) with a letter explaining the web survey
system. On the website, participants first read the instructions
for the public goods game experiment and completed some trial
sessions. Participants then read the informed consent informa-
tion. Those who agreed to the informed consent logged in to
the response page with an ID and password provided with the
invitation letter. On the response page, participants registered
their unconditional decisions (UC) and conditional decisions
(C0–C20).

There were several differences between this study and Study
1. First, participants registered their responses via the Internet.
They individually read the instructions on a web browser and
registered their decisions, and the surrounding environment was
not controlled at all. This was very different from Study 1, in
which participants came to a university campus, were seated
in a quiet room facing the experimenter and assistants, and
met other participants. As even subtle cues of the existence of
another person, such as eye-like paintings, can influence behav-
ior in experimental economic games (Haley and Fessler, 2005;
Burnham et al., 2007; Oda et al., 2011; Nettle et al., 2013), the
difference between the group experiment and the web experi-
ment was enormous. Second, as participants recorded a condi-
tional decision on the response page, the expected payoffs for
the participants and other members were explicitly indicated.
Third, the game rule was changed so that the aggregate con-
tribution was doubled and distributed equally among the four
group members. In other words, the return rate of the invest-
ment was larger (0.5 times for Study 2 and 0.4 times for Study
1). Fourth, we asked the participants to register C0 decisions,
which we failed to collect in Study 1. Fifth, there was no show-
up fee for Study 2. The second and third changes were intended
to make it easier for participants to understand the game struc-
ture.

Registered responses were randomly grouped and game pay-
offs computed. The results were sent to the participants via postal
mail. By the samemail, participants were asked to send back their
bank account information, so that payoffs could be transferred to
them (1 point = �20). All the procedures were explained before
participants logged in to the response webpage.

In preparation for the experiment with twin participants,
we conducted a preliminary experiment with undergraduates
(n = 37; Hiraishi, unpublished data). The results were generally
consistent with Fischbacher et al. (2001) study; we observed the
two major strategies of conditional cooperation (n = 17) and free
riding (n = 16).

The experimental procedures were approved by the ethics
committee at the Faculty of Letters, Keio University.

Results
Simple Statistics
We found that as the contribution by others increased, both the
mean contribution decisions and the variances of the conditional
decisions increased (Table 4). Regression of mean contribution
decisions on others’ contribution showed significant positive rela-
tionship (b∗ = 0.996, p < 0.001; R2 = 0.992, p < 0.001). The

TABLE 4 | Mean contributions in Study 2.

Study 2 M SD

C0 1.00 3.37

C1 1.67 3.64

C2 2.19 3.70

C3 2.53 3.55

C4 3.01 3.75

C5 3.63 4.04

C6 4.15 4.23

C7 4.52 4.48

C8 5.06 4.79

C9 5.57 5.08

C10 6.22 5.21

C11 6.84 5.59

C12 7.26 5.84

C13 7.71 6.18

C14 7.89 6.49

C15 8.43 6.98

C16 8.80 7.37

C17 8.89 7.76

C18 9.50 8.13

C19 9.74 8.58

C20 9.98 9.14

UC2 7.03 6.21

LC2 (C0–C6) 2.60 3.33

MC2 (C7–C13) 6.17 4.98

HC2 (C14–C20) 9.03 7.48

UC, unconditional; LC, lowest conditional; MC, medium C; HC, highest C scores
in Study 2.

same applied to SD as well (b∗ = 0.982, p < 0.001; R2 = 0.963,
p < 0.001). While the majority of participants (n = 123,
43.6%) adopted a conditional cooperation strategy, 70 partici-
pants (24.8%) adopted a free rider strategy, contributing zero
points through C0–C20 decisions.

Because we had 21 conditional decision scores from each
participant (C0–C20), we computed three conditional decision
scores. They represented low contribution in Study 2 (LC2 scores;
average of C0–C6 decisions), medium contribution in Study 2
(MC2) scores (average of C7–C13), and high contribution in
Study 2 (HC2) scores (average of C14–C20). As there were no
significant differences between MLC (C6–C10) scores and MHC
scores (C11–C15) in Study 1, we decided to merge the MLC and
MHC categories to obtain three, rather than four, overall scores.

Comparison of Repeaters, Non-Repeaters, and
First-Comers
Seventy-three participants were repeaters from Study 1. We com-
pared the repeaters’ decisions in Study 1 with those of non-
repeaters (those who participated only in Study 1). Repeaters
had significantly lower LC and MLC scores (LC score, Wilcoxon
test, W = 9582.5, p < 0.05; MLC score, W = 9536.5, p < 0.05).
There were no significant differences inUC,MHC, andHC scores
for repeaters and non-repeaters. Next, we compared repeaters
(n = 73) and newcomers (n = 209) on their decisions in Study
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2. Repeaters contributed significantly less than newcomers for
all categories (UC2 scores, W = 9441.5, p < 0.01; LC2 scores,
W = 9330.5, p < 0.01; MC2 scores, W = 9537, p < 0.01; HC2
scores,W = 9271.5, p < 0.01).

Correlations Between Repeaters’ Decisions in Study
1 and Study 2
We computed correlation coefficients for repeaters’ decision
scores in Study 1 and Study 2. There were significant correla-
tions for most of the decision scores for Studies 1 and 2 (Table 5),
except that UC2 scores were significantly correlated only with UC
scores in Study 1, and Study 1 HC scores were not significantly
correlated with any Study 2 scores, though LC2, MC2, and HC2
scores approached significance (p < 0.1).

Genetic Analysis
We conducted univariate genetic analyses using data from 64MZ
pairs and 22 DZ pairs of which both co-twins had participated

TABLE 5 | Spearman correlation coefficients for Study 1 and Study 2
(n = 73).

rho Study 2

Study 1 UC2 LC2 MC2 HC2

UC 0.24∗ 0.40∗∗∗ 0.44∗∗∗ 0.40∗∗∗

LC 0.10 0.25∗ 0.21† 0.21†

MLC 0.19 0.30∗ 0.31∗∗ 0.28∗

MHC 0.11 0.19 0.25∗ 0.30∗

HC 0.13 0.23† 0.22† 0.23†

In Study 1, UC, unconditional; LC, lowest conditional; MLC, middle-low C; MHC,
middle-high C; HC, highest C. In Study 2, UC, unconditional; LC, lowest condi-
tional; MC, medium C; HC, highest C.
†p < 0.1, ∗p < 0.05, ∗∗p < 0.01, ∗∗∗p < 0.001.

in the study. Among them, 21 MZ pairs and one DZ pair were
repeaters from Study 1. The statistical procedures were the same
as in Study 1.

We found that the additive genetic influences (A) increased as
the contribution by others increased. Mean parameter estimates
for additive genetic factors were 16, 21, and 26% for LC2, MC2,
and HC2 scores, respectively (Table 6). There was a reduced rela-
tive contribution by non-shared environmental influences; 73, 64,
and 59% for LC2,MC2, and HC2 scores, respectively. For uncon-
ditional decisions (UC2 scores), the parameter estimate for the
additive genetic factor was similar to that for MC2 scores (22 and
21%, respectively).

We also conducted genetic analyses using information from
Study 1 as priors. Specifically, we took the means and variances
of A, C, E, and mu (population mean) parameters estimates
in Study 1 and used them as parameters for prior normal dis-
tribution for A, C, E, and mu in Study 2, respectively. The
information from LC scores was used for LC2 analysis. The
information from MLC and MHC scores were, separately, used
for MC2 analysis. The information from HC scores was used
for HC2 analysis. We found that the additive genetic influ-
ences were smaller with the informative priors than with non-
informative priors, reflecting the fact that we had smaller A
estimates in Study 1. Still, we found the same pattern: Genetic
influences increased as the contribution by others increased
(Table 7).

Discussion
The findings generally replicated those of Study 1. Most partic-
ipants adopted the conditional cooperating strategy. However,
some participants adopted the free rider strategy, constantly mak-
ing zero contribution decisions. Genetic analyses showed that
non-shared environmental factors explained more than half of
the phenotypic variances in all decision scores. Additive genetic

TABLE 6 | Genetic and environmental factor estimations in Bayesian ACE models in Study 2 with non-informative prioris.

Score G-R A 95% CI C 95% CI E 95% CI

UC2 1.02 0.22 [0.02 0.44] 0.10 [0.00 0.30] 0.68 [0.49 0.88]

LC2 1.03 0.16 [0.01 0.38] 0.11 [0.01 0.30] 0.73 [0.54 0.92]

MC2 1.02 0.21 [0.01 0.45] 0.15 [0.01 0.38] 0.64 [0.47 0.83]

HC2 1.01 0.26 [0.02 0.52] 0.15 [0.01 0.39] 0.59 [0.41 0.79]

Mean and 95% credible intervals of parameter estimates are shown. A denotes additive genetic factor; C, shared environmental factor; E, non-shared environmental
factor and error; G-R, Gelman and Rubin statistics; UC, unconditional; LC, lowest conditional; MC, medium C; HC, highest C.

TABLE 7 | Genetic and environmental factor estimations in Bayesian ACE models in Study 2 with prior informative from Study 1.

Score G-R A 95% CI C 95% CI E 95% CI

UC2 1.00 0.08 [0.02 0.15] 0.06 [0.01 0.11] 0.86 [0.79 0.92]

LC2 1.00 0.06 [0.00 0.15] 0.05 [0.00 0.14] 0.89 [0.78 0.98]

MC2(1) 1.00 0.13 [0.04 0.21] 0.12 [0.03 0.20] 0.75 [0.66 0.85]

MC2(2) 1.00 0.09 [0.01 0.17] 0.08 [0.01 0.16] 0.83 [0.74 0.92]

HC2 1.00 0.14 [0.07 0.20] 0.10 [0.04 0.16] 0.76 [0.69 0.84]

Mean and 95% credible intervals of parameter estimates are shown. A denotes additive genetic factor; C, shared environmental factor; E, non-shared environmental factor
and error; G-R, Gelman and Rubin statistics; UC, unconditional; LC, lowest conditional; MC, medium C; HC, highest C. MC(1) indicates estimates with MLC information
as priors. MC(2) indicates estimates with MHC information as priors.
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influences were greater for decisions made when other members
were making larger contributions.

Even though Study 2 featured significantly different proce-
dures from Study 1, the patterns and etiology of individual
differences were similar. Some of the participants in Study 2
were repeaters from Study 1 (26%, 73 out of 282). This may
partly explain the similar results of the two studies. The data
show that there were significant within-participants correla-
tions in decisions between the two studies. In addition, the
repeaters had certain characteristics. They were less cooperative
than non-repeaters in Study 1 and newcomers in Study 2. The
percentages of the free rider strategy in Study 2 (zero contri-
bution for all conditional decisions) were 21% for newcomers
and 37% for repeaters (Z = 2.64, p < 0.01). These confound-
ing factors indicate that the generality of the results may be
limited.

From a different perspective, the correlations between Study 1
and Study 2 set the expedient upper limit for the heritability esti-
mates. This is because the correlations indicated the strength of
relationships between the same individuals separated by a certain
time interval (about 3 years) while the heritability estimates indi-
cated relationships between different individuals sharing genetics
and environments. As the calculation of decision scores differed
between the two studies, the upper limit was considered expe-
diential. However, it was remarkable to see that the heritability
estimates were close to their expedient upper limit. For instance,
the mean heritability estimate for UC2 scores was 0.22 while
the correlation between UC and UC2 scores was 0.24. For HC2
scores, the mean heritability estimate was 0.26 and the correlation
between HC and HC2 scores was 0.23, exceeding its expedient
upper limit. This suggested that the apparently small heritability
estimates were partly attributable to weak measurement reliabil-
ity. The ratios for heritability to the expedient upper limit were
greater for the decision scores under the highly cooperative group
setting. The ratios were 0.64, 0.68, 0.83, and 1.13 for LC2:LC,
MC2:LMH, MC2:MHC, and HC2:HC, respectively. These again
suggested that additive genetic influences were greater for the
decisions in situations where other members were making larger
contributions.

Study 3: Monte Carlo Simulation

In our first two studies, we examined heritability of individ-
ual differences in strategies on public goods games. However,
because of the weakness of the strategy method, differences in
strategies do not necessarily lead to differences in behavior and
differences in game outcomes. Therefore, we simulated partici-
pants’ behavior and expected game outcomes using Monte Carlo
simulations.

The game payoff for each participant is a function of the
individual’s decision and the decisions of the other members.
An examination of all possible combinations of participants
would reveal each participant’s expected payoff. However, the
number of possible combinations could be quite large and prac-
tically impossible to compute. For example, drawing four indi-
viduals from the 282 participants (Study 2) makes 257,932,710

combinations. Therefore, we employed Monte Carlo simulation
to create a large number of groups consisting of four indi-
viduals randomly selected from the 282 participants. We con-
ducted seven simulations. The first simulation calculated the
payoffs in the same way as for Study 2; there was no itera-
tion of games. The remaining six simulations were “virtually”
iterated games. After obtaining expected payoffs for each individ-
ual, we estimated genetic and environmental influences on the
payoffs.

Method
Monte Carlo Simulation with One-Shot Games
We randomly sampled four individuals from the 282 Study 2
participants. As we failed to collect conditional decisions when
others were making zero contributions, we could not use data
from Study 1. We calculated the game payoffs for these four
individuals in the same way as for Study 2. That is, one indi-
vidual was randomly chosen as a conditional decision maker
while the remaining three individuals were designated uncon-
ditional decision makers. Each individual was endowed with
20 points at the outset. We took the UC2 decisions by the
unconditional decision makers. Then, according to the average
contribution by the unconditional decision makers, the con-
ditional decision maker’s contribution was decided based on
his/her conditional decisions in Study 2. The aggregate con-
tribution was doubled and distributed equally among the four
individuals. For each individual, the outcome was the sum of
earnings from the group contribution and the leftover money.
We sampled 250,000 groups. For each individual, we computed
the average payoff as an unconditional decision maker and
the average payoff as a conditional decision maker. The sum
of the two payoffs constituted the individual’s total estimated
payoffs.

Monte Carlo Simulation with Virtually Iterated Games
We randomly sampled 10,000 groups composed of four individ-
uals from the 282 participants in Study 2. For the first round,
their contributions weremade by their unconditional decisions in
Study 2. For the following rounds, their contributions were cho-
sen based on the contributions by others in the preceding round
and the conditional decisions in Study 2. For instance, if the other
members (e.g., L, M, N) contributed, on average, 10 points in the
first round, the contribution of the fourth member (P) in the sec-
ond round would be his C10 decision in Study 2. The same was
true for L, M, and N members. The number of iterations was pre-
fixed 2, 5, 10, 20, 50, and 100 iterations. For each iterated game,
we sampled 100,000 groups.

Results
Monte Carlo Simulation with One-Shot Games
Each participant was chosen as an unconditional decision maker,
on average, 2664.57 times (SD = 57.74). The mean number
of times chosen as a conditional decision maker was 891.52
(SD = 29.16). The mean payoff as an unconditional decision
maker was 25.91 points (SD = 2.60; Table 8). The payoff was
strongly negatively correlated with the UC2 (rho = −0.971,
p< 0.0001;Table 9, first column), indicating that cooperativeness
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TABLE 8 | Mean, SD, and correlation with Study 2 decisions for payoffs in Study 3.

Uncond. Cond. It. = 2 It. = 5 It. = 10 It. = 20 It. = 50 It. = 100

M 25.91 28.17 25.88 24.50 23.83 23.53 23.33 23.27

SD 2.60 2.07 1.60 0.85 0.61 0.55 0.55 0.53

Uncond. denotes payoffs for unconditional decision makers in simulations without iteration; Cond., payoffs for conditional decision makers in simulations without iteration;
It., the number of iterations (It. = 2 through 100, denoting simulations with 2, 5,10, 20, 50, and 100 iterations).

TABLE 9 | Correlations between Study 2 decisions and payoffs in Study 3.

Scores Uncond. Cond. It. = 2 It. = 5 It. = 10 It. = 20 It. = 50 It. = 100

UC2 −0.971 −0.535 −0.836 −0.711 −0.510 0.136 0.302 0.340

LC2 −0.520 −0.902 −0.828 −0.925 −0.854 −0.271 −0.034 0.047

MC2 −0.549 −0.959 −0.871 −0.865 −0.707 −0.020 0.246 0.331

HC2 −0.539 −0.851 −0.790 −0.752 −0.582 0.108 0.385 0.438

All correlation coefficients were significant (p < 0.0001) except for those indicated in italics. Uncond. denotes payoffs for unconditional decision makers in simulations
without iteration; Cond., payoffs for conditional decision makers in simulations without iteration; It., the number of iterations (It. = 2 through 100, denoting simulations with
2, 5,10, 20, 50, and 100 iterations); UC, unconditional; LC, lowest conditional; MC, medium C; HC, highest C.

led to lesser payoffs. The mean payoff as a conditional decision
maker was 28.17 points (SD = 2.07; Table 8). The payoffs were
strongly negatively correlated with conditional decision scores in
Study 2 (Table 9, second column), again suggesting that those
who were more cooperative earned less. The difference between
the payoff as an unconditional decision maker and that as a con-
ditional decision maker was significant, indicating that the pay-
offs were larger for conditional decision makers [t(281) = 16.137,
p < 0.0001].

We conducted univariate genetic analyses in the same manner
as in Study 2 for the payoffs (Table 10). The results for uncondi-
tional decision maker payoffs were almost identical to those for
unconditional decision scores in Study 2. The mean estimate of
additive genetic factors was 22% while most of the phenotypic
variances were explained by non-shared environmental factors
(68%).

The parameter estimates for conditional decision makers indi-
cated that most of the phenotypic variances were explained
by non-shared environmental factors (67%) while additive
genetic factors explained 19% and shared environmental factors
explained 14%.

Monte Carlo Simulation with Iterated Games
The mean payoffs per round were larger when the numbers of
iterations were smaller (Table 8). Correlations between decision
scores and payoffs showed particular patterns (Table 9). The cor-
relation coefficients were negative when the number of iterations
was small, but they were positive when the number of iterations
was large. We visualized the patterns using data from another
simulation with 100 iterations. For each round, we computed the
correlations between the decision scores and the payoffs up to
that round. For instance, we took the sum of the payoff from the
first 10 rounds, and divided it by 10. This gave us an estimate
of the average payoff per round of the games with 10 iterations.
In this way, we computed the correlations between the decision
scores and the outcomes per round for games with 1–100 itera-
tions (Figure 1). We found that for the games with smaller iter-
ations, the decisions and the outcomes were strongly negatively
correlated. However, the absolute correlations became smaller
as the number of iterations grew. With even larger numbers of
iterations, the correlations became positive.

Because the decision scores were correlated with each other,
we computed the partial correlation between a decision score

TABLE 10 | Univariate genetic analyses for payoffs in Monte Carlo simulations.

G-R A 95% CI C 95% CI E 95% CI

Uncond. 1.01 0.22 [0.02, 0.46] 0.10 [0.00, 0.30] 0.68 [0.48, 0.88]

Cond. 1.03 0.19 [0.01, 0.43] 0.14 [0.01, 0.37] 0.67 [0.49, 0.86]

It. = 2 1.01 0.30 [0.04, 0.55] 0.12 [0.00, 0.35] 0.58 [0.39, 0.79]

It. = 5 1.01 0.21 [0.01, 0.44] 0.12 [0.00, 0.33] 0.68 [0.49, 0.87]

It. = 10 1.01 0.15 [0.01, 0.39] 0.11 [0.01, 0.30] 0.74 [0.54, 0.92]

It. = 20 1.02 0.15 [0.01, 0.37] 0.11 [0.01, 0.29] 0.75 [0.54, 0.94]

It. = 50 1.01 0.17 [0.01, 0.42] 0.14 [0.01, 0.34] 0.69 [0.49, 0.88]

It. = 100 1.03 0.19 [0.01, 0.44] 0.13 [0.01, 0.34] 0.68 [0.48, 0.88]

Mean parameter estimates with their 95% credible intervals for ACE models are presented, where A denotes additive genetic factors, C, familiarly shared environmental
factors, and E, familiarly non-shared environmental factors. Uncond., unconditional decision makers in simulation without iteration; Cond., conditional decision makers
in simulation without iteration; It., the number of iterations (It. = 2 through 100, denoting simulations with 2, 5, 10, 20, 50, and 100 iterations); G-R, Gelman and Rubin
statistics.
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FIGURE 1 | Correlations (Spearman’s rho) between decision scores and outcomes on the simulated games with iterations.

FIGURE 2 | Partial correlations between decision scores and outcomes controlling for the other decision scores (e.g., partial correlations between
UC2 score and the outcome controlling for the LC2, MC2, and HC2 scores are indicated).

(e.g., a UC2 score) and the payoff controlling for the other deci-
sion scores (e.g., LC2, MC2, and HC2 scores). The LC2 scores
constantly correlated negatively with the outcome while the other
scores correlated positively with larger numbers of iterations
(Figure 2).

Univariate genetic analyses were conducted in the same man-
ner as in Study 1 and Study 2. For all five simulations, most
of the phenotypic variances were explained by non-shared envi-
ronmental factors. As the number of iterations increased, the
strength of additive genetic factors decreased as long as there
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were less than 20 iterations. For instance, the mean estimate of
additive genetic factors was 0.30 for games with two iterations
and 0.15 for games with 10 and 20 iterations. However, with
larger numbers of iterations (50 or 100 times), the strength of
additive genetic factors increased (Table 10). For games with
100 iterations, the mean estimate of additive genetic factors was
0.19.

Discussion
For the simulated one-shot game, there were strong phenotypic
correlations between decision scores and simulated payoffs. For
unconditional decision maker payoffs, phenotypic correlations
between the UC2 scores and the simulated payoffs were quite
large (rho = –0.97), suggesting that the genetic influences on
the payoffs were equivalent to the genetic influences on the UC2
scores. Because we sampled a large number of groups (250,000),
the payoffs for each decision maker approached their expected
payoffs, which explains the strong correlations between their
decisions and payoffs.

The payoffs for conditional decision makers, whose condi-
tional decisions were used in the simulation, were strongly cor-
related with conditional decision scores (LC2, MC2, and HC2),
especially with MC2 scores (rho = 0.95). The magnitude of
genetic influences on the payoffs was equivalent to that of MC2
scores in Study 2. This relates to the fact that the mean UC2 was 7
points. As the conditional decision makers made their decisions
based on the mean unconditional contribution by other mem-
bers, they were most likely to have taken the C7 decision during
the simulation, whereas the MC2 score was the mean of C7–C13
scores.

For the simulation with iterated games, genetic influences
first decreased then increased as the number of iterations grew.
Specifically, for games with 2, 5, 10, and 20 iterations, the genetic
influences decreased from 29.6% (iteration = 2) to 14.5% (iter-
ation = 20). For games with 50 iterations, the genetic influences
recovered to 17.4%. This trend continued for games with 100 iter-
ations, which showed 19.1% of genetic influences. This pattern
can be explained as follows.

For the games with smaller iterations, the decision scores and
payoffs were strongly negatively correlated. In other words, coop-
erativeness had negative effects on the payoffs. This was because
cooperators were likely to be exploited by non-cooperators.
Because decision scores and payoffs were correlated, it is not
surprising that the payoffs were genetically influenced. However,
as the number of iterations got larger, the negative correlations
between the decisions and the payoffs became weaker. This was
possibly because cooperators could benefit from repeated coop-
eration with other cooperators. The benefits increased as the
number of iterations grew, compensating for the exploitation by
non-cooperators. As a result, for games with 20 iterations, the
correlations between the decision scores and payoffs approached
almost zero because the negative and positive effects were bal-
anced. For these, phenotypic variance was mostly explained by
chance factors included in the E parameter. This explains the
first decrease in the genetic influences. The same process can
explain the recovery of genetic influences with larger numbers
of iterations. For these, the benefits of repeated cooperation

outperformed the loss imposed by the exploitation, leading the
payoffs to be positively correlated with the decisions.

Notably, the correlation between LC2 scores and payoffs was
constantly negative and never approached zero when controlling
for the other decision scores (Figure 2). This means that coop-
erativeness toward non-cooperators had negative effects on the
payoffs regardless of the number of iterations.

General Discussion

We conducted two public goods game experiments with the clas-
sic twin method (Study 1 and Study 2). Most of the individual
differences in the games were explained by non-shared envi-
ronmental factors and errors (E). The genetic influences were
relatively small, explaining 10–40% of the phenotypic variances.
It was noticeable, however, that the genetic influences were larger
for the decisions made in situations where other group mem-
bers were making relatively large contributions. This pattern was
consistent for the two studies, which employed different proce-
dures; Study 1 was a group experiment and Study 2 was a web
experiment.

To see how such genetic and environmental influences on
the decisions translated into genetic and environmental influ-
ences on game outcomes, we conducted Monte Carlo simulations
in Study 3. We found that genetic influences were larger for
the outcomes on games with smaller numbers of iterations. As
the number of iterations grew, the genetic influences became
smaller. However, when the number of iterations increased fur-
ther, genetic influences recovered. This is because the smaller
number of iterations meant that cooperativeness had mostly
negative influences on the outcomes because of exploitation by
non-cooperators. However, with larger numbers of iterations,
cooperativeness could promote repeated cooperation with other
cooperators, thus compensating for the loss imposed by non-
cooperators. When the negative and positive influences were
balanced, individual differences in the outcomes were mostly
explained by chance factors (E), making the influences of genetic
factors small. However, with a large enough number of iterations,
the positive influences of cooperativeness exceeded the negative
ones. Thus, individual differences in the outcomes were, again,
influenced by the decisions, which were influenced by genetic
factors.

The data showed moderate genetic influences on strategies
in public goods games. Individual differences in public goods
games were shown to be, at least partly, genetically influenced. As
natural selection usually produces genetically homogeneous pop-
ulations in regard to fitness-related traits, the existence of genetic
variance poses an enigma (Buss, 1991; Penke et al., 2007; Hiraishi
et al., 2008). This is especially so for behavior in social dilemmas
because cooperation has played a large role in human evolution
(Silk and House, 2011). How have such genetic variances been
maintained through natural selection? Our results suggest some
possible explanations.

First, the influence of genetic factors was smallest for deci-
sions made in situations where others were not cooperative. This
can be explained by selection pressure being strongest in such
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settings. Our Monte Carlo simulation data in Study 3 showed
that being cooperative in such situations has negative influences
on the outcomes regardless of the number of game iterations.
Genetic factors thatmade organisms cooperative under less coop-
erative social settings are more likely to have been selected out
through natural selection.

Second, the larger genetic influences in cooperative situations
can be explained in the following way. As suggested by the Monte
Carlo simulations, being cooperative in cooperative situations
can be beneficial as long as the number of game iterations is suffi-
cient. However, free riding is a better strategy when the number of
iterations is small. Therefore, the number of iterations determines
whether cooperation is a better strategy or not. If the real world
provides both short- and long-term relationships, free riding may
be a better strategy in the former while cooperation may be more
successful in the latter. That is, environmental heterogeneity may
have maintained strategy variances that are partly genetic (Penke
et al., 2007). Another possibility is that in real world settings, the
length of social interaction is at the point where the costs and ben-
efits of adopting a free riding or cooperative strategy are balanced.
If this were the case, genetic variances would have been main-
tained through negative frequency dependent selection (Penke
et al., 2007).

Finally, we should be cautious in assuming exact heritability
estimates from the current study. We conducted only two exper-
iments with a limited number of twin participants and some of
the participants took part in both studies. We should wait for
future studies conducted with other samples, ideally from differ-
ent cultural backgrounds, to decide the exact strength of genetic
factors in shaping human cooperativeness. We should also be

cautious in evaluating the Study 3 results of the Monte Carlo
simulation of virtual iterated games. We used decisions made
in Study 2, in which the participants registered their strategies
expecting a one-shot game, to simulate their behavior on iter-
ated games. In addition, our “decision makers” in the simulation
took into account only the last preceding round. It is possible to
think of a simulation where the decision makers have a longer
memory; i.e., they compute the average contribution by others
in the preceding 10 rounds. Ideally, it would be better to con-
duct real iterated games with twins to obtain an exact heritability
estimation for human cooperativeness in iteratedN-person social
dilemmas. However, we believe that our data provide some hints
with which to understand the genetics and evolution of human
prosociality.
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