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As an essential element for the diagnosis and rehabilitation of psychiatric disorders,

the electroencephalogram (EEG) based emotion recognition has achieved significant

progress due to its high precision and reliability. However, one obstacle to practicality lies

in the variability between subjects and sessions. Although several studies have adopted

domain adaptation (DA) approaches to tackle this problem, most of them treat multiple

EEG data from different subjects and sessions together as a single source domain

for transfer, which either fails to satisfy the assumption of domain adaptation that the

source has a certain marginal distribution, or increases the difficulty of adaptation. We

therefore propose the multi-source marginal distribution adaptation (MS-MDA) for EEG

emotion recognition, which takes both domain-invariant and domain-specific features

into consideration. First, we assume that different EEG data share the same low-level

features, then we construct independent branches for multiple EEG data source domains

to adopt one-to-one domain adaptation and extract domain-specific features. Finally,

the inference is made by multiple branches. We evaluate our method on SEED and

SEED-IV for recognizing three and four emotions, respectively. Experimental results show

that the MS-MDA outperforms the comparison methods and state-of-the-art models in

cross-session and cross-subject transfer scenarios in our settings. Codes at https://

github.com/VoiceBeer/MS-MDA.

Keywords: brain-computer interface, EEG, emotion recognition, domain adaptation, transfer learning

1. INTRODUCTION

Emotion as physiological information, unlike widely studied logical intelligence, is central to
the quality and range of daily human communications (Dolan, 2002; Tyng et al., 2017). In the
human-computer interaction (HCI), emotion is crucial in influencing situation assessment and
belief information, from cue identification to situation classification, with decision selection for
building a friendly user interface (Jeon, 2017). For example, affective brain-computer interfaces
(aBCIs), acting as a bridge between the emotions extracted from the brain and the computer, which
has shown potential for rehabilitation and communication (Birbaumer, 2006; Frisoli et al., 2012;
Lee et al., 2019). Besides, many studies have shown a strong correlation between emotions and
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mental illness. Barrett et al. (2001) studies the relation between
emotion differentiation and emotion regulation. Joormann and
Gotlib (2010) finds that depression is strongly associated with the
use of emotion regulation strategies. Bucks and Radford (2004)
investigates the identification of non-verbal communicative
signals of emotion in people that are suffering from Alzheimer’s
disease. To quantify emotion, most researchers have focused
on using conventional methods such as classifying emotions
with facial expression or language (Ekman, 1993). In recent
years, with the advantage of reliability, easy accessibility, and
high precision, non-invasive BCIs such as electroencephalogram
(EEG) are widely used for brain signal acquisition, and analysis
of psychological disorders (Sanei and Chambers, 2013; Acharya
et al., 2015; Liu et al., 2015; Ay et al., 2019). With EEG signals,
many works also investigate the rehabilitation methods for
psychological disorders, such as (Jiang et al., 2021) of using spatial
information of EEG signals to classify depressions, and Zhang
et al. (2020) proposes a brain functional network framework
for major depressive disorder by using the EEG signals. Besides,
Hosseinifard et al. (2013) investigates the non-linear features
from EEG signals for classifying depression patients and normal
subjects. The flow of an EEG-based affective BCI (aBCI) for
emotion recognition is introduced in section 3.1.

Due to the non-stationary between individual sessions and
subjects of EEG signals (Sanei and Chambers, 2013), it is still
challenging to get a model that is shareable to different subjects
and sessions in EEG-based emotion recognition scenarios, which
elicits two scenarios: cross-subject and cross-session (i.e., data

FIGURE 1 | Two strategies of multi-source domain adaptation. (A) is a single-branch strategy while (B) is a multi-branch strategy. In (A), all source domains are

combined into one new big source and then been used to align distribution with the target domain, while in (B), multiple sources are being aligned at the same time,

and are divided into multiple branches to adopt DA with the target domain. In short, (A) is one source, one branch with one-to-one DA; (B) is multiple sources,

multiple branches with one-to-one DA. The figure is best viewed in color.

collected from the same subject at the same session can be
very biased, detailed description is given in section 3.2). Besides,
the analysis and classification of the collected signals are time-
consuming and labor-intensive, so it is important to make use
of the existing labeled data to analyze new signals in the EEG-
based BCIs. With this purpose, domain adaptation is widely
used in research works. As a sub-field of machine learning,
domain adaptation (DA) improves the learning in the unlabeled
target domain through the transfer of knowledge from the source
domains, which can significantly reduce the number of labeled
samples (Pan and Yang, 2009). In practice, we often face the
situation that contains multiple source domain data (i.e., data
from different subjects or sessions). Due to the shift between
domains, adopting DA for EEG data especially when facing
multiple sources is difficult. In recent years, the researchers tend
to merge all source domains into one single source and then use
DA to align the distribution (Source-combine DA in Figure 1)
(Zheng and Lu, 2016; Jin et al., 2017; Li et al., 2018, 2019a,b,
2020; Zheng et al., 2018; Zhao et al., 2021). This simple approach
may improve the performance because it expands the training
data for the model, but it ignores the non-stationary of each EEG
source domain itself and disrupts it (i.e., EEG data of different
people obey different marginal distributions), besides, directly
merging into one new source domain cannot determine whether
its new marginal distribution still obeys EEG-data distribution,
thus brings a larger bias.

To solve the multi-source domain adaptation problems in
EEG-based emotion recognition, we propose a Multi-Source
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Marginal Distribution Adaptation for cross-subject and
cross-session EEG emotion recognition (MS-MDA, as illustrated
in Figure 1). First, we assume all the EEG data share low-level
features, especially those taken from the same device, the same
subject and the same session. Based on this, we construct a simple
common feature extractor to extract domain-invariant features.
Then for multiple sources, since each of them has some specific
features, we pair every single source domain with the target
domain to form a branch for one-to-one DA, and align the
distribution and extract domain-specific features. After that, a
classifier is trained for each branch, and the final inference is
made by these multiple classifiers from multiple branches. The
details of MS-MDA are given in section 4.

In this study, we make two following contributions:

1. We proposed and evaluatedMS-MDA for EEG-based emotion
recognition in a new multi-source adaptation way to avoid
disrupting the marginal distributions of EEG data. Extensive
experiments demonstrate that our method outperforms the
comparison methods on SEED and SEED-IV, and additional
experiments also illustrate that our method generalizes well.

2. Though many works have achieved considerable results, there
is no systematic discussion of the normalization operation of
EEG data. Thus we design and conduct extensive experiments
to investigate the effects of three normalization types (i.e.,
electrode-wise, sample-wise, and global-wise, details are given
in section 5.4), and the order of whether first concatenating
multiple sources or normalizing each session individually.
To our knowledge, we are the first to investigate the
normalization methods for EEG data, which we believe can
be taken as a guide for other future works, and be applied to
all data in EEG-based datasets and EEG-related domains.

In the remainder of this paper, we first review related works
on domain adaptation in the field of EEG-based emotion
recognition in section 2. Section 3 introduces the materials,
including the diagram of EEG-based affective BCI with transfer
scenarios, datasets and pre-processing methods. The details of
MS-MDA are given in section 4, whereas section 5 demonstrates
the settings, results, and additional experiments. Section 7
discusses the results of the experiment and our findings, as well
as problems and solutions. Finally, section 7 concludes the work
and outlines the future extension.

2. RELATED WORK

In recent years, the research of affective computing has
become one of the trends of machine learning, neural systems,
and rehabilitation study. Among those works, emotions are
usually characterized into two types of emotion model: discrete
categories (basic emotional states, e.g., happy, sad, neutral; Zheng
and Lu, 2015) or continuous values (e.g., in 3D space of arousal,
valence, and dominance; Koelstra et al., 2011). With domain
adaptation techniques, many works have achieved significant
performance in the field of affective computing.

Zheng and Lu (2016) first applies Transfer Component
Analysis (Pan et al., 2010) and Kernel Principle Analysis based

methods on SEED dataset to personalize EEG-based affective
models and demonstrates the feasibility of adopting DA in
EEG-based aBCIs. Chai et al. proposes adaptive subspace
feature matching (Chai et al., 2017) to decrease the marginal
distribution discrepancy between two domains, which requires
no labeled samples in the target domain. To solve cross-day
binary classification, Lin et al. (2017) extends robust principal
component analysis (rPCA) (Candès et al., 2011) to their
filtering strategy which can capture EEG oscillations of relatively
consistent emotional responses. Li et al., different from the above,
considering the multi-source scenario, and proposes a Multi-
source Style Transfer Mapping (MS-STM) (Li et al., 2019b)
framework for cross-subject transfer. They first take a few labeled
training data to learn multiple STMs, which are then being
used to map the target domain distribution to the space of
the sources. Though they consider adding prior information of
source-specific features, they do not take the domain-invariant
features into consideration, thus losing the low-level information.

In recent years, with the development of deep learning
techniques and its usability, many works of EEG-based decoding
with neural networks have been proposed. Jin et al. (2017) and Li
et al. (2018) adopts deep adaptation network (DAN) (Long et al.,
2015) to EEG-based emotion recognition, which takes maximum
mean discrepancy (MMD) (Borgwardt et al., 2006) as a measure
of the distance between the source and the target domain, and
training to reduce it on multiple layers. Extending the original
method, Chai et al. proposes subspace alignment auto-encoder
(SAAE) (Chai et al., 2016) which first projects both source
and target domains into a domain-invariant subspace using an
auto-encoder, and then kernel PCA, graph regularization and
MMD are used to align the feature distribution. To adapt the
joint distribution, Li et al. (2019a) propose a domain adaptation
method for EEG-based emotion recognition by simultaneously
adapting marginal distributions and conditional distributions,
they also present a fast online instance transfer (FOIT) for
improved EEG emotion recognition (Li et al., 2020). Zheng
et al. extends SEED dataset to SEED-IV dataset and presents
EmotionMeter (Zheng et al., 2018), a multi-modal emotion
recognition framework that combines two modalities of eye
movements and EEG waves. With the concept of attention-based
convolutional neural network (CNN) (Yin et al., 2016), Fahimi
et al. (2019) develops an end-to-end deep CNN for cross-subject
transfer and fine-tunes it by using some calibration data from the
target domain. To tackle the requirement of amassing extensive
EEG data, Zhao et al. (2021) proposes a plug-and-play domain
adaptation method for shortening the calibration time within
a minute while maintaining the accuracy. Wang et al. (2021)
present a domain adaptation SPD matrix network (daSPDnet) to
help cut the demand of calibration data for BCIs.

These aBCI works have gained significant improvement in
their respective directions, transfer scenarios, and on multiple
benchmark databases. However, many of them focus on combing
multiple sources into one and adopt one-to-one DA, which
ignores the differences of the marginal distribution of different
EEG domains (source-combine DA in Figure 1). This operation
may compromise the effectiveness of downstream tasks, and
although it somehow extends the training data, the trained
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FIGURE 2 | The flowchart of EEG-based BCI for emotion recognition. The emotions are first evoked and encoded into EEG data, then the EEG data are

pre-processed and extracted to various forms of features for subsequent pattern recognition.

models do not generalize well enough. Therefore, inspired by
Zhu et al. (2019), a novel multi-source transfer framework,
we propose MS-MDA (multi-source marginal distribution
alignment for EEG-based emotion recognition), which transfers
multiple source domains to the target domain separately, thus
avoiding the destruction of the marginal distribution of the
multiple EEG source domains; and also takes the domain-
invariant features into consideration. Due to the sensitivity of
the EEG data and intuition, we do not adopt complex networks,
but just a combination of few multi-layer perceptrons (MLPs)
(Gardner and Dorling, 1998), and thus makes our method
computationally efficient, and easy to expand.

3. MATERIALS

3.1. Diagram
The flow of one EEG-based aBCI for emotion recognition is
shown in Figure 2, which involves five steps:

• Stimulating emotions. The subjects are first stimulated with
stimuli that correspond to a target emotion. The most
commonly used stimuli are movie clips with sound, which can
better stimulate the desired emotion because they mix sound
with images and actions. After each clip, self-assessment is also
applied for the subject to ensure the consistency of the evoked
emotion and the target emotion.
• EEG signal acquisition and recording. The EEG data are

collected using the dry electrodes on the BCI, and then be
labeled with the target emotion.
• Signal pre-processing. Since the EEG data is a mixture of

various kinds of information containing much noise, it is
required to pre-process the EEG signal to get cleaner data
for subsequent recognition. This step often includes down-
sampling, band-pass filtering, temporal filtering, and spatial
filtering to improve the signal-to-noise ratio (SNR).

• Feature extraction. In this step, features of the pre-processed
signals are extracted in various ways. Most of the current
research works are to extract features in the time or
frequency domain.
• Pattern recognition. The use of machine learning

techniques to classify or regress data according to specific
application scenarios.

3.2. Scenarios
Considering the sensitivity of the EEG, domain adaptation in
emotion recognition can be divided into several cases: (1) Cross-
subject transfer. In one session, new EEG data from a new
subject is taken as the target domain, and the rest of existing EEG
data from other subjects are taken as the source domains for DA.
(2) Cross-session transfer. For one subject, data collected in the
previous sessions can be used as the source domain for DA, and
data collected in the new session are taken as the target domain.

In our work, since the datasets we evaluate on contains 3
session and 15 subjects (refer to section 3.3 for details), we take
the first 2 session data from one subject as the source domains
for cross-session transfer, and take the first 14 subjects data from
one session as the source domains for cross-subject transfer. The
results of cross-session scenarios are averaged over 15 subjects,
and the results of cross-subject are averaged over 3 sessions.
Standard deviations are also calculated.

3.3. Datasets
The database we evaluate on are: SEED (Duan et al., 2013;
Zheng and Lu, 2015) and SEED-IV (Zheng et al., 2018), both are
established by the BCMI laboratory led by Prof. Bao-Liang Lu
from Shanghai Jiao Tong University.

The SEED database contains emotion-related EEG signals that
are evoked by 15 film clips (with positive, neutral, and negative
emotions) from 15 subjects (7 males and 8 females, with average
age of 23.27) with 3 sessions each. The signals are recorded by a
62-channel ESI neuroscan system.
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The SEED-IV is an evolution of SEED, which contains 3
sessions, each has 15 subjects and 24 film clips. Comparing to
the SEED with EEG signals only, this database also includes eye
movement features recorded by SMI eye-tracking glasses.

3.4. Pre-processing
After collecting EEG raw data, pre-processing on signals and
feature extractions will be adopted. For both SEED and SEED-IV,
to increase the SNR, the raw EEG signals are first down-sampled
to a 200 Hz sampling rate, then been processed with a band-
pass filter between 1 Hz to 75 Hz. After that, features are then
being extracted.

DE = −

∫

X
f (x) log[f (x)]dx (1)

Recent works extract features from EEG data on the time domain,
frequency domain, and time-frequency domain. Among them,
Differential Entropy (DE) as in (1), has the ability to distinguish
patterns from different bands (Soleymani et al., 2015), thus we
choose to take DE features as the input data of our model.
For SEED and SEED-IV, extracted DE features at five frequency
bands of delta (1–4 Hz), theta (4–8 Hz), alpha (8–14 Hz), and
gamma (31–50 Hz) are provided.

One data from one subject in one session for both databases
is in the form of channel (62) × trial (15 for SEED, 24
for SEED-IV) × band (5), we then merge the channel with
the band, and the form becomes trial × 310 (62 × 5). For
SEED, 15 trials contain 3394 samples in total for each session.
For SEED-IV, 24 trials contain 851/832/822 samples for three
sessions, respectively. In the end, all data are formed into
3394 × 310 (SEED), or 851/832/822 × 310 (SEED-IV) with
corresponding generated label vectors in the form of 3,394× 1, or
851/832/822× 1.

4. METHOD

For simplicity of demonstration, we list the symbols and their
definition in Table 1 that will be used in the following sections.

Given a set of pre-existing EEG data and a newly collected
EEG data, our goal is to learn a model φ that is trained on
these multiple independent source domain data using DA, and
thus has a better prediction on the newly collected data than
simply combining the existed data into one source domain. The
architecture of the proposed method is illustrated in Figure 3.

As shown in the Figure 3, the input to the MS-MDA
are N independent source domain data {(XS

i ,Y
S
i )}

N
i=1 and a

target domain data {XT}, and then these data are fed into a
common feature extractor module to get the domain-invariance
features {QS

i }
N
i=1 and {Q

T}. Then for each domain-specific feature
extractor, extracted common features {QS

i }
N
i=1 will be fed into one

branch with {QT} and get their domain-specific features: {RS
i }

N
i=1

and {RT
i }

N
i=1, and on top of that, the MMD value is calculated,

which is a measure of the distance of the current source and the
target domain. Next, the target domain features {RT

i }
N
i=1 and all

the source domain features {RS
i }

N
i=1 extracted from the last step

will get to the domain-specific classifiers to get the corresponding

TABLE 1 | Notation table.

Symbol Definition

X Instance set (matrix)

Y Label set (matrix)

S Source domain

T Target domain

N number of source domains

Q Common feature

R Domain-specific feature

Ŷ Predicted label (matrix)

φ,8 Mapping function

H Reproducing kernel Hilbert space

CFE Common feature extractor

DSFE Domain-specific feature extractor

DSC Domain-specific classifier

x Feature vector

y Label vector

q Feature vector after CFE

r Feature vector after DSFE

ŷ Predicted label vector

classification predictions: {Ŷ
T
i }

N
i=1 and {Ŷ

S
i }

N
i=1, then the results

of the source domain are taken to calculate the classification loss.
Since the target domain will be fed into all the source domain
classifiers, multiple target domain predictions are generated.
These predictions are taken to calculate the discrepancy loss. In
the end, the average of these target-domain predictions is taken as
the output of themodel. Details of thesemodules are given below.

4.1. Common Feature Extractor
Common feature extractor in the MS-MDA is used to map
the source and target domain data from the original feature
spaces to a common sharing latent space, and then common
representations of all domains are extracted. This module can
help to extract some low-level domain-invariant features.

4.2. Domain-Specific Feature Extractor
Domain-specific feature extractor follows the Common Feature
Extractor (CFE). After obtaining the features of all domains, we
set up N single fully connected layers to correspond to N source
domains. For each pair of source and target domain, we map
the data to a unique latent space via the corresponding Domain-
specific Feature Extractor (DSFE), respectively, and then obtain
the domain-specific features in each branch. To apply DA and
bring the two domains close in the latent space, we choose the
MMD to estimate the distance between these two domains.MMD
is widely used in the DA and can be formulated in (2). In the
process of training, MMD loss is decreased to narrow the source
domain and the target domain in the feature space, which helps
make better predictions for the target domain. This module aims
to learn multiple domain-specific features.
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FIGURE 3 | The architecture of our proposed method. Our network consists of a common feature extractor, domain-specific feature extractor, and domain-specific

classifier. For each source domain, a branch of DSFE and DSC is conducted for pair-wise domain adaptation. The model receives multiple source domains and

leverages their knowledge to transfer to the target domain. Three loss in red squares stands for MMD loss, discrepancy loss, and classification loss which are

described in section 4.

MMD(XS ,XT) =

∥

∥

∥

∥

∥

∥

1

NS

NS
∑

i=1

8
(

xSi
)

−
1

NT

NT
∑

j=1

8

(

xTj

)

∥

∥

∥

∥

∥

∥

2

H

(2)

4.3. Domain-Specific Classifier
Domain-specific classifier uses the features extracted from the
DSFE to predict the result. In Domain-specific Classifier (DSC),
there are N single softmax classifiers that correspond to each
source domain. For each classifier training, we choose cross-
entropy to estimate the classification loss, as shown in (3).
Besides, since there are N classifiers in this module, and these N
classifiers are trained on N source domains, if their predictions
are simply averaged as the final result, the variance will be high,
especially when the target domain samples are at the decision
boundary, which will have a significant negative impact on the
results. To reduce this variance, a metric called discrepancy loss is
introduced to make the predictions of the N classifiers converge,
which is shown in (4). The average of the predictions of the N
classifiers is taken as the final result.

Lcls =

N
∑

i=1

Ex∼XS J
(

ŶS
i ,Y

S
i

)

(3)

Ldisc =

N
∑

i6=j

Ex∼Xt

∣

∣

∣
Ŷ
T
i − Ŷ

T
j

∣

∣

∣
(4)

In summary, MS-MDA accepts N source domain EEG data
and one target domain EEG data, and then includes a common
feature extractor to get N source domain features and one target
domain feature. Next, N domain-specific feature extractors are
used to pairwise compute the MMD loss of one individual
source with the target domain and extract their domain-specific
features. Finally, a domain-specific classifier is used to do the

classification task, which also calculates the classification loss of
the N classifiers using the features, with the discrepancy loss of
the N classifiers for the features of the target domain data after
the previous N feature extractors.

L = Lcls + αLMMD + βLdisc (5)

The training is based on the (5) and following the algorithm as
shown in Algorithm 1. For the three losses, minimizing MMD
loss can get domain-invariant features for each pair of the source
and target domains; minimizing classification loss will bring
more accurate classifiers for predicting the source domain data;
minimizing discrepancy loss will get more convergent multiple
classifiers. The setting of α is illustrated in section 5.1 and we also
investigate different settings of β in section 5.5.1.

Algorithm 1 Overview of MS-MDA.

Input:

Iteration T, source domain data {(XS
i ,Y

S
i )}

N
i=1 and target

domain data {XT}

1: for t= 1,..., T do

2: Take m samples {xSij , y
Si
j }

m
j=1from source domains and

{xTj }
m
j=1 from target domain.

3: {qSij }
m
j=1, {q

T} ← CFE({xSij , y
Si
j }

m
j=1, {x

T
j }

m
j=1)

4: {rSij }
m
j=1, {r

T
j }

m
j=1 ← DSFE({qSij }

m
j=1, {q

T})

5: LMMD ← (2)← DSFE
6: {ŷSij }

m
j=1, {ŷ

T
j }

m
j=1,← DSC({rSij }

m
j=1, {r

T
j }

m
j=1)

7: Lcls,Ldisc ← (3)(4)← DSC
8: Update model by minimizing the total loss
9: end for

10: return {ŶT};
Output:

Prediction of target domain data, {ŶT};
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5. EXPERIMENTS

In this section, we describe experiments settings and results in
classifying of emotions on two datasets SEED and SEED-IV, with
the normalization study with three types and two orders to the
EEG data for domain adaptation. Besides, we also conduct some
exploratory experiments in addition to the evaluation of our
proposed methods and comparison methods.

5.1. Implementation Details
As mentioned in the section 4, there are many details in the three
modules of MS-MDA. First, for the Common Feature Extractor
(CFE), since we do not take raw data (i. e. EEG signals) but
the extracted DE features as vectors, complex deep models such
as deep convolutional neural networks are not suitable for this
module, thus we choose 3-layerMLP for simplicity which reduces
feature dimensions from 310-dimension (62 × 5, channel ×
band) to 64-D. In CFE, every linear layer is followed by a
LeakyReLU (Xu et al., 2015) layer. We also evaluate the effort of
the ReLU (Nair and Hinton, 2010) activation function, but due to
the sensitivity of the EEG data, much information would be lost
if using ReLU since the value less than zero would be dropped, so
we choose LeakyReLU as a compromise. Next, for both domain-
specific feature extractor (DSFE) and domain-specific classifier
(DSC), there is a single linear which reduces 64-D to 32-D and
32-D to the corresponding number of categories (3 for SEED,
4 for SEED-IV), respectively. In DSFE, same as the settings in
CFE, a LeakyReLU layer is followed after the linear layer, while
in DSC, there is only one linear layer without any activation
function. The network is trained using an Adam (Kingma and
Ba, 2014) optimizer with an initial learning rate of 0.01, and train
for 200 epoch. The batch size we choose is 256, which means we
take 256 samples from each domain in every iteration (we also
evaluate different settings of batch size and epoch in section 5.5).
The whole model is trained under the (5), for domain adaptation
loss, we choose MMD as the metric of the distance between two
domains in the feature space (CORAL loss has a similar effect).
As for the discrepancy loss, L1 regularization is being used, we
also evaluate this loss in section 5.5. Besides, we dynamically
adjust the α coefficients to achieve the effect of focusing on the
classification results first, and then start aligning MMD and the
convergence between the classifiers (α = 2

1+e−10∗i/epoch
−1). As for

the training data, we take the DE features and reform one sample
to a 310-D vector as illustrated in the section 3.4. Before feeding
into the model, we normalize all the data in electrode-wise, refer
to section 5.4 for details.

5.2. Results
Experiment results of comparison methods and our proposed
method on SEED and SEED-IV are listed in Table 2, all the
hyper-parameters are the same, except for those results taken
directly from the original papers. It should be noticed that
since many previous works do not make their codes public
available, we then customize the comparison methods (in the
deep learning domain adaptation field) that are described in their
papers with our settings, and also including some typical deep
learning domain adaptation models for better comparison (DDC

TABLE 2 | Comparison results on SEED and SEED-IV of accuracy.

Dataset Method Cross-session Cross-subject

SEED

DDC† 81.53 ± 6.83 68.99 ± 3.23

DAN† 79.93 ± 7.06 65.84 ± 2.25

DAN (Li et al., 2018) - 83.81 ± 8.56

DCORAL† 76.86 ± 7.61 66.29 ± 4.53

DANN (Li et al., 2018) - 79.19 ± 13.14

PPDA (Zhao et al., 2021) - 86.70 ± 7.10

MS-MDA (Ours) 88.56 ± 7.80 89.63 ± 6.79

SEED-IV

DDC† 57.63 ± 11.28 37.41 ± 6.36

DAN† 55.14 ± 12.79 32.44 ± 9.02

DCORAL† 44.63 ± 11.38 37.43 ± 3.08

MS-MDA (Ours) 61.43 ± 15.71 59.34 ± 5.48

†stands for self-reproduced methods. The best results are shown in bold.

TABLE 3 | Ablation study of MS-MDA on SEED and SEED-IV of accuracy.

Dataset Method Cross-session Cross-subject

SEED

Ours full 88.56 ± 7.80 89.63 ± 6.79

w/o MMD loss 82.20 ± 14.33 67.65 ± 17.65

w/o disc. loss 86.27 ± 9.14 87.27 ± 5.70

w/o MMD + disc. loss 83.19 ± 9.69 80.48 ± 5.76

SEED-IV

Ours full 61.43 ± 15.71 59.34 ± 5.48

w/o MMD loss 56.51 ± 18.48 49.71 ± 5.82

w/o disc. loss 61.63 ± 17.62 55.37 ± 14.38

w/o MMD + disc. loss 62.66 ± 16.07 55.81 ± 4.17

The best results are shown in bold.

Tzeng et al., 2014, DCORAL Sun and Saenko, 2016). The results
indicate that our method largely outperforms the comparison
methods in most transfer scenarios. For SEED dataset, our
method has a minimum of 7 and 3% improvement in cross-
session and cross-subject scenarios, respectively. While in SEED-
IV dataset, our method has a minimum of 7 and 18% for
two transfer scenarios. The results also show that our method
outperforms comparison methods significantly in cross-subject,
the reason for that may be that in the cross-subject scenario, the
number of sources is 14, much bigger than the number of 2 in
cross-session, and thus maximizes the effect of taking multiple
sources as multiple individuals in domain adaptation rather than
concatenating them.

5.3. Ablation Study
To understand the effect of each module in the MS-MDA, we
remove them one at a time and evaluate the performance of the
ablated model, the results are shown in Table 3. The first row
of SEED and SEED-IV shows the performance of the full model
(the same as in Table 2). The second row ablates the MMD loss
in the training process, which makes the model focuses only on
the classification loss and discrepancy loss. The significant drop
compared to the full model indicates the important effect of
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FIGURE 4 | The performance measures change along with the number of source numbers.

domain adaptation. Notice that even the results without MMD
loss are better than many comparison methods, showing the
importance of taking multiple sources as multiple individuals
during training. The third row of taking out the discrepancy loss
shows that this loss will affect the performance but the impact is
minimal, the reason is that we want this discrepancy loss to be
the icing on the cake rather than having a dominant effect on the
model. The fourth row only considers the classification loss, thus
reduces losses (2) and (4).

Besides, we also conduct experiments to demonstrate how
the performance measures change along with the number of
source numbers. Since the amount of experiments is massive
if following a full cross-validation rule, we simply take the first
subject as the source domain to test one branch experiment, the
first two subjects on two-branch, the first three subjects on three-
branch, etc. The results are plotted in Figure 4. From the figure,
it is obvious that with the improvement of source number, our
algorithm has a large improvement in the accuracy.

5.4. Normalization
During the experiments, we also find that different normalization
to data can significantly impact the outcomes, and also the order
of whether first concatenating multiple sources or first normalize
each session individually. Thus we design diagrams and conduct
extensive experiments to investigate the effects of different
normalization strategies on the input data, i. e., extracted feature
vectors from two datasets. Since we have reformed the origin 4-D
matrices (session × channel × trial × band) into 3-D matrices
[session × trial × (channel*band)], for each session, there is a 2-
Dmatrix of trial× 310. Following the commonmachine learning
normalization approaches and the prior knowledge and intuition
of EEG data (i. e., the data acquired by the same electrode are
more consistent with the same distribution), the normalization
methods to these 2-D matrices can be categorized into three, as

shown in Figure 5. Besides, since we also take the multi-source
situation into consideration, the order of normalization may also
influence the performance.

We evaluate three normalization methods and two
normalization orders on SEED and SEED-IV with our proposed
method MS-MDA and representative domain adaptation model
DAN (Long et al., 2015). The results are listed in Table 4. In all
three sets, the normalization of electrode-wise outperforms the
other three normalization types significantly. Comparing DAN1

with DAN2, the results indicate that the first normalization
order of normalizing the data first and then concatenating
them is better. In the third set of MS-MDA, we find that all
the results of four normalization types are better than those in
the first and second sets, and the improvement is significant.
Row w/o normalization in MS-MDA, for example, has a top
of 47% improvement, which also indicates the generalization of
our proposed method in different normalization types, and the
positive effects of taking multiple sources as individual branches
for DA.

5.5. Additions
5.5.1. Coefficient Study
After multiple sets of experiments, we find that easy to control
the MMD loss and it plays an influential role in the training as
shown in Table 3. However, for the disc. loss, it remains many
problems. Adding this loss to the model too early will affect
the overall effect, and too late will lose the impact of learning
convergence. Too large a weight would cause the training to focus
on convergence, thus the few correct ones might follow the many
incorrect ones; too small may not have enough influence on the
model. Also, for better use and simplicity mentioned earlier, we
do not makemany tests on the β , but simply compared the effects
on only a few sets of β , and the results are shown in Table 5.
From which we can see that compared to row one (w/o disc.
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FIGURE 5 | Evaluation of normalization methods and orders. (A) The dark blue box stands for the sample-wise normalization, while the light blue box stands for the

electrode-wise normalization. The big gray box stands for the global-wise normalization. (B) There are two normalization orders (involving two operations for single

source and all sources): concatenate all sources first, and normalize global-wise, or normalize every single source first, and concatenate them all. Small blue matrices

are data from different subjects, (1) is an operation for one single source, and (2) is an operation for all sources. In order A, (1) in the figure stands for the normalization,

and (2) stands for the concatenate (i.e., normalize every single source first, and then concatenate them all). In order B: (1) stands for concatenating while (2) is for

normalization (i.e., concatenate every single source into one big source domain first, and then normalize this domain).

TABLE 4 | Normalization study of MS-MDA and DAN of accuracy.

Model Normalization type
SEED SEED-IV

Cross-session Cross-subject Cross-session Cross-subject

DAN1

W/o normalization 33.96 ± 0.23 33.91 ± 0.09 27.23 ± 4.78 27.15 ± 1.31

Electrode-wise 79.93 ± 7.06 65.84 ± 2.25 55.14 ± 12.79 32.44 ± 9.02

Sample-wise 52.51 ± 11.92 51.77 ± 12.61 27.34 ± 2.45 32.03 ± 4.24

Global-wise 54.02 ± 9.29 49.12 ± 12.06 31.72 ± 6.46 29.31 ± 2.40

DAN2

W/o normalization 33.96 ± 0.23 33.91 ± 0.09 27.23 ± 4.78 27.15 ± 1.31

Electrode-wise 79.78 ± 6.97 62.57 ± 5.31 52.18 ± 10.53 34.26 ± 7.98

Sample-wise 52.51 ± 11.92 51.77 ± 12.61 27.34 ± 2.45 32.03 ± 4.24

Global-wise 53.07 ± 10.50 50.22 ± 3.66 31.01 ± 7.56 31.77 ± 2.08

MS-MDA

W/o normalization 80.62 ± 12.22 60.92 ± 3.58 30.11 ± 6.47 29.64 ± 7.26

Electrode-wise 88.56 ± 7.80 89.63 ± 6.79 62.66 ± 16.07 59.34 ± 5.48

Sample-wise 81.84 ± 13.72 74.09 ± 5.79 34.71 ± 10.94 30.25 ± 5.20

Global-wise 81.80 ± 12.75 78.89 ± 10.38 33.87 ± 10.99 31.88 ± 7.73

DAN1 stands for the order A while DAN2 stands for the order B. The best results are shown in bold.

loss), introducing discrepancy loss increases the performance in
most cases, especially when training for the whole process in
cross-subject for SEED-IV. We then choose the weight of 0.01
and training discrepancy loss for the whole process according to
the results.

5.5.2. Hyper-Parameters and Visualization
To better investigating our proposed method, we evaluate
it with different hyper-parameters, besides, we also take the
representative method DAN as the comparison. The results are
shown in Figures 6, 7. From them we can see that, with the
increase of batch size, both models show a drop in performance,

especially when the batch size is 512, which has a significant
decrease compared to 256 on SEED-IV. Besides, with the training
epoch increases, neither model has a substantial improvement,
especiallyMS-MDA, but ourmethod achieves moderate accuracy
and converges faster. Comparing cross-subject experiments on
two datasets, it can be significantly seen that MS-MDA has a clear
advantage over DAN, which indirectly shows that our approach
has a more significant performance improvement for multiple
source domain adaptation in EEG-based emotion recognition.

We also visualize the four loss items (total loss, classification
loss, MMD loss, and discrepancy loss) in Figure 8. From
the figure, we can see that the total loss, the classification
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TABLE 5 | Performance of MS-MDA on SEED and SEED-IV of accuracy with different settings of β.

Training percentage Weight
SEED SEED-IV

Cross-session Cross-subject Cross-session Cross-subject

W/o disc. loss 86.27 ± 9.14 87.27 ± 5.70 61.63 ± 17.62 55.37 ± 14.38

0.2 1 86.94 ± 8.68 86.93 ± 8.24 64.07 ± 14.36 55.21 ± 6.30

0.2 0.1 86.99 ± 9.23 87.37 ± 7.64 64.75 ± 13.36 53.15 ± 11.88

0.2 0.01 86.87 ± 9.30 87.09 ± 8.02 64.04 ± 13.72 50.54 ± 15.59

0.2 0.001 86.91 ± 9.35 86.93 ± 8.24 64.14 ± 13.88 53.25 ± 9.55

1 1 85.58 ± 8.19 63.42 ± 2.15 61.88 ± 16.71 57.34 ± 9.07

1 0.1 85.80 ± 10.05 81.13 ± 11.19 62.42 ± 15.99 56.34 ± 10.18

1 0.01 88.56 ± 7.80 89.63 ± 6.79 62.66 ± 16.07 59.34 ± 5.48

1 0.001 86.36 ± 8.68 84.84 ± 3.49 64.41 ± 17.58 48.01 ± 8.66

Training percentage stands for when to add this loss into the training, 1 means whole training process while 0.2 stands for the last 20% of the training process. Weight of β represents

the ratio compared to α. The best results are shown in bold.

FIGURE 6 | Evaluation of MS-MDA and DAN. The four color bars from left to right correspond to the four transfer scenarios: cross-session for SEED, cross-subject

for SEED, cross-session for SEED-IV, cross-subject for SEED-IV. Batch size: {16, 32, 64, 128, 256, 512}, epoch: {100, 200, 300, 400, 500, 600, 700}. (A) Change of

accuracy of MS-MDA under batch size. (B) Change of accuracy of DAN under batch size. (C) Change of accuracy of MS-MDA under epoch. (D) Change of accuracy

of DAN under epoch.

loss, and the discrepancy loss decrease with the training step
increases. However, the figure of MMD loss has a relatively
significant rise at the 2k step. We assume that the alpha gets

to value 1 at the 2k step, which makes the MMD loss the
same weight as the classification loss, thus slightly impacting
the model.
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FIGURE 7 | Evaluation of MS-MDA and DAN with different settings of batch size and epochs. The color lines from top to bottom stand for eight transfer scenarios:

cross-session for SEED of MS-MDA, cross-subject for SEED of MS-MDA, cross-session for SEED-IV of MS-MDA, cross-subject for SEED-IV of MS-MDA;

cross-session for SEED of DAN, cross-subject for SEED of DAN, cross-session for SEED-IV of DAN, cross-subject for SEED-IV of DAN. (A) Change of accuracy

under different batch size. (B) Change of accuracy under different epoch.

FIGURE 8 | Visualization for four loss items. The upper left is the total loss, while the classification loss is in the upper middle. The lower left is for the MMD loss, and

the discrepancy loss is in the lower middle. The figure in the right is the visualization of the α in (5).

For a better understanding of the effect of our proposed
method, we randomly pick 100 EEG samples from each subject
(domain) in the scenario of cross-subject to visualize with t-
SNE (Van der Maaten and Hinton, 2008), as displayed in
Figure 9. We only plot the cross-subject since this transfer
scenario has more sources that will maximize visualization. In the
Figure 9, each color stands for a source domain, and the target
domain are in black. To better plotting, we transparent the target
sample to avoid overlap. It should be noticed that in the lower

left figure, we pick 1400 samples since we concatenate all sources
into one.

From the Figure 9, it is apparently that the distribution of
all EEG data from different subjects (with different colors) is
close. Most samples are concentrated in one area, with a few
outliers in individual subjects. These distribution confirms our
hypothesis that all EEG data share some low-level features, i.e.,
their distribution on the feature space is slightly overlapping.
This is especially noticeable after normalization (upper right in
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FIGURE 9 | Visualization with t-SNE for raw data (upper left), normalization data (upper right), data using DAN (lower left), and data using MS-MDA (lower right). The

input data of the last fully-connected (DSC) layer are used for the computation of the t-SNE. Target data are in the shape of X with black, all other 14 source data are in

14 colors. Notice that since we have concatenated all the source domains, the lower left figure has only one color for the source domain. All four figures are best

viewed in color.

the Figure 9), where the distribution of these EEG data is neater
and around the center. In DAN, since all the source data are
concatenated as one source domain, there is only one color for
the source domain. Lower left figure of Figure 9 illustrates that
domain adaptation process brings the source and target domains
closer together, and resulting in a high degree of overlap between
green and black samples, with a concentration of black samples
in the more central region of the source domain. As for MS-
MDA, since we adopt the distribution of each source domain
separately with the target domain, it is intuitive that the black
dots should have some closeness and overlap with each color of
the source domain, and the lower right figure of Figure 9 does
confirm our suspicion.

6. DISCUSSION

As can be seen from Table 2, comparing the results of selective
methods and prior works, our proposed method has a significant
improvement, especially for cross-subject DA in which the
number of source domains is large. The ablation experiments
from Table 3 also show that our proposed method requires
both MMD and discrepancy loss in most cases. Eliminating the
MMD loss has a significant performance drop on both datasets,
confirming the importance of DA, and eliminating disc. loss does
not have as large an impact as MMD loss, but also verifies the
help of multi-source convergence. Also, during the experiments,
we find that the type of normalization of the data has a significant
impact on the overall results, so we also design experiments and

explore the normalization of EEG data in DA to help improve the
performance of our model. As can be seen in Table 4, there is not
much difference between the two normalization orders, and it is
most appropriate to do data normalization on the electrode-wise,
which has a crushing performance improvement compared to the
other threemethods; for ourmethod, which does not concatenate
data, electrode normalization is also the most effective. This
conclusion is in line with our intuition that data collected from
the same electrode are relatively more regular or conform to a
certain distribution, while data collected from different electrodes
are very different. In addition, during the experiments, we find
that the disc. loss needs to be carefully adjusted, otherwise it
is easy to cause harmful effects, which we guess is because this
loss introduces a convergence effect on multiple classifiers in
the model (in other words, smooth the inferences made from
multiple classifiers), and if most of the classifiers are wrong,
this convergence effect will cause the correct classifiers to error.
Therefore, we also test and evaluate the impact of the disc. loss
coefficients on the model at different settings, and from Table 5,
we can see that the disc. loss achieves the best results if it is set to
0.01 times the MMD loss coefficient and is being used in the full
model training.

After exploring the internal details of the model, we also
evaluated the performance of the model under different hyper-
parameters. For better comparison, we chose a representative
DAN as the comparison method. From Figures 6, 7, we can
see that both models have a significant decrease as the batch
size is increasing. The reason for this we assume is that small
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batch size tends to fall into local optimal overfitting. Besides, the
hyperparameter epoch has a minimal impact on both models,
particularly the MS-MDA. From Figures 6, 7, we can also clearly
see that MS-MDA has a significant advantage over DAN in cross-
subject DAwhere the number ofmultiple source domains is large,
which also confirms the importance of constructing multiple
branches for multiple source domains to adopt DA separately.

Although it is clear from the results that our proposed method
has a significant performance improvement, we also found that
the training time consumed increases linearly with the number
of source domains, i.e., the larger the number of source domains
and the larger the model, the longer the training takes, unlike
concatenating all source data into one, where there is only
additional time due to the increase in the amount of data. For
this problem, our current idea is to discard some less relevant
source domains selectively and not build DA branches for them,
allowing the disc. loss to play a more prominent role because
there is less negative information. In addition, the encoders in
the current model are the simplest MLP, and many literature and
works have verified the usability of LSTM for EEG data (Ma et al.,
2019; Jiao et al., 2020; Tao and Lu, 2020), and we will consider
switching to use LSTM as the encoders in future works.

7. CONCLUSION

In this paper, we propose MS-MDA, an EEG-based emotion
recognition domain adaptation method, which is applicable
to multiple source domain situations. Through experimental
evaluation, we find that this method has a better ability to adapt
to multiple source domains, which is validated by comparison
with the selective approaches and the SOTAmodels, especially for
cross-subject experiments where our proposed method consists
of up to 20% improvement. In addition, we also explore the
impact of different normalization methods for EEG data in

domain adaptation, which we believe can serve as an inspiration
for other EEG-based works while improving the effectiveness
of the models. As for our future work, the current model for
multiple source domains is to construct a DA branch for each
of them without selection, which will increase the model size
and training time exponentially, and also introduces information
from the source domain that is not relevant to the target into the
model. A more efficient approach may be to selectively build DA
branches from a reservoir of source domains, allowing the model
to be more efficient while only focusing on the source domain
information that is relevant to the target domain.
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