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Abstract

Background: Matching functional sites is a key problem for the understanding of protein function
and evolution. The commonly used graph theoretic approach, and other related approaches,
require adjustment of a matching distance threshold a priori according to the noise in atomic
positions. This is difficult to pre-determine when matching sites related by varying evolutionary
distances and crystallographic precision. Furthermore, sometimes the graph method is unable to
identify alternative but important solutions in the neighbourhood of the distance based solution
because of strict distance constraints. We consider the Bayesian approach to improve graph based
solutions. In principle this approach applies to other methods with strict distance matching
constraints. The Bayesian method can flexibly incorporate all types of prior information on specific
binding sites (e.g. amino acid types) in contrast to combinatorial formulations.

Results: We present a new meta-algorithm for matching protein functional sites (active sites and
ligand binding sites) based on an initial graph matching followed by refinement using a Markov chain
Monte Carlo (MCMC) procedure. This procedure is an innovative extension to our recent work.
The method accounts for the 3-dimensional structure of the site as well as the physico-chemical
properties of the constituent amino acids. The MCMC procedure can lead to a significant increase
in the number of significant matches compared to the graph method as measured independently by
rigorously derived p-values.

Conclusion: MCMC refinement step is able to significantly improve graph based matches. We
apply the method to matching NAD(P)(H) binding sites within single Rossmann fold families,
between different families in the same superfamily, and in different folds. Within families sites are
often well conserved, but there are examples where significant shape based matches do not retain
similar amino acid chemistry, indicating that even within families the same ligand may be bound
using substantially different physico-chemistry. We also show that the procedure finds significant
matches between binding sites for the same co-factor in different families and different folds.

Background tion techniques and structural genomics initiatives have
Recent advances in high-throughput structural determina-  produced an increase in volume of structural data for pro-
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teins prior to knowledge of their functions. With these
advances has come the need to rapidly predict functions
for proteins based on their structures.

Comparison of the overall folds of proteins by programs
such as CE [1] or DALI [2] can be complemented by focus-
ing on local structural comparisons centred on sites of
functional importance such as ligand binding sites or cat-
alytic sites [3-10]. These methods have largely arisen in
response to the discovery of proteins sharing similar func-
tions without similarity in their overall folds [11,12] or
proteins adopting the same superfold [13] without func-
tional similarity. Local structural comparison methods are
based on the idea that geometrically similar sites are likely
to have similar functions since their amino acids are con-
served in precise orientations in order to perform their
chemistry or their similar shapes and physico-chemical
properties may be selective for similar small molecules
such as substrates, inhibitors or co-factors. Hence, finding
structural similarity to functional sites of known and char-
acterised proteins may facilitate function prediction for
newly determined protein structures even in the absence
of overall fold or sequence similarity.

Functional site comparison methods essentially fall into
one of two categories. The first category provides known
templates of specific motifs of conserved amino acids or
atoms often involved in enzyme catalysis [3,7,10]. These
are knowledge-based methods which aim to discover new
proteins with the same catalytic function. The second cat-
egory consists of similarity searching algorithms
[4,5,8,9,14] where prior knowledge of motifs is not
required and site similarity is assessed by how closely the
sites align and/or the proportion of overlap. Partial simi-
larity between sites can be detected and hence much larger
sites such as ligand binding sites can be compared. Meth-
ods addressing this problem generally represent func-
tional sites or functional site surfaces as mathematical
graphs for graph-theoretic or geometric hashing compari-
sons where graph vertex positions are placed using a vari-
ety of methods. CavBase [14], SiteEngine [8] and PINTS
[9] for example use positions of pseudo-centres whereas
eF-site [5] uses electrostatic potentials and surface curva-
ture. SitesBase [15] and pvSoar [4] use a-shapes and an
all-atom model respectively. Recently, a statistical
approach using Bayesian modelling was proposed [16].

The Bayesian method gives a complete distribution of
probable matches and hence an opportunity to explore
several other solutions near the "optimal" solution. In
addition, this approach automatically adapts to the level
of noise in functional site atomic positions. The Bayesian
method can also flexibly incorporate concomitant infor-
mation like amino acid types and their different physico-
chemistry classifications in matching biding sites. In prin-
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ciple, the Bayesian method could also incorporate all
types of prior information on specific binding sites, which
is nearly impossible with simple combinatorial
approaches like graph matching.

In [16] each "site" consists of a single location, such as a
C,atom in an amino acid. But for each C,atom there is
also a neighbouring Czatom which can be paired to it.
Thus the matching criterion need to be extended to
require a close match not only for C, atoms in different
configurations but also for the edges connecting C_,atoms
to their Cyatoms.

In this paper, two substantial advances over [16] are
matching of pairs of atoms (C,and Cg) by a Bayesian
method and refining the graph method in matching func-
tional sites. We propose Bayesian modelling of graph
matches using C, and Cgzatoms. This is done by adding a
Markov chain Monte Carlo (MCMC) refinement step to
the graph matching method [17].

Actually MCMC refinement procedure can be used to
refine a match generated by any method. However for
illustration purposes, here the graph theoretic method is
chosen because it is a well tested method in a variety of
geometrical matching problems for protein structure, see
for example [3,7,14,18,19].

The SITESDB database

Throughout this work we compared the local structural
and physico-chemical environment of protein functional
sites taken from a database of known sites (SITESDB)
[17]. SITESDB entries were automatically formed from the
PDB [20] by locating the local protein environment
(amino acids within 5A) around bound ligands (identi-
fied by PDB HETATM records) and author annotated
active sites (identified by PDB SITE records). A protein
may contain multiple functional sites so unique identifi-
ers for SITESDB entries were generated from the four letter
PDB identifier with an extra integer to distinguish sites
from the same protein. For example, the identifiers
1hdx_0 and 1hdx_1 are separate sites from the protein
with PDB identifier 1hdx.

The automatic extraction of sites results in multiple and
incomplete representations of functional sites containing
more than one bound ligand, or sites that are both anno-
tated with SITE records and contain bound ligands. In
these cases a better biochemical description of the site was
obtained by merging component sites without duplica-
tion of their amino acid contents. Sites were merged if lig-
and atoms occurred within 5A of atoms in a second
ligand. In the absence of bound ligands, sites were merged
if they were found to contain common amino acid resi-
dues.
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Representation and matching

We denote two functional sites to be matched by X and Y
. Let the number of amino acids be m and n for X and Y
respectively and we shall simply use X, j = 1, 2, ..., m and
Y, k=1,2, .., ntorefer to the jth and kth amino acids in
functional sites X and Y. Thus X; and Y, are simply the
labels for amino acid with no coordinate system. Further,
let x;;and y;;, denote coordinates for C,, atoms for the jth
and kth amino acids in the two functional sites X and Y,
respectively. We denote Cjcoordinates for the jth and kth
amino acids in the two functional sites by x,;and y,.. Fur-
ther, letx; = {x;;:j=1..,m}, x,={xy:j=1.., m} and y,
={yu:k=1..n}, y,={yy:k=1.,n}.

We consider matching at the level of amino acid residues.
A match between two sites is a mapping between subsets
of the residues in each site such that matched residues can
be superimposed in three-dimensional space. Thus the
problem is finding correspondence between amino acids
of the two functional sites and the geometrical transfor-
mation to bring the corresponding atoms into registra-
tion. Knowing correspondence, solving for
transformation is trivial and vice versa, but both are not
known before hand.

We denote the matching between amino acids in X and Y
using a matrix M:

M 1 if the jth amino acid corresponds to the kth amino acid,
=10 otherwise.

We denote the transformation to bring the configurations
into alignment to be x;;= Ay, + 7 for My, = 1,i =1, 2 where
A is a rotation matrix and 7 is a translation vector.

Our matching considers C,and Cgzatoms of each residue
(except glycine where only the former is used). Note that
since there are several examples of similarities in protein
functional sites from evolutionarily unrelated proteins,
which do not preserve the amino to carboxy terminal
order of the matching residues, methods in this paper take
no account of the sequential ordering of residues.

At the least restricted level, any residue was allowed to
match any other, thus producing matches considering
only the form or shape of the sites, in terms of the spatial
arrangement of their constituent residues, irrespective of
residues' identities and physico-chemical properties. A
more restricted scheme was also considered where resi-
dues were only allowed to match within the same phys-
ico-chemical class: hydrophobic (A, F, I, L, M, P, V), polar
(C,H/ N, Q,S, T,W,Y), charged (D, E, K, R) or glycine (G).

It should be emphasised that this scheme was chosen to
illustrate the value of the MCMC procedure, and that the
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procedure would be equally applicable to other possible
atom matching schemes (e.g. involving more side chain
atoms) or other physico-chemical groupings.

Graph theoretic approach

Principles of graph theory have been applied to matching
biomolecular  configurations  for some  time
[3,7,14,18,19,23-26]. These techniques are also used in
computer vision research [23,27,28]. In this study each
functional site is represented by a mathematical graph
where vertices are placed at amino acid positions. Each
vertex is connected by an edge to every other vertex in the
same graph and each edge is labelled with the inter-resi-
due distance [17]. Finding matching parts of the func-
tional sites is equivalent to searching for maximum
similarity between the graphs.

Combinatorial algorithms inherently require exhaustive
search of the solution space. For example in graph match-
ing an exhaustive search for solutions with various match-
ing distance thresholds in a suitable range would be
required to guarantee globally optimum solutions. In our
applications Case 4 requires a different threshold to Cases
1-3 in order to give optimal matching. Case 4 requires a
distance threshold of 1.0A while Cases 1-3 require a dis-
tance threshold of 1.5A. Stochastic approaches are the
obvious candidate for consideration to avoid exhaustively
searching the solution space.

The Bayesian model

The Bayesian framework is particularly appealing in spe-
cialised problem domains since the "objective" (the pos-
terior joint distribution) is a product of the "prior" and
the "likelihood". The likelihood gives an indication of
how well the observed data is consistent with parameters
of the model and the prior can be used to incorporate
expert knowledge of the problem.

The likelihood in [16] can be interpreted on considering
that some amino acids in the two functional sites are
related (match) under rigid body motion transformation
subject to Gaussian, N(0, ¢?) errors in the coordinates of
the atoms. These errors could be due to crystallographic
imprecision or protein phylogeny differences. The prior
consists of the distribution on the transformation param-
eters. The joint posterior distribution (distribution of
matching and transformation parameters given the data)
is derived. The Bayesian method simultaneously estimates
the matching and transformation parameters. Thus the
whole posterior distribution is available to extract the sta-
tistical information on the parameters. Here we use a loss
function to obtain point estimates of the matches being of
the main interest. In the methods section we show the
connection between the Bayesian method and minimis-
ing the RMSD when matches are known. Minimising
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RMSD is an appropriate criterion for optimising the geo-
metrical transformation, given the matching. However, in
no way does that logically imply that RMSD is an appro-
priate measure of quality of the matching itself - indeed
one can trivially make the RMSD equal to 0 by matching
just one pair of points, and in general minimised RMSD
will increase with the number of points matched. RMSD
can only be used as a measure for quality of match given
the same number of matched points hence some other
measures e.g. p-values [9] are required to assess the qual-
ity of a match.

We have also incorporated the expert knowledge on
amino acid types through a prior on the matches.

Assessing the quality of matches

A number of parameters are used to assess pair-wise
matching solutions. We first consider the number of
matched residues and the root mean square deviation
(RMSD) between matched atoms. It is intuitively clear
that matches of lower RMSD over larger numbers of
matching residues are more statistically significant. A
measure of this significance has recently been suggested
[9], and was modified in this work to correct for the
number of amino acids in functional sites being matched.
The null hypothesis considers that we are matching ran-
dom configurations. However for matching more than
two atoms (e.g. C,and Cp) in a single amino acid the null
hypothesis is still matching random configurations but
with some dependency (constraints) for atoms within the
same amino acid.

The formula proposed is based on the geometry of a
match with a given RMSD level, taking into account the
abundance of different amino acid types and the different
geometry that applies when various number of atoms are
used to represent each amino acid. An extreme value dis-
tribution was fitted to the number of matches with an
observed RMSD or better. Thus P-values formula is:

P=1-et (1)

where E is the expected number of matches with an
observed RMSD or better. We calculated E-values with a
correction for the number of amino acids in the func-
tional sites. The formula for expected number of matches
with an RMSD value R, or better is found to be

S T
E = O(m, n)abTPORZ31~55 [nyA ] [zR?M ] , q23
(2)

where P, the number of binding sites that were matched
corrects for database size [9,31]. @ is the product of per-
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centage abundances of all matched amino acids, q is the
number of matched amino acids, S is the number of
amino acids with two atoms matched, T is the number of
amino acids with more than two atoms matched. Our
application uses dataset similar to previous studies [9,31]
hence we use the same empirically derived constants: a =
3.704 x 106, b = 1.790 x 103, y = 0.196 and z = 0.094. In

n) m
our applications, T = 0. C(m,n) = 3!( 3 )( 3 ] is a correc-

tion factor for the number of amino acids, m and 7 in the
functional sites. The correction factor is derived by consid-
ering that matching 3 points exhausts all degrees of free-
dom in optimal matching of rigid bodies [25]. Indeed, the
first exponent of R, : 2.93¢q - 5.88 = 3q - 6 which is
expected from the Mardia-Dryden distribution of size-
and-shape [32] so there is some theoretical support to the
fitted formula, partly because for ¢ matches in three-
dimensions, the degrees of freedom are 3q - 6 since we
loose 3 degrees of freedom for translation and 3 for rota-
tion.

Results

We considered two binding sites, the NAD binding site
from an alcohol dehydrogenase structure (1hdx_1 in
SITESDB with 60 amino acids), and a larger NADP bind-
ing site from a 17 - S hydroxysteroid dehydrogenase
(1a27_0 in SITESDB with 63 amino acids) which includes
both the co-factor and substrate binding regions. For these
binding sites we performed the following matching stud-
ies

1) A functional site of alcohol dehydrogenase against
NAD(P)(H) binding sites from proteins in the same SCOP
family as alcohol dehydrogenase (Alcohol dehydroge-
nase-like, N-terminal domain; SCOP: c.2.1.1).

2) A functional site of 17 - £ hydroxysteroid dehydroge-
nase against NAD(P)(H) binding sites from proteins in
the same SCOP family as 17 - £ hydroxysteroid dehydro-
genase (Tyrosine-dependent oxidoreductases; SCOP:
c2.1.2).

3) The alcohol dehydrogenase functional site in (1)
against NAD(P)(H) binding sites from proteins in the
same SCOP superfamily as alcohol dehydrogenase but
different families (SCOP: c.2.1.x; forx = 1).

4) The alcohol dehydrogenase functional site against

FAD/NAD(P)(H) binding sites from proteins in FAD/
NAD(P)-binding domain (SCOP: c.3.1.x).
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The first of these test cases is the most straightforward,
involving matching the NAD binding site against similar
sites in closely related proteins. The second is similar, but
more challenging in matching, because the larger 1a27_0
site also incorporates the substrate (oestradiol) binding
region. The associated family (c.2.1.2) is functionally
broad and members catalyse reactions on a variety of
diverse substrate molecules leading to variations in func-
tional site shapes. Matching methods therefore need to
identify matches in the related co-factor binding region
and ignore local site dissimilarities owing to substrate var-
iation. The third test case considers similarities in sites
with more distant evolutionary relationships (where
sequence similarity between the protein domains con-
cerned is very low, but the structural similarity of the Ross-
mann fold remains). The fourth test case examines the
ability of the method to locate site similarities between
different folds that bind the same or related ligands.

Case I: Site lhdx_I matching against its own SCOP family
Figure 1a shows the results of using graph matching only
where matching was performed with and without amino
acid physico-chemical property information. First note
that in the less restricted matching scenario, without
amino acid group information, matches generally involve
more residues and similar or lower RMSDs, as would be
expected. Thus, in the figure, the lines connecting the
restricted matches (circles) with the unrestricted matches
(crosses) for each site family member often have a gradi-
ent that is negative or close to zero.

In the case of matching without property information,
most sites in the family show a match with 1Thdx_1 with a
low RMSD (< 1.5A) and a significant number of corre-
sponding residues (> 8). However, this is not the case
when amino acid property information is taken account
of, and a minority of the matches show relatively high
RMSDs (> 1.5A), over generally lower numbers of match-
ing residues. Thus it appears that lower quality matches
can result from the use of amino acid property informa-
tion, perhaps because these close relatives have conserved
the shape of the binding site but not the physico-chemical
characteristics. This may happen in binding site regions
whose properties are not crucial to ligand binding; it is
interesting here because with our use of very broadly
defined physico-chemical groups it implies significant
changes of physico-chemical properties.

Figures 1b and 2 show the effect of the MCMC refinement
on the graph only matches of Figure 1a. The same basic
conclusions can be drawn from Figure 1b as from Figure
la. However, from Figures 1b and 2 it is clear that in a
number of cases when matches with amino acid property
information are considered, the MCMC refinement proce-
dure produced significant improvements in the RMSDs
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Alcohol dehydrogenase NAD-binding site (1hdx_l) matching
against SCOP alcohol dehydrogenase-like family (Case 1). a)
Graph matching prior to MCMC refinement step showing
results with/without amino acid property information. Each
site in the family is represented by a circle (with) and cross
(without) connected by a straight line to highlight the differ-
ence. b) MCMC refinement step of (a).

(RMSD is improved from > 1.5A to less than 1A while also
marginally increasing the number of matching residues).
Thus the refinement procedure is able to improve some
matches, even in this case of closely related sites.
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Figure 2

Effect of MCMC refinement on graph matches of Thdx_|1
(Alcohol dehydrogenase) against SCOP alcohol dehydroge-
nase-like family (Case 1) where corresponding amino acids
are restricted to others in the same group. Each site in the
family is represented by a circle (graph only) and cross (with
MCMC refinement) connected by a straight line to highlight
the difference.

The overall effect of the refinement procedure within this
family can be considered in terms of the statistical signifi-
cance of the matches obtained. This information is sum-
marised in Table 1. When taking physico-chemical
properties into account, 125/145 sites produced signifi-
cant matches before refinement, and this increased to
131/145 after. We use the p-value 0.05 for the significance
level. Without taking physico-chemical properties into
account, 142/145 sites produced significant matches (p-
value < 0.05) before MCMC refinement step; this
increased to 143/145 sites after the refinement.

The improvement was a functional site from 2,4-dienoyl-
CoA reductase (lguf 5) which before refinement
matched with an RMSD of 1.076A, a number of corre-
sponding amino acids equal to 13, and a p-value of 0.08;
after MCMC refinement step the RMSD was 1.127A, the
number of corresponding amino acids was 14 and p-value
was 0.02.

Some examples where the MCMC refinement step pro-
duced improvements with obvious biochemical relevance
are the sites in quinone oxidoreductase (PDB code 1qor)
and hypothetical protein YhdH (PDB code 108c). The
proteins in this family share a well known glycine rich
motif (GXGXXG) in the binding site. For 1qor_0, before
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MCMC refinement step, 2 glycines in dinucleotide bind-
ing motif GLGGVG were matched by graph matching
alone and this increased to 3 glycines after MCMC refine-
ment. In the case of 108c the motif includes 4 glycines, of
which 3 were matched before MCMC refinement step and
all 4 after. The full matches with these motifs highlighted
are shown in Figures 3 and 4.

Case 2: 17 - [ hydroxysteroid dehydrogenase and family
The effect of MCMC refinement on graph matches for the
functional site of 17 - £ hydroxysteroid dehydrogenase
(1a27_0) matching against NAD(P)(H) binding sites
within the same SCOP family (c.2.1.2) are shown in Fig-
ure 5 and Table 1. In the case of this more complex site the
effect of MCMC refinement is greater, increasing the
number of sites producing statistically significant matches
from 248 to 318 of 326 sites. Figure 5 shows that most of
these improvements are associated with an increased
number of matching residues at a similar RMSD, but in a
minority of sites RMSD also improved. Although this fam-
ily catalyses reactions on a diverse range of substrates, the
members have a clear evolutionary relationship, and sta-
tistically significant matches at least in the co-factor bind-
ing region should be expected. These results show that
MCMC refinement of the initial match is often required
for these to be detected. When comparing matching with
and without amino-acid physico-chemical property infor-
mation similar results to those of Case 1 were obtained
(see additional file 2).

Case 3: alcohol dehydrogenase and superfamily

In the case of the more distant evolutionary relationships
probed by matching the site from alcohol dehydrogenase
(1hdx_1) against members of the same SCOP superfamily
but from different families, MCMC refinement also pro-
duced a large increase in the number of statistically signif-
icant matches. Of 897 sites, 200 produced significant
matches using graph matching alone, and this was
increased to 324 by MCMC refinement (see Table 1). As
in Case 2 above, it is common with these more distantly
related NAD(P) binding sites that significant matches
involve the well-known glycine rich motif. An example of
a match with the site 3dbv_3 in the glyceraldehyde-3-
phosphate dehydrogenase structure is shown in Figure 6,
in which this motif is highlighted.

Case 4: alcohol dehydrogenase and FADINAD(P)-binding
domain

The FAD/NAD(P)-binding domain is classified as a differ-
ent fold in SCOP to the cases considered hitherto. Never-
theless, as its name suggests it binds ligands of interest in
this work, NAD(P) and more commonly FAD. The latter
dinucleotide ligand is related to NAD(P): approximately
half of the molecule (an adenosine moiety and two phos-
phate groups) is identical to NADP while the other half
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Table I: Number of statistical significant functional sites before (Graph) and after the refinement step (MCMC), without amino acid

property information

Significant
Case Total Graph MCMC
alcohol dehydrogenase and family 145 142 143
17 — B hydroxysteroid dehydrogenase and family 326 248 318
alcohol dehydrogenase and superfamily 897 200 324
alcohol dehydrogenase 338 64 76

and FAD/NAD(P)-binding domain

differs substantially, with a flavin group replacing nicoti-
namide. It is known however that the ligand binding sites
of this fold and the Rossmann fold are related, and both
include glycine rich motifs associated with binding the
shared phosphate groups. Thus some significant matches
between these binding sites might be expected on bio-
chemical grounds.

In this case, we consider matching without physico-chem-
ical group information with the initial graph theory match
using a matching tolerance of 1A. As shown in Table 1, 64
of the 338 site matches showed statistical significance
with graph matching only, and a further 12 attained this
with MCMC refinement.

Performance of MCMC

In addition to using RMSD as a diagnostic tool for moni-
toring convergence and using p-values as an objective
function to compare the performance of graphical and
MCMC methods, we also consider diagnostic plots and
quantities for the Bayesian model stability and MCMC
convergence.

We can see (in additional files 1, 2, 3, 4) that the number

of matches, L= zMjk at each iteration for most cases
jk

converged i.e. variance for L is very small. There are very

few exceptions where convergence was not reached e.g.

1a71_1, 3hud_1 and 1pl8_7 in Case 1 when not using

amino acid properties. Here variances for L are very big

which suggest non-convergence of the MCMC.

Figure 7 shows histograms and traces for parameters when
matching 1a27_0 against 1cyd_1 (Case 1). Traces for
number of matches (L), log ¢, T and rotation angles show
good mixing, stationarity and that convergence was
reached. Histograms for rotation angles are well peaked
showing stability of the solution. For a detailed discussion
on sensitivity analysis on hyper-parameters for the model,
see the methods section under sensitivity of hyper-param-
eters.

Discussion

Since the connection between statistical and biological
significance is not straightforward example applications
above were carefully chosen to be well understood cases
where matches can be interpreted relatively easily in bio-
chemical terms. For structural and evolutionary relation-
ships SCOP [33] was used. It has been seen that MCMC
refinement step can provide significant improvement over
graph-matching techniques.

In this paper the method uses matching schemes that are
relatively unrestricted in terms of amino acid identity
(either with no restriction or matching in broadly defined
physico-chemical groups). As currently formulated it is
therefore better suited to the study of larger ligand bind-
ing sites, than smaller sites associated, for example, with
enzymatic catalysis. The former are more likely to be
defined by shape and physico-chemical properties, while
the latter depend critically on precise amino acid residue
identities. For our example applications we have therefore
chosen sites for the binding of some very common bio-
chemical ligands related to NAD(P) (nicotinamide ade-
nine dinucleotide (phosphate)) and FAD (flavin adenine
dinucleotide). These ligands are bound as co-factors by a
large variety of enzyme domains, many of which come
from the Rossmann family of protein folds. Importantly,
there are many proteins of known structure that bind
these related co-factors ranging from close evolutionary
relatives, through very distant relatives to proteins of dif-
ferent fold and likely independent evolutionary origin.

The examples given above make a clear case that MCMC
refinement can improve ligand binding site matches gen-
erated by graph matching, in terms of both the statistical
and biological significance of the match. We attribute this
success to the lack of dependence on strict distance match-
ing criteria, which are rigidly enforced in graph matching,.
Statistical modelling in refinement of matches appears to
have been successful in automatically adapting to shape
variations in ligand binding sites, which might be due to
different noise levels in atomic positions or protein phyl-
ogeny differences, among other factors. Refined matches
usually retain a similar RMSD, and achieve greater signif-
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Figure 3

Corresponding amino acids between the NAD-binding site of
alcohol dehydrogenase (1hdx_I) and NADP-binding site of
quinone oxidoreductase (| qor_0) before and after MCMC
refinement with the glycine rich motif highlighted (see main
text) (Case I).

icance through expansion of the number of matching res-
idues from the core graph match. We have noted however
that in some cases significant reductions in the match
RMSD are also achieved by refinement.

Dependence on a strict matching tolerance is not limited
to graph matching, but is also a feature of other matching
methods commonly used in the field (e.g. geometric
hashing). It is important to note that the MCMC refine-
ment procedure can be applied to a starting match gener-
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Figure 4

Corresponding amino acids between the NAD-binding site of
alcohol dehydrogenase (1hdx_I) and NADP-binding site of
hypothetical protein YhdH (108c_1) before and after MCMC
refinement step with the glycine rich motif highlighted (see
main text) (Case ).

ated by any method; and that the graph procedure chosen
here was simply intended as an example. Equally MCMC
procedure can be applied to matching with no previously
generated starting match, for example by starting from
randomly generated matches. That is, the MCMC method
provides a stand-alone algorithm for matching. However,
we find that obtaining good matches by this method is
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Figure 5

Effect of MCMC refinement on graph matches of 1a27_0 (17 — S hydroxysteroid dehydrogenase) against SCOP tyrosine
dependent oxidoreductase family (Case 2) where corresponding amino acids are not restricted to others in the same group.
Each site in the family is represented by a circle (graph only) and cross (with MCMC refinement) connected by a straight line to

highlight the difference.

very expensive in terms of computational time. While
methods such as graph matching can be applied to data-
base searching, where a site is matched against all mem-
bers of a large database of sites, this would be impractical
for matching by MCMC alone with modest computing
facilities. There is also a need for closely monitoring con-
vergence diagnostics. We suggest therefore that the MCMC
procedure would be most advantageous when applied to
the best hits from a database search using a faster method,
and that in many cases it would increase the number of
significant hits. Thus this method is aimed at refining
matches and complementing other methods e.g. graph
matching as used here. Furthermore, the method provides
the full joint posterior distribution so that we have for
example, the posterior distribution for the matching
matrix (giving probabilities on matches) as well as the
parameters of the transformation simultaneously. There is
flexibility in Bayesian approach due to the ability to spec-

ify distributions on matching coordinates and relative
probabilities on the orientation of matching residues as
opposed to using matching distance threshold as in com-
binatorial methods.

From our experiments, matching both C,and Czatoms in
our extended model gives solutions with smaller RMSD
values (for C,and Czatoms) than when matching using
C,atoms only.

Our approach using MCMC with detailed balance update
and drawing from the posterior of all parameters in prin-
ciple help escape local maxima for the model better than
alternative methods using for example an annealing
schedule.

Furthermore, quantifying the quality of the solution by

RMSD in addition to the number of matches ensures that
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Figure 6

Superposition of matching amino acids (Case 3) between
alcohol dehydrogenase (l1hdx_I; blue) and glyceraldehyde-3-
phosphate dehydrogenase (3dbv_3; red) after MCMC refine-
ment (RMSD = 0.672; number of corresponding amino acids
= 12; p-value = 3.68e-05). The matched dinucleotide binding
motif is shown in ball-and-stick representation. Ligands are
coloured in CPK colours.

reported improvements over graph matching (e.g. an
increased number of matches in examples illustrated in
Figures 2, 3, 4, 5) really occur in one single mode for the
match matrix M. Thus a smaller RMSD guarantees that we
have a proper summary for M as opposed to having a
point estimate of the match matrix invalidly summarising
two or several solutions that the Markov chain visited sep-
arately, each with a particular probability.

Conclusion

We have made only a very basic study of the effect of
including amino-acid residue physico-chemical property
information in matching, contrasting matches obtained
without restriction (any residue may match any other)
with slightly more restrictive matching (residues only
allowed to match within relatively broadly defined
groups). It is interesting that even with very broadly
defined groups, fewer statistically significant matches are

http://www.biomedcentral.com/1471-2105/8/257

generally obtained than when matching is without restric-
tion. This could suggest that the physico-chemical proper-
ties of sites binding the same or similar ligands can change
significantly in evolution. It is however most likely to
reflect increased flexibility to change in peripheral resi-
dues that are less important for binding, and needs further
investigation. The main point of this work is that MCMC
refinement can improve matches under either matching
regime. Indeed in a few cases of matching with/out phys-
ico-chemical groups, we showed that some graph matches
without statistical significance were converted to signifi-
cant matches by the MCMC procedure, revealing that
using graph matching alone could lead to some erroneous
conclusions in this respect.

Methods

We consider matching two functional sites X and Y using
the graph theoretic method and the Bayesian modelling.
First, we give the graph theoretical approach in the next
section. We consider the Bayesian method in the follow-
ing section.

Graph theoretic approach

Graphs, say G, and G, are constructed to represent sites X
and Y respectively. Vertices are placed at amino acid posi-
tions and edges between vertices represent inter-atomic
distances within the functional site. Similar subgraphs for
G, and G, correspond to the matching parts of X and Y. A
search for similar maximal subgraphs for G, and G, corre-
sponds to finding a clique (a maximal complete sub-
graph) i.e. the biggest completely connected subgraph in
the vertex product graph of G, and G,.

Definition: vertex product graph.

Denote sets of vertices for G, and G, by V,and V,; V, = {X,,
j=1,2,...,m}and V,={Y, k=1,2, .., n}. Avertex prod-
uct graph, say H,= G, [, GJ has a vertex set V;; =V, x V,
consisting of vertices defined for each pair (X;, Y;) with X;
€ V, and Y, € V, having the same attribute. An edge
between two vertices vy, = (X, Y}), vy, = (Xj, Y}) € V), exists
forj#j'and k # k' when

1. the absolute difference between distances |xy;- x;;| and
|V1r- Yue| and

2. also the absolute difference between distances [x; - x,;|
and | yy, - ya|

are both less than 1.5A (matching distance threshold).

In the least restrictive case all amino acids are assumed to
have the same attribute and hence matching can occur
between any amino acid and is only dependent on inter-
residue distances. Alternatively vertices can be labelled
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Histograms and traces of parameters when matching |7 — £ hydroxysteroid dehydrogenase and carbonyl reductase (Icyd_I).

with residue physico-chemical properties to restrict
matching to amino acids in the same group.

In this work we used the clique detection algorithm of
Carraghan and Pardalos [29] to find maximal common
subgraphs. Graph matches based on inter-residue dis-
tances are not necessarily superimposable (e.g. mirror
image sites). Subsequently, a Procrustes algorithm [30] is
used to check that matched configurations are geometri-
cally superimposable.

Bayesian alignment
Recall that the matching between amino acids in X and Y
is represented by a matrix M:

Mo = 1 if the jth amino acid corresponds to the kth amino acid,
=0 otherwise,

and the transformation to bring the configurations into
alignment is x;; = Ay, + rfor My = 1,i=1,2 where A is a
rotation matrix and zis a translation vector.
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Output

Decision tree for refining the graph solution by the MCMC method. Boxes with curved corners show processes and their out-
put while boxes with sharp corners are for branching conditions. The procedure starts with graph solution M. The graph solu-
tion's RMSD and number of matches are denoted by RMSD and L respectively. MCMC is re-iterated until the MCMC
solution: Mg is better. The RMSD and number of matches for Mgare denoted by RMSDg and L respectively. Mz and M are
compared using |) RMSDs and the number of matches or 2) P-values for M;and M, denoted by P and P; respectively.

Given the map M, it is straight-forward using least squares
estimation to calculate transformation parameters in
order to bring the two configurations into registration or
optimal alignment [30,32]. However M, A and r are all
unknown.

The model for C,atoms only was developed in [16] and
the joint posterior distribution is

p(M,A,7,6,x1,y;) o< prior xlikelihood

k({1 — Ayy, — 7}/ 0V 2)
(oV2)?

=" p(a)p(mp(e)x [T

Jike:My,=1
3)

where p(A), p(7) and p( o) denote prior distributions for A,
7 and o. |A]| is the Jacobian of transformation from the
space of X into the space of Y ; x measures the tendency a
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priori for points to be matched and can be a function of
concomitant information like amino acid types.

We assume presence of Gaussian noise N(0, ¢2) in the
atomic positions for x;; and yy;, thus ¢(-) is the standard
normal probability density function. Here the dimension,
d=3.

Connection with combinatorial algorithms

We note that there is strong relationship between (combi-
natorial) algorithms minimising least squares (RMSD)
and the Bayesian approach with Gaussian error model.
We now give the connection between the joint posterior
in Equation 3 and the RMSD. Let us write the RMSD
square fully as:

2
RMSD? = J',k:%jk:l " My~ Ay —‘L'" “
L ,

where L= 2 1 Mj, or L denotes the number of

j’k:Mjkz

matches.

In the Bayesian formulation the log likelihood (with uni-
form priors) is proportional to

Q
o2

1
const. — 2(XMj,)logo + (M, )log p — 5

where
Q = ZM||xy;- Ay - 7]

Note that for M, = 1, we have Q = X||x;;- Ay;k - 7|2 It can
be seen that RMSD? = Q/L where L is the number of
matches. Hence RMSD and Q are functionally related. In
particular, the maximum likelihood estimate of o2 for a
given matching matrix M is the same as the RMSD which
is the least square estimate.

One way to understand this connection is to go back to
the ordinary least square estimates for the regression anal-
ysis versus the maximum likelihood estimates under nor-
mal errors (i.e. least square versus Gauss-Markov
formulation). Sometimes purely algorithmic approach is
justified but it has the underlying assumption of normal-
ity. The situation here is not too different where we are
using likelihood estimators versus the RMSD. Thus in the
above context of the statistical methodology and in partic-
ular the choice to base the combinatorial objective func-
tion on squared Euclidean distance is therefore equivalent
to the choice to use Gaussian errors in the probability
model. Note that with Gaussian errors in the probability
model, the Bayesian modelling approach is very closely

http://www.biomedcentral.com/1471-2105/8/257

related to combinatorial and other methods which max-
imise objective functions of squared Euclidean deviations
e.g. RMSD. In the Bayesian approach, the objective func-
tion is a probability distribution (the joint distribution of
all unknowns given the data). In the combinatorial
approach, the objective function is a measure of mismatch
and the procedure is to choose the matching to minimise
the objective function e.g. RMSD under some constraints
(trivially RMSD can be zero by matching a single point).
The two objective functions are very closely related math-
ematically.

Side chains orientation

So far each "site" in X and Y has consisted of a single loca-
tion, such as a C,atom in an amino acid. But for each C,
atom there is also a neighbouring C,atom which can be
paired to it. Thus the matching criterion can be extended
to require a close match not only for C,atoms in different
configurations but also for the edges connecting C,atoms
to their Cyatoms.

The Bayesian model in Equation 3 is extended here
whereby we take into account relative orientation (direc-
tion information) of side chains by using C,and Czatoms
in matching amino acids. Note that positions of C,and Cj
atoms from the same amino acid are dependent. Thus x;;
and x,; are dependent. Similarly, y;; and y,;, are dependent.

To motivate the extension of the model to account for side
chain orientations, we assume initially that x,; and x,; are
a population configuration whereas y,;, and y,;, are a sam-
ple configuration. Now we can interpret Equation 3 above
(which corresponds to equation 6 in [16]) and write

Ay + 7| Xqj~ N(xyj, 02). (5)

We extend the model by considering how to model Ay,,
given xy; x,;and Ay;;,. Taking into account that there is var-
iation only perpendicular to the axis x,; - xy;, it is plausible
to take

Ay2k|xlj' Xojr Y11V N(ij - Xyj+ AV ¥)

or

Ao - Vi) [%1j0 %oj0 Vi~ N(xgj- x5+ Ay W) (6)
where ¥ = y11 + y, (x5 - 1) (%55 - x1))T, ¥y = 0% ¥, <0.The
second term of the covariance matrix allows variations
only in the plane perpendicular to the C,— Cjaxis.
The basic likelihood can be reformulated however we
favour a spherical distribution for A(y,y, - y1i)%1j Xaj V1

instead of an elliptical (anisotropic) normal distribution
because we want to ensure the symmetry in X and Y . We
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note that relative (rather than absolute) values of the
probabilities for various matches are essentially important
and in practice we do not expect much difference by using
an elliptical distribution compared to using the spherical
distribution.

Using spherical distribution for A(y,, - y1,) |1 %55 y1, Case,
the joint posterior for y, and y, given x, and x, becomes

(M, A, T,0,%0,91,%2,¥7)
o< prior x likelihood

=|A[" p(A)p(z)p(0) x
nl ¢({x1j — Ayy, — 7}/ 0V 2) ¢({x2] x1j — Alyar — i) H v 2)
jleMy=1 (o 2y (V2

(7)
We now relax the assumption of x;; and x,; being given in
Equation 7 and the joint density does not alter. This is the
extension to our use of Equation 3.

The joint posterior distribution p(M, A, 7, 6, X1, ¥1, X5, ¥,)
quantifies uncertainty in the unknown quantities M, A, 7,
o, after observing the data. Here t and o2 are taken to have
prior Gaussian and gamma distributions respectively.
These priors are plausible for 7 and o in matching func-
tional sites. The match matrix M is a priori a uniformly dis-
tributed random variable over all match matrices and we
sample from this using the Metropolis algorithm (see
below - updating M) with a move set consisting of pro-
posals to add a match, delete a match or switch matches.
The rotation matrix A is assumed to have prior matrix
Fisher distribution [21,22].

Markov chain Monte Carlo (MCMC) methods are used to
sample from the full joint distribution in Equation 7. This
provides an extremely flexible basis for reporting various
aspects of the full joint posterior p(M, A, 7, 0, X1, V1, X5, ¥,)
that are of interest. For example the maximum of this
function would provide a (naive) point estimate of the
unknowns.

Note that Equation 7 takes us back into the framework of
sample configurations. We now indicate how the model
extends the concept of the RMSD for the paired case. We
show that the "objective" in Equation 7 is a function of
RMSD (for C,atoms only in Equation 4) and the angle for
orientation difference between the matched amino acids.
Denote the RMSD for C, atoms only in Equation 4 as
RMSD,, Let vy = x,; - xjand v, = yy, - ¥y Equation 7 is a

function of RMSD , + ||v, - Av,||2. Note that ||v, - Av,||2=
T 5. T
[y ]2+ [lvs][2- 2 v and [|vy]] = [|v,|[ = 1.54A; vy v, =

[lv1]| - ||v,|] cos @ ~ 1.542cos 6 where 6 is the angle
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between v; = x,;- x;;and v, = yy; - 7y, 1. the angle between
C,— Cp directions for matched amino acids. Thus ||v, -
Av,||2~ 2 x 1.542(1 - cos 6) and the "objective" in Equa-
tion 7 involves the vector RMSD,

RMSD ;5= RMSD o+ |[v,] |2+ [[v5][2- 2 x [[v, || - |[v,][ cos &
~RMSD,+ 2 x 1.542(1 - cos ). (8)

Thus the method extends RMSD for C,atoms in the objec-
tive function (model) by adding angles in the paired (C,,
Cy) points.

Computational implementation

The additional term in the new full likelihood does not
involve 7 hence the posterior and updating of 7 is
unchanged to that in [16].

Rotation matrix
The full conditional distribution of A is

p(A|M,7,0,X,Y) < | A" p(A)

— Ay, -7
x 0
]klMT]k_l [ o2 J )

< TI q)( - Xy ng’zk_hk)}

] k: M]k—l

Thus
p(A|M,1,0,X,Y)

o< p(A)xexp(tr{ 12
20

PRZIAET —T)TA}]

1
X“P{?z(xzj —x;)" Ayar —Y1k)J

o< exp(tr{za%zhk(xlj _T)TA}J

1
e tr{?ﬁ(yzk = V1) (%2 —XU)TA}

o< exp(tr{HA})

where the summation is over j, k:M;,= 1 and

1 1
H= _22Y1k(x1j —T)T +_22(Y2k = 11) (%2 _xli)T'
20 2y
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Thus with p(A) o exp(tr FOT A) for some matrix F, then the

full conditional distribution of A given data and values for
all other parameters has the same form with F,replaced by

2 T
F=F+(1/20%) Y, (%j-7)ri
j,k:Mjk:I

+1/27%) Y (%= %) ok —vi)' -
j,k:Mj}( =1

(10)

Updating M
It can be shown (equation 8 in [16]) that acceptance prob-
ability for adding a match (j, k) is min(1, a,),

_ K({x1; — Ayy =T}/ 0N 2)p"n,, y O({x2) = x1j = AQyar — v} 1 732)
(0v2)! (142’ '

ar

Similarly, the acceptance probability for switching the
match of X; from Y), to Y}, (equation 9 in [16]) is min(1,
a,),

_ ¢({x1j — Ay — 7}/ 0V2) o O({x2j = x1j = Alyaw =y 3/ 7¥2)
O({x — Ay —7}/0N2)  O({x2j —x1j — Alvar — v}/ 7¥2)

r

and for deleting the match (j, k) is min(1, a,) where

o= (02)! y (rv2)!
' Ko({x;; — Ay, —7}/oN2)p"n, O({x2j = x1j = Ayar — v} [ 7V2

Point estimates for A, zand M
Posterior means are taken as estimates for transformation
parameters A and 7 [16].

Point estimate for the match matrix, M

Assignments are made to minimise error rates: P( M, =

Suppose that the loss is €, for declaring 1/\\/1]']@ =bforb=0,
1 when pj, = P(Mj,=a), a = 0, 1; for example, €y, is the loss
associated with declaring a match between X; and Y), when
there is really none, that is, a "false positive". A false neg-
ative is €,,. An optimal Bayesian point estimate of M is
given using a loss function which penalises false positive
(€4;) and false negative (€,,) matches. This optimum is
controlled by a cost ratio K = €,,/(€,, + €,,). Note that for
K = 0.5 false positive and false negative matches are
equally undesirable whereas for K= 0.75 i.e. €5, =3 x £;,
used in this paper, accepting matches when there are no
"true" matches is heavily penalised.
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We minimise the expected sum of losses at each entry of
M with respect to the MCMC chain target distribution (the
posterior distribution) by using empirical estimates of
matching probabilities p;, = >M,, where the sum is taken
over the number of iterations after burn-in. That is we are
averaging over M and we minimise

E[L(M, M) | x,]

= Mielyipje + 2, Mjelor (1= pje) + . (1= Mjie ) 10p 51
jik jik jk

+Z a- 1,\\/1]'}{)(00 (1- ij)
jik

= > Mik(11Pj = Lo1Pje = L10Pje + LooPji + o1 = Lo0)
jik

+2(500 +10Pje = LooPji)
ik

= Me((f11 = o1 — (1o +000)Pj + Lot — Loo) + 2 (Loo + (1005 — LooPii)
jk jk
The last sum does not depend on Mk, hence interested in

minimising the first part:

~(Lo1+ %10 =11 = Lo0) Z (pj —K)
j,k:M;‘k:l

where
K= ((61 - foo)/((w' 511 - foo)

and py, = P(M;, = 1|x, y) is the posterior probability that (j,
k) is a match, which is estimated by the empirical fre-
quency of this match from an MCMC run.

Thus M is a solution to a "linear assignment" problem
with cost matrix (p, - K). A standard linear assignment

program (Ipsolve [34]) is used to find M with the cost
matrix (py, - K), and we take €,; = €, = 0 (there is no cost
for declaring true matches and also identifying true non-
matching amino acids). We penalise (avoid) false posi-

tives more than false negatives i.e. we take
L

=—0 =075
Lo1+ 110

We note that although arguably point estimates are most
important to a molecular biologist, by maintaining
detailed balance and drawing from the posterior of all
parameters MCMC provides a way to escape local maxima
for the model. Furthermore, it provides an easy frame-
work for quantifying uncertainty in parameters and alter-
native solutions. Besides the MCMC approach goes
further to give statistical understanding of the distribution
of matches, transformation, correspondence parameters
and the loss function.
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Accounting for amino acid groups

The matching indicator M;, is constrained to be zero, in
the probability model and all algorithmic steps, for amino
acids j, k in different amino acid groups. This strictly
matches amino acids in the same group only. This way,
unlike in [16] and similar to graph theoretic method, we
do not utilise a probability distribution for x in Equation
7.

MCMC refinement step

We now describe a hierarchical decision rule to assess the
improvement from graph method. Figure 8 shows the
refinement decision tree. Arrows show flow directions,
boxes with curved corners show processes and their out-
put while boxes with sharp corners are for branching con-
ditions. The procedure starts with graph matching to
obtain the solution, M and the corresponding RMSD and
the number of matches: RMSD, and L respectively. We
use MCMC sampling in the Bayesian modelling starting
from the rotation and translation obtained from the graph
solution M. We iteratively start from = 1.5, 0.9, 0.5 (for
the noise parameter o2 ~ I'(e, f)) and x = 0.00005,
0.0001, 0.0005, 0.005. We find the MCMC solution M
with the RMSD value say, RMSD; and the number of
matches L;. We monitor convergence and quality of the
solution in terms of RMSD, statistical significance and the
number of matched amino acids. The MCMC solution M
is primarily assessed against the graph solution M, using
plugged-in RMSD (defined below) and the number of
matches. We stop if MCMC solution is better than the
graph method or we have exhausted all the combinations
of fand x values.

Note that My is clearly better than M, if RMSDy <RMSDy,
and Ly > L, while M. is clearly better than M if RMSDj >
RMSD¢ and Ly <L. If these conditions do not hold (when
the plugged-in RMSD for MCMC is smaller than the graph
method but on the other hand the graph solution has the
bigger number of matches or vice versa), we use p-values
for Mg and M, using Equations 1 and 2. We denote the p-
values for Mg and M by Py and P, respectively. My is bet-
ter that M, if Py <P.

In rare cases after all the steps, if the MCMC solution is not
better then we re-start the whole decision tree. Note that
this situation is very rare, for example, in all the significant
matches reported in Table 1, only one match by MCMC
drifted into a poor solution than the graph method. A sec-
ond MCMC run on this particular matching converged to
the same solution as the graph method. Most likely the
first run for this matching might not have converged. We
observe that a re-run of the MCMC might be necessary in
those rare occurrences where the MCMC gives a poor solu-
tion. From our experiments, we find that in most situa-
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tions, a second run would suffice for the non-converging
cases and thus our MCMC procedure is robust.

Once we have an improved solution from MCMC and
find that its p-value is statistically significant (whereas the
graph solution was not significant), we examine the
match for chemical properties.

By plugged-in RMSD we mean using point estimates of
the transformation parameters A and 7 obtained from the
Bayesian model to calculate the RMSD for the aligned
matching amino acids. In the decision tree we use the
average plugged-in RMSD for C,and Cjzatoms:

RMSD? =( > llmj—Ane -t I+ >
kM =1 K Mje=1

I %25 = Ayaw = |P) /(L +Lo)

(11)
where Cjzatoms are matched as well for the j'th and k'th
amino acids. L = % ,, M, is the number of matches and L,
= 2, i M is the number of matches with two atoms
matched for both the j'th and k'th amino acids.

Hyper-parameters
We now want to give values of the hyper-parameters and
fixed parameters used in this paper. For prior distributions

for o2~ T (e, f), 7~ N(p, o:? we used «a = 1, fiteratively

took values 1.5,0.9,0.5 (see above: MCMC refinement

step), U, = lej /m—zylk /n, o; =15.Weused y=0.5
j k

and this value is found to work well in case of all consid-
ered functional sites in SITESDB. The cost ratio for declar-
ing "false" matches is taken to be K = _fo =0.75.
o1+ {10
Sensitivity of hyper-parameters in MCMC

The method is not observed to be sensitive to hyper-
parameters for 7 and o (also see [16]). Mean values for 7
ranging from O to the difference in centres of mass for the
sites have worked in many cases of matching functional
sites in SITESDB. Weak priors e.g. standard deviation val-
ues for 7in the range of 5 to 50A have worked very well.
With shape parameter for the prior Gamma distribution
for o2set to 1, scale parameter values in the range of 0.5-
50 have given satisfactory results in many cases. For ; val-
ues in the range of 0.0001 - 0.003 have been observed to
give optimal results in many examples. In our implemen-
tation we track all parameters for MCMC. Histogram and
trace plots for parameter values can be used to check
MCMC convergence and model stability. In addition we
have used RMSD as a complimentary diagnostic tool,
namely if RMSD is relatively large then we continue itera-
tions.
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