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Long axons and their enwrapping glia (EG; Schwann cells (SCs) and oligodendrocytes
(OLGs)) form a unique compound structure that serves as conduit for transport of
electric and chemical information in the nervous system. The peculiar cytoarchitecture
over an enormous length as well as its substantial energetic requirements make this
conduit particularly susceptible to detrimental alterations. Degeneration of long axons
independent of neuronal cell bodies is observed comparatively early in a range of
neurodegenerative conditions as a consequence of abnormalities in SCs and OLGs . This
leads to the most relevant disease symptoms and highlights the critical role that these
glia have for axon integrity, but the underlying mechanisms remain elusive. The quest to
understand why and how axons degenerate is now a crucial frontier in disease-oriented
research. This challenge is most likely to lead to significant progress if the inextricable link
between axons and their flanking glia in pathological situations is recognized. In this review
I compile recent advances in our understanding of the molecular programs governing axon
degeneration, and mechanisms of EG’s non-cell autonomous impact on axon-integrity.
A particular focus is placed on emerging evidence suggesting that EG nurture long axons
by virtue of their intimate association, release of trophic substances, and neurometabolic
coupling. The correction of defects in these functions has the potential to stabilize axons
in a variety of neuronal diseases in the peripheral nervous system and central nervous
system (PNS and CNS).
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INTRODUCTION
Axons are the longest cellular projections of neurons relaying elec-
trical and biochemical signals in nerves and white-matter tracts of
the peripheral nervous system and central nervous system (PNS
and CNS). As such, they are critical for neuronal wiring and
transport of maintenance signals. The interdisciplinary study of
how axons, together with the other neuronal and non-neuronal
compartments in their entirety, contribute to connectivity and
thus the great complexity of nervous system networks is a current
effort at the forefront of neuroscience (see United States “BRAIN
Initiative”, European “Human Brain Project”, and other similar
programs worldwide).

Axons are enwrapped by glia with which they closely interact
to form a unique symbiotic unit, a key contributor to the normal
function of axonal connections. In vertebrate species, enwrapping
glia (EG) are divided into Schwann cells (SCs) in the PNS and
oligodendrocytes (OLGs) in the CNS, two distinct glial cell types
with different morphologies and embryological origins (Nave,
2010a). EG are best known for insulating axons by encapsulating
them with compact myelin to facilitate rapid saltatory impulse
propagation (Jessen and Mirsky, 2005; Court et al., 2006; Salzer
et al., 2008). Still, the majority of axons are not myelinated by
EG in the PNS of higher vertebrates (Griffin and Thompson,

2008; Figure 1A), and compact myelination is completely absent
in some vertebrates and most invertebrate organisms (Nave and
Trapp, 2008; Rodrigues et al., 2011). Another well recognized but
sometimes overlooked function of EG is the regulation of axonal
structure, such as the control of axonal cytoskeleton composition
and ion channel distribution (Salzer, 2003; Edgar and Garbern,
2004). In addition, there is an increasing appreciation that SCs
and OLGs have various novel and previously unanticipated roles
such as regulation of synaptic properties, control of the peri-
axonal ion microenvironment, immune-modulatory functions,
and perhaps stem cell maintenance (Fields and Stevens-Graham,
2002; Griffin and Thompson, 2008; Martini et al., 2008; Zuo and
Bishop, 2008; Yamazaki et al., 2011). Moreover, following injury,
SCs orchestrate axonal regeneration in the PNS by promoting and
directing axonal growth as well as restoring neuromuscular junc-
tions (NMJs; Son et al., 1996; Chen et al., 2007; Sugiura and Lin,
2011). In reciprocity, distinct axonal signals regulate proliferation,
survival, and differentiation of EG processes important for nerve
and white matter tract development and repair (Barres and Barde,
2000; Jessen and Mirsky, 2005; Newbern and Birchmeier, 2010;
Zuchero and Barres, 2013).

Pathological events in both SCs and OLGs, together with the
common feature of compromised axon integrity, are implicated
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FIGURE 1 | Cytoarchitecture of EG and associated axons in mouse

nerves. (A) (Upper): Semithin microscopy of transverse section through
mouse vagus nerve in which more than 90% of all fibers are unmyelinated
and form multiple Remak bundles. Scale bar: 10 µm. Boxed areas from
semithin preparation show electron micrographs (Lower) at different
magnifications with characteristic cytoarchitecture of unmyelinating and
myelinating SCs with their enwrapped axons. Note the tight association
between glial processes (green) that interdigitate four unmyelinated
small-caliber axons (red) in the highlighted Remak bundle from the right
inset. Individual Remak bundles are surrounded by basement membranes
and collagen fibers. Axonal and glial mitochondria are characterized by
electron-dense appearance. Granular material within axons represents
microtubules and neurofilaments. Scale bars: 2 µm. (B) Fluorescence
confocal microscopy of longitudinal section through mouse tibial nerve
(nuclear counterstain with 4’,6-Diamidino-2-Phenylindole (DAPI)) in which
two adjacent SC bodies (green) are genetically labeled with green
fluorescent protein (GFP). Asterisks depict nuclear regions of SCs with their
elongated bodies. Scale bar: 5 µm.

in a multitude of neurodegenerative diseases such as multiple
sclerosis (MS; Bjartmar et al., 2003; Waxman, 2006), leukodys-
trophies (Garbern, 2007; Mar and Noetzel, 2010), Charcot-Marie
Tooth neuropathies and hereditary spastic paraplegias (Suter and
Scherer, 2003; Nave et al., 2007; Scherer and Wrabetz, 2008;
Timmerman et al., 2013), and a series of acquired metabolic,
inflammatory, and toxic neuropathies (Pardo et al., 2001; Meyer
Zu Horste et al., 2007; Said, 2007). In many of these debilitating
conditions, the culprit proteins and primary pathological events
are predominantly or even exclusively found in EG. Nevertheless,
aside from a narrow subset of cases where axonal damage is closely
associated with demyelination and axo-toxic inflammation, it is
poorly understood how defective EG contribute to axonal defects.

Importantly, early occurring axonal degeneration seems to be
the main driver of clinical symptoms and morbidity in these
conditions (Coleman, 2005; Nave et al., 2007; Taveggia et al.,
2010). In MS, for instance, there is evidence for interrupted axonal
continuity before the onset of demyelination, as well as following
reparative remyelination (Trapp et al., 1998, 1999; Nikic et al.,
2011; Manrique-Hoyos et al., 2012). Permanent neurological
deficits result from axon damage because of the limited regener-
ative capacity of neurons (Compston and Coles, 2008; Trapp and
Nave, 2008). Accordingly, delaying axonal attrition ameliorates
disease in animal models for a number of neurodegenerative

conditions associated with aberrant EG (Lo et al., 2002; Samsam
et al., 2003; Bechtold et al., 2004, 2005; Kaneko et al., 2006; Chitnis
et al., 2007; Meyer Zu Horste et al., 2011; Nikic et al., 2011).

There is now growing evidence that diminished support of EG
for axons, independent of alterations in myelination, is an impor-
tant event in the pathogenesis of above conditions (Edgar and
Garbern, 2004; Nave and Trapp, 2008; Nave, 2010a,b; Morrison
et al., 2013). Additionally, the ability of EG to support axons
in nerves and white matter could have a general impact on the
course of many other human neurological diseases. However, the
nature of the axonal support function conferred by EG remains
poorly defined. Clues for a better understanding may come from
data on the role of injury responses in EG, glial release of trophic
substances, and neurometabolic coupling between EG and axons.
Equally obscure are the molecular mechanisms that govern the
demise of long and vulnerable axons deprived of specific compo-
nents from EG. Here, valuable information may be gained from
advances in understanding experimental axon degeneration and
its underpinning mechanisms.

In this review, I first elaborate on some of the major recent
insights into axon degeneration models and its molecular reg-
ulation by cell- and non-cell autonomous pathways. I then
attempt to illustrate the current state of knowledge on novel
aspects of EG-axon communication which support the view
that EG ensure long-term axonal integrity by blocking axonal
auto-destruction programs. Combining these themes should
encourage the development of a more integrated approach that
addresses the cooperation between axons and their associated
glia in neurodegeneration. In closing, I propose that dysfunc-
tions of EG in conditions such as amyotrophic lateral sclerosis
(ALS) and metabolic neuropathies should be viewed as central
disease-modifying factors. Correcting these glial dysfunctions in
combination with regimes to stabilize axons should open the
way to novel therapeutic interventions for a broad range of
axonopathies.

CHALLENGES FOR THE MAINTENANCE OF LONG AXONS
Axons are extremely long structures, with lengths and volumes
often reaching 1000 times that of the parent neuronal cell
body (Friede, 1963; Twiss and Fainzilber, 2009). This feature
can be impressively demonstrated by long-range visualization
of a small subset of PNS and CNS axons (Beirowski et al.,
2004; Kerschensteiner et al., 2005). The extensive ramification or
branching of axons in many neurons increases the total length and
volume further (Matsuda et al., 2009). Correspondingly, axons
have a very high energy demand, not least due to the requirement
for maintenance and restoration of ion gradients, as well as the
uptake and recycling of neurotransmitters. A resting corticospinal
neuron, for example, consumes 4.7 billion ATP molecules per
second (Zhu et al., 2012b). Given the relative sizes of different
parts of the neuron, it is plausible to assume that this consump-
tion occurs to a considerable extent in the axon. The enormous
energy expenditure and the large volumes that are often spanned
by axons between the cell body and the axon terminal at synapses
confront neurons with a unique set of housekeeping challenges.
These include, but are not limited to, the demand for uniform dis-
tribution of cytoskeletal constituents, energetic supply to distant
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axon regions, maintenance of calcium homeostasis, sequestering
of aberrant axonal organelles and protein aggregates, endogenous
protection mechanisms from mechanical and oxidative stress
damage, and finally the need to transport various signals long
distances from, and back to, the cell body.

In light of these challenges, it is not surprising that axonal
homeostasis is compromised in many diseases. In recent years,
a large body of data has highlighted the importance of long-
range bidirectional axonal trafficking defects of axonal proteins,
mitochondria, vesicles and other cargo in their respective disease
mechanisms (De Vos et al., 2008; Morfini et al., 2009). The iden-
tity of the upstream mechanisms leading to the observed trans-
port decline, and the events that limit axonal health, however,
often remain unknown. Because of their length and metabolic
demand, axons are at continuous risk of damage, so it seems
unlikely that cell-autonomous mechanisms are sufficient for
their long-term maintenance. The unique cytoarchitecture with
many thousands of EG closely flanking densely packed axons
(Figures 1B, 2), suggests illustratively that EG may have an
important role in exogenous axon support. On the other hand,
the close proximity between axons and EG also suggests that even
ephemeral pathological events in few EG may lead to focal axonal
damage that could compromise the entire axon and therefore
neuronal function.

CELL-AUTONOMOUS REGULATION OF AXON DEGENERATION
Although axon degeneration and the associated changes
in non-neuronal elements are such widespread events in

neurodegeneration, we are just beginning to understand the
underlying mechanisms involving cell- and non-cell autonomous
pathways. Much of what we know about the cellular and molec-
ular regulation of axon degeneration in pathological conditions
originated in studies of experimental separation of PNS nerve
fibers from their parent neuronal cell bodies, and in work on
developmental axon elimination models (Coleman, 2005; Luo
and O’Leary, 2005; Saxena and Caroni, 2007; Jessen and Mirsky,
2008; Wang et al., 2012a). In many species, nerve transection, a
surrogate injury model for axon pathology in disease, results in
rapid disintegration of axonal components (within circa 2 days),
and a dynamic injury response in SCs and other cells distal to
the transection site. “Wallerian degeneration” (WD) is often used
as a more holistic term for this process to describe a collection
of changes also in non-neuronal components (e.g., myelin
collapse and ovoid formation, macrophage recruitment, breach
of the blood-nerve barrier), and ensuing nerve remodeling in
preparation for regeneration (Stoll et al., 1989; Vargas and Barres,
2007; Coleman and Freeman, 2010; Bosse, 2012; Rosenberg et al.,
2012). Since axon degeneration patterns in chronic pathologies
resemble this experimentally induced axon destruction pathway
structurally and biochemically, it is referred to as “Wallerian-like
degeneration” (WLD). WLD in disease has also mechanistically
been compared to axonal pruning in development, on the
grounds that both processes of axon degeneration share some
molecular features and sometimes progress retrogradely towards
the cell body (“dying back axonopathy”) (Spencer et al., 1976;
Luo and O’Leary, 2005; Saxena and Caroni, 2007).

FIGURE 2 | Schematic illustration showing scaled model of human

neuron/axon (black) in association with approximately 10,000 SCs

(green) in proportion to size of neuronal soma and axon terminal.

Note that axons in humans or larger mammals often traverse distances of
1 m or longer and are accompanied by SCs almost over their full length. Inset
shows higher magnification of boxed area in scaled model.
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WD and WLD were initially believed to represent passive
starvation or autolytic phenomena based on the assumption
that compromised axon portions were deprived of their somatic
nutritive sources (Vial, 1958; Schlaepfer, 1974; Lubinska, 1977).
Intriguing in hindsight, it was proposed that EG can substitute
for this nutritive function, given that in a number of invertebrates
and some vertebrates severed axons can survive for months with-
out their parent cell body (Bittner, 1991; Tanner et al., 1995).
However, the discovery and initial study of the WldS mouse, in
which WD of injured axons is dramatically delayed secondary to
intrinsic alterations in axons because of the WldS mutation (Lunn
et al., 1989; Perry et al., 1990; Glass et al., 1993; Crawford et al.,
1995; Coleman et al., 1998; Conforti et al., 2000; Mack et al.,
2001), led to a paradigm shift and changed the way we think
today about cell-autonomous mechanisms of axon degeneration.
It is now clear that isolated rodent axon segments can exist and
conduct electric signals for weeks without their cell bodies that
bear the WldS mutation or variants thereof (Tsao et al., 1994;
Mack et al., 2001; Beirowski et al., 2009; Sasaki et al., 2009; Babetto
et al., 2010). The WldS axon protection phenotype in vitro and
in vivo is due to the ectopic expression of the aberrant WldS

fusion protein which leads to the relocalization of nicotinamide
mononucleotide adenylyltransferase 1 (Nmnat1) to axonal com-
partments (Beirowski et al., 2009; Babetto et al., 2010; Sasaki
and Milbrandt, 2010; Cohen et al., 2012). Overexpression of the
isoform Nmnat3 in mitochondria and Nmnat2 in axons also
confers WldS-like axon protection in vivo (Yahata et al., 2009;
Milde et al., 2013a). Nmnat proteins (Nmnat1-3) are a group
of critical enzymes in the biosynthesis of NAD+, which plays a
vital role in energy metabolism, sirtuin biology, Ca2+ signaling,
and other cellular functions (Berger et al., 2004; Lau et al., 2009;
Ali et al., 2013). The exact working mechanism of WldS or
Nmnat-mediated protection of axons is still essentially unknown,
and a number of recent studies suggest a variety of occasionally
contradictory models of action. The models involve modifications
of axonal structure, organelles, and signaling under physiological
conditions, the axonal site of Nmnat1 action, modulation of the
mitochondrial permeability transition pore, a chaperone function
of Nmnat1, bioenergetic alterations in axons containing excess
Nmnat, and the involvement of other metabolic substrates besides
NAD+ (Wang et al., 2005; Suzuki and Koike, 2007a,b; Press and
Milbrandt, 2008; Wishart et al., 2008; Conforti et al., 2009; Sasaki
et al., 2009; Yahata et al., 2009; Barrientos et al., 2011; Avery et al.,
2012; Cohen et al., 2012; Fang et al., 2012; Shen et al., 2013). For a
more comprehensive review on working mechanisms of WldS and
axonal Nmnats, readers are referred to several recently published
review papers on this subject (Coleman and Freeman, 2010; Yan
et al., 2010; Fang and Bonini, 2012; Wang et al., 2012a).

Compellingly, WldS and its active component, axonal Nmnat1,
not only delay WD after experimental nerve lesion, but also WLD
and related pathologies in many mouse models of neurodegen-
erative disease (Wang et al., 2002; Ferri et al., 2003; Samsam
et al., 2003; Gillingwater et al., 2004; Sajadi et al., 2004; Mi
et al., 2005; Hasbani and O’malley, 2006; Kaneko et al., 2006;
Howell et al., 2007; Beirowski et al., 2008, 2010; Meyer Zu Horste
et al., 2011; Zhu et al., 2011, 2012a, 2013b). This suggests that
axon degeneration after acute injury shares mechanisms with

chronic axon loss occurring in neurodegeneration (i.e., WLD),
and both possibly converge onto a common execution program
for axonal dismantling. Two key components of this final path-
way could be axonal transport failure and calcium influx that
amongst other targets activates cysteine proteases such as calpains
whose inhibition also confers protection of injured axons in vitro
and in vivo (Ma, 2013; Ma et al., 2013). The aberrant WldS

protein exerts its effects through a gain-of-function mechanism
(WldS is not present in wild-type tissue) that can override
the induction of pro-degenerative machinery in injured axons.
Hence, axons should naturally be endowed with an endoge-
nous, active and genetically controlled self-destruction program,
similar to programmed cell death for the soma (Raff et al.,
2002; Saxena and Caroni, 2007; Coleman and Freeman, 2010).
This is plastically illustrated by spatiotemporal characterization
studies demonstrating that WD occurs in a fast and explosive
manner after a latency period, a process that can be blocked by
WldS expression (Beirowski et al., 2004, 2005; Rosenberg et al.,
2012).

In search for endogenous pathways regulating WD in wild-
type axons, anterogradely transported Nmnat2 has been proposed
as putative natural inhibitor of WD (Gilley and Coleman, 2010;
Milde et al., 2013a,b). Endogenous Nmnat2 is short-lived and
rapidly degraded following in vitro axotomy in cultured primary
neurons, and depletion of Nmnat2 triggers rapid degeneration
of uninjured neurites (Gilley and Coleman, 2010). Whether
endogenous Nmnat2 has the same properties in vivo, and thus
whether genetic deletion of Nmnat2 triggers spontaneous axon
degeneration post-developmentally, however, remains an open
question. The characterization of Nmnat2 knockout mice was
reported recently, but these mice display severe peripheral axon
outgrowth defects with perinatal lethality, precluding conclusions
about the putative axon maintenance function of Nmnat2 (Hicks
et al., 2012; Gilley et al., 2013).

While Nmnat2 acts as a negative regulator of WD, many
endogenous positive regulators have also been recently revealed
in genetic and pharmacological manipulations in mice, flies, and
in vitro models through observation of loss-of-function effects
(Miller et al., 2009; Barrientos et al., 2011; Gerdts et al., 2011;
Wakatsuki et al., 2011; Bhattacharya et al., 2012; Osterloh et al.,
2012; Xiong et al., 2012; Babetto et al., 2013; Gerdts et al.,
2013). These discoveries point to the existence of an evolutionary
conserved regulatory pathway that orchestrates the axon auto-
destruction program after injury. The loss-of-function of some of
these WD-promoting pathway components results in profound
protection of experimentally lesioned axons in their respective
mouse mutants much like that originally observed in WldS mice
(Osterloh et al., 2012; Babetto et al., 2013; Gerdts et al., 2013).
In contrast to modulation of axonal Nmnat levels, these targets
may be more amenable to pharmacological manipulation. Of
key importance, future studies must determine if these targets
prove effective for axonal protection in mouse models for neu-
rodegeneration, as this will elucidate whether they also have a
regulatory role during WLD. Ongoing forward genetic screen-
ing studies involving high-throughput in vitro and invertebrate
in vivo methods in several laboratories worldwide are expected to
uncover further candidate constituents that control axon stability.
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Additional active and cell-autonomous axon degeneration
pathways, mostly implicated in developmental axon pruning
models, are discussed in the following section focusing on
the role of neurotrophic factors in axon stability. Although
some molecules are shared with pathways governing WD (Low
and Cheng, 2005; Luo and O’Leary, 2005; Hoopfer et al.,
2006; Saxena and Caroni, 2007), separate mechanisms involv-
ing caspases appear to control them; interestingly, the canoni-
cal apoptotic program does not seem to be involved (Hyman
and Yuan, 2012). While their role for WLD in disease is
unclear, previous investigations demonstrate that apoptosis-like
signatures can appear in chronic mammalian axon degener-
ation (Ahmed et al., 2002; Melli et al., 2006; Smith et al.,
2011).

NON-CELL-AUTONOMOUS MECHANISMS OF AXON
DISMANTLING DURING WALLERIAN DEGENERATION (WD)
While the preceeding section discusses cell-autonomous
mechanisms of axon degeneration disregarding the role of EG,
there is emerging evidence that the rate of WD in the PNS can be
substantially influenced by modulation of rapid pro-degenerative
changes in SCs (Guertin et al., 2005; Parkinson et al., 2008;
Woodhoo et al., 2009; Napoli et al., 2012; Yang et al., 2012). This
implies that SCs might actively participate in the degenerative
signaling events that execute axon and myelin dismantling
in injured nerves, instead of simply sensing and cleaning up
cellular debris as a passive bystander. Indeed, inhibition of
pro-degenerative signaling in axon-flanking glia from Drosophila
suppresses degeneration of genetically destabilized motor axons
(Keller et al., 2011), similar to the protective effect of neuronal
WldS expression in flies (Massaro et al., 2009).

It is well established that SCs sense axonal injury, form myelin
ovoids, change their expression pattern towards an undifferenti-
ated state (also referred to as “dedifferentiation”), and participate
in the removal of axonal and myelin debris (Stoll and Muller,
1999; Hirata and Kawabuchi, 2002). Recent work has uncovered
that a range of signaling events and transcription regulators in
SCs, rapidly induced after nerve lesion, play an important role in
this reactive SC response and the progression of WD (Harrisingh
et al., 2004; Jessen and Mirsky, 2008; Parkinson et al., 2008;
Jung et al., 2011; Arthur-Farraj et al., 2012; Fontana et al., 2012;
Napoli et al., 2012; Yang et al., 2012). This opens the intriguing
possibility that injured nerves and axons may be stabilized by non-
neuronal manipulations. Remarkably, SCs can respond within a
few minutes to axonal transection by activation of the ErbB2
receptor tyrosine kinase located at their ad-axonal membranes
(Guertin et al., 2005). This is followed, within approximately
1 day, by induction of mitogen-activated protein kinase (MAPK)
signaling including Ras/Raf and Erk1/2 kinases, p38 and c-Jun
N-terminal kinase (JNK) (Harrisingh et al., 2004; Zrouri et al.,
2004; Guertin et al., 2005; Agthong et al., 2006; Napoli et al., 2012;
Yang et al., 2012), and further downstream actin polymerization
at SC sites of non-compact myelin such as Schmidt Lanterman
incisures (SLI; Jung et al., 2011). These events at SLI are known to
regulate SC-mediated ovoid formation. Rapid induction of Notch
signaling has also been demonstrated to accompany these early
SC responses (Woodhoo et al., 2009). Whether cross-signaling

between these pathways occurs in SCs is unknown. Strikingly,
genetic or pharmacological blockade of these responses by MAPK,
ErbB2 and actin polymerization inhibitors delays myelin break-
down and ovoid formation during WD in vitro and in vivo
(Guertin et al., 2005; Woodhoo et al., 2009; Jung et al., 2011;
Napoli et al., 2012; Yang et al., 2012). Conversely, induction of
Notch or Raf/Erk signaling in SCs results in WD-like changes
without the need to injure axons (Woodhoo et al., 2009; Napoli
et al., 2012). While the authors suggest that experimental induc-
tion of these pro-degenerative SC responses does not trigger
axonal injury within few days, it is not clear how these changes
impact on axonal integrity over longer periods of time. Moreover,
the fact that most of these ectopic signaling changes occur within
approximately 1 day after nerve lesion suggests that they may
precede the first structural signs of axonal breakdown during WD
in the PNS (Lubinska, 1977; George and Griffin, 1994; Beirowski
et al., 2005; Vargas and Barres, 2007). These signaling changes
also appear to coincide with the latency or commitment phase
of axon degeneration (Saxena and Caroni, 2007), suggesting that
they might provide instructive signals for axonal breakdown. In
support of this hypothesis, the substantially slower rate of axonal
disintegration following experimental transection lesion in the
mouse CNS (Beirowski et al., 2008, 2010; Babetto et al., 2013)
versus the PNS (Beirowski et al., 2008, 2010) may be partially
explained by the observations that similar pro-degenerative injury
responses in OLGs in the CNS are weaker or absent (Hunt
et al., 2004; Vargas and Barres, 2007). It appears that in the CNS
microglia largely take over pro-degenerative response functions
responsible for the eventual clearance of sick axons (Hosmane
et al., 2012), but this occurs over a protracted time when com-
pared to the removal of axons by SCs and invading macrophages
in the PNS (Vargas and Barres, 2007).

It is known that the described intracellular signaling cascades
in reactive SCs are able to control the expression and activation of
various downstream transcription factors. Indeed, in addition to
Notch regulation, the transcription factor c-Jun is rapidly upregu-
lated after nerve injury in denervated SCs, an event that has been
directly linked to the SC injury response and de-differentiation
(Parkinson et al., 2008). Remarkably, the deletion of c-Jun selec-
tively in SCs delays WD following nerve transection, largely by
increased preservation of myelin sheaths. As a consequence, simi-
lar to WldS mice (Brown et al., 1992) (which fail to activate c-Jun),
SC-specific c-Jun knockout mice display a dramatic inability to
regenerate their nerves (Arthur-Farraj et al., 2012). Intriguingly,
c-Jun activation exclusively in SCs in WldS mice is sufficient
to destabilize distal transected axons in WldS mutants (Arthur-
Farraj et al., 2012). In this way it is possible to abrogate the anti-
regenerative signals present in preserved WldS nerve stumps.

While the implications of better understanding of cell-
autonomous axon degeneration mechanisms are clear, the above
data raise the question about the relevance of manipulation of SC
injury responses in axonal disease. The injury-induced signaling
cascades in SCs may have the capacity to modulate axonal stability
in a non-cell-autonomous manner. Sick axons in disease are likely
to elicit similar pro-degenerative SC injury responses that could
be detrimental to axons by reciprocal amplification of damage
over time. Such axons may have not yet entered a commitment
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phase of degeneration, and their damage may thus be potentially
revertible. Furthermore, reactive SCs prominently trigger inflam-
matory signals that attract macrophages with other immune
cells (Napoli et al., 2012). In an environment of densely packed
axons, this might compromise uninjured neighbor axons. Thus,
modulation of the SC injury responses may serve as a therapeutic
approach to limit the expansion of axon damage in disease. Of
note, increased levels of c-Jun in nerve specimens from patients
with peripheral axonal neuropathies have been recently reported
(Hutton et al., 2011), and high levels of ErbB2 and MAPK
signaling activation with inflammatory responses have been doc-
umented in peripheral neuropathy situations (Tapinos et al., 2006;
Kohl et al., 2010). It is not known if these glial injury responses are
the causes or effects of axonal damage in these conditions. Fur-
ther studies are required to determine the temporal relationship
between axonal damage and occurrence of the first signs of glial
injury response, and it is necessary to test the therapeutic potential
of blocking these responses. Even if pro-degenerative responses
in SCs follow axon damage in these conditions, the therapeutic
restriction of axon-glia interactions resulting in reduction of
inflammatory events may limit axonal damage.

Taken together, recent advances demonstrate that axon degen-
eration after distinct insults is an active and tightly orchestrated
self-destructive process. The discovery of neuronal gain and loss-
of-function mutations that inhibit axon degeneration opens for
the first time the possibility to stabilize diseased axons, so far a
therapeutically unexploited area in neurodegenerative conditions.
Additionally, there is now evidence showing that dismantling
of injured nerves is also dependent on non-cell-autonomous
mechanisms in form of a pro-degenerative SC injury response.
The mechanistic relationship between endogenous axonal auto-
destruction and the pathways regulating these glial responses is
unknown, a problem that begins with the lack of understanding
how EG sense axonal injury. Moreover, it is unclear if glial reactive
responses could drive axonal destabilization in chronic disease
conditions. In sum, these considerations blur the line between
neuronal and non-neuronal pathways regulating integrity of the
axon-glia unit.

DEPLETION OF ENWRAPPING GLIA (EG) RESULTS
IN COMPROMISED AXON INTEGRITY
The hallmark role of EG in axonopathies and the behavior of
SCs in response to axonal injury invites the question of which
functions EG generally have for axon stability under physiological
conditions. First, illustrative in a simplified model, it is clear from
innumerable culture studies that maintenance and functional-
ity of PNS and CNS neurons and their processes is markedly
extended if they are cultured together with EG or other glial
cells, or after administration of glia-conditioned medium (Selak
et al., 1985; Takeshima et al., 1994; Meyer-Franke et al., 1995;
Sortwell et al., 2000; Wender et al., 2000; Gardner et al., 2012).
Second, a number of rodent in vivo models have been developed
providing a valuable resource to investigate the consequences of
genetic or cytocidal ablation of EG for axon integrity. Depleting
SCs during development by ErbB2 or ErbB3 deletion does not
grossly impair initial muscle innervation, but the absence of SCs
results in dramatic degeneration of mouse ventral root axons

and terminal axon portions at NMJs, prompting the idea that
EG could promote the trophic support of axons (Riethmacher
et al., 1997; Woldeyesus et al., 1999; Lin et al., 2000). In fact, axon
terminal degeneration in mice also can be triggered by exogenous
neuregulin manipulation (neuregulin is a potent SC migration
stimulator) that leads to departure of perisynaptic SCs from NMJs
(Trachtenberg and Thompson, 1997). Similarly, ablation of such
SCs at NMJs by complement-mediated cell lysis in tadpoles,
results in retraction and degeneration of axon terminals (Reddy
et al., 2003). Regarding sensory fibers, selective apoptotic reduc-
tion of non-myelinating SCs in mice elicited through disruption
of ErbB receptor signaling leads to degeneration of small diam-
eter nociceptive axons (Chen et al., 2003). Intriguingly, similarly
progressive degeneration of exclusively small sensory axons occurs
after disruption of fibroblast growth factor 1 and 2 (FGF-1, 2)
signaling in SCs (Furusho et al., 2009).

Recently, several groups tested the consequences of targeted
ablation of OLGs in the mouse CNS. Diphtheria toxin (DT)—
mediated death of exclusively OLGs results in CNS axon degen-
eration in form of fiber dystrophy (Ghosh et al., 2011a; Pohl
et al., 2011; Oluich et al., 2012). Importantly, OLG death and
concomitant axon damage can occur in the absence of overt
demyelination and independent of immune activity excluding the
possibility that axon damage is triggered mostly by inflammatory
processes (Pohl et al., 2011; Oluich et al., 2012). This corroborates
the notion that CNS axons require the physical presence of OLGs
for preservation of their integrity.

Collectively, these sets of in vitro and in vivo observations
indicate that axons cannot exist in isolation without their EG. This
suggests that substances released from EG are essential for axonal
function and integrity.

THE ROLE OF MYELINATION FOR LONG-TERM AXONAL
MAINTENANCE
An intriguing and recurrent debate regards whether the myelin
coat of axons may be beneficial for maintenance of their integrity.
It is founded on a series of classical studies involving experimental
manipulation of myelin formation, extensive research on myelin-
specific inherited and autoimmune diseases, and more recently on
the observations that axonal transport failure and WLD occur in
mutant mice that lack specific myelin proteins (a comprehensive
review of the literature is provided in Nave, 2010a,b).

EG derived myelin is a multilamellar, tightly compacted mem-
brane that consists largely of lipids and proteins (Chrast et al.,
2011). Proteolipid protein (PLP) is the major myelin protein
in the CNS while protein zero (P0) is the major constituent in
PNS myelin (Yin et al., 2006). Myelin is sometimes viewed as
a protective sheet that shields axons from exposure to harmful
extracellular milieu, a property that is compromised in demyeli-
nating diseases. Accordingly, the axonal degeneration observed in
some PNS hypomyelinating mutants was believed to be due to
absence of myelin (Rosenfeld and Freidrich, 1983; Barron et al.,
1987). It is, therefore, often presupposed in the current literature
that myelin itself is axoprotective (e.g., Tawk et al., 2011). This
could be especially true for large diameter axons, as during trans-
mission of action potentials the compact myelin sheath clearly
reduces axonal energy consumption (Rosenbluth, 2009). Thus,

Frontiers in Cellular Neuroscience www.frontiersin.org December 2013 | Volume 7 | Article 256 | 6

http://www.frontiersin.org/Cellular_Neuroscience
http://www.frontiersin.org/
http://www.frontiersin.org/Cellular_Neuroscience/archive


Beirowski Enwrapping glia control axon integrity

bioenergetic requirements may be limiting for long-term preser-
vation of demyelinated large axons in disease. However, it was
also speculated that myelin may provide axonal support through
embedded trophic molecules (Bjartmar et al., 2003; Yin et al.,
2006; Wilkins et al., 2010). Yet, experimental blockade of compact
myelin formation in the PNS and CNS did not result in WLD
as seen in demyelinating pathologies, despite the observation of
reduced axonal diameter (Aguayo et al., 1979; De Waegh et al.,
1992; Colello et al., 1994).

There appears to be an increasing consensus now that the pos-
tulated axon support function of SCs and OLGs is independent
from compact myelination although the removal of myelin can
have detrimental consequences for axons (Edgar and Garbern,
2004; Nave and Trapp, 2008; Nave, 2010a,b; Morrison et al.,
2013). In other words, although a myelinotrophic effect for overall
axon maturation is unquestionable, the absence of myelin as such
does not necessarily impair axonal survival. For example, Shiverer
mice (deficient for myelin basic protein (MBP)) do not show
loss of any axon population despite virtual absence of myelin
(Rosenbluth, 1980a,b; Griffiths et al., 1998), and display increased
instead of decreased axonal transport components (Kirkpatrick
et al., 2001). Similar findings with no axon demise have been
recently obtained in myelin-depleted shaker rats even in aged
animals (Smith et al., 2013). On the contrary, deletion of only PLP
from CNS compact myelin results in defective axonal transport
(Edgar et al., 2004), and robust axon degeneration in form of
axonal swelling and continuity interruption (Griffiths et al., 1998;
Garbern et al., 2002; Yin et al., 2006). Strikingly, the PLP loss does
not have much consequence for the formation of compact myelin
(Klugmann et al., 1997; Rosenbluth et al., 2006) indicating that
this genetic intervention decoupled the role of OLG for myelin
formation from its role for axonal maintenance. The appearing
axonal swelling or dystrophy in absence of PLP is a hallmark of
WD and WLD in the CNS (Coleman, 2005; Beirowski et al., 2010)
which can be blocked by WldS axon protection in other chronic
axon degeneration models (Mi et al., 2005).

Moreover, 2′,3′-Cyclic nucleotide 3′- phosphodiesterase
(CNP), a myelin protein with the ability to enzymatically convert
2′,3′-cyclic adenosine monophosphate (cAMP) to 2′-adenosine
monophosphate (AMP) and thereby promote production of
adenosine, is equally essential for normal long-term axonal
integrity, but dispensable for myelination, as mice with a
targeted disruption of the CNP gene develop late-onset CNS
axonal degeneration despite only marginal myelin abnormalities
(Lappe-Siefke et al., 2003). The additional deletion of PLP in
these mutants substantially aggravates the axonal demise, but
not myelin defects (Edgar et al., 2009). Finally, grossly normal
myelin can be formed in the absence of enzymes important for
synthesis of specific myelin lipids, but surprisingly this results
in axon degeneration (Sheikh et al., 1999; Zoller et al., 2008).
The mechanisms of how absence of these myelin proteins and
lipids causes axonal degeneration have not been identified, but
biochemical screening studies suggest that some of these proteins
may facilitate the transport of trophic substances from OLGs
that could be important for axonal integrity (Werner et al.,
2007). Alternatively, in the case of CNP deletion for example, an
increased content of toxic 2′,3′-cAMP or diminished production

of neuroprotective adenosine in OLGs may be at least in part
responsible for axonal destabilization (Verrier et al., 2013).

As a whole, in recent years it became increasingly clear that the
postulated axon-support function of EG is independent of myeli-
nation per se. Rather, it appears that specific myelin components
produced in EG are required for long-term axonal preservation.
The underpinning mechanisms remain to be identified, and it is
unclear if these constituents play also a role for the survival of
peripheral axons. On the other hand, inflammatory removal of
myelin in demyelinating conditions such as MS may destabilize
axons by leaving them exposed to injury by deleterious immune
components. Independently, demyelination can also contribute
to axonal degeneration through aberrant axonal domain organi-
zation and impairment of axonal transport (Salzer, 2003). Thus,
remyelination is a favored goal in these conditions (Franklin and
Ffrench-Constant, 2008).

CORRECT AXON-GLIA CONTACT IS ESSENTIAL FOR AXONAL
SUPPORT BY ENWRAPPING GLIA (EG)
A logical prerequisite for trophic support of axons by EG is correct
physical alignment between these two cell types, especially at
sites of specialized contact between the axolemma and the ad-
axonal membrane of EG. These axo-glial junctions are locations
of highest probability for delivery of trophic substances. In addi-
tion, correct arrangement of putative nutritive channels of non-
compact myelin between axons and myelinating EG should be
crucial, a feature inextricably linked to myelination. These may
include structures such as the inner mesaxon, SLIs, and paranodal
cytoplasmic loops (Duncan et al., 1996; Lopez-Verrilli and Court,
2012). Consequently, severance of such transport systems and
impaired membrane contact by defects in molecules mediating
cellular adhesion could result in axon instability because of the
failure to transfer nutritive substances from the EG into the axon.
Such disruption may occur in chronic axonopathies as a con-
sequence of extensive demyelination, or perhaps alongside only
subtle changes in the myelin architecture secondary to mutations
in structural proteins.

A number of studies have documented evidence for this model.
Physical interaction between EG and axons and regulation of
axo-glial junction formation in myelinated fibers are mediated
by various adhesion molecules such as L1, myelin-associated
glycoprotein (MAG), the Necl proteins, NrCam, neurofascin 155
and 186, Neural Cell Adhesion Molecule (N-CAM), N-cadherin,
Caspr (NCP1), contactin and their associated scaffolding pro-
teins (Poliak and Peles, 2003; Salzer et al., 2008). Deletion of
several of these proteins in vitro and in vivo results in aberrant
axo-glial contact, reduced adhesion between axolemmal and ad-
axonal membrane domains, and eventually in axon degeneration
(Scotland et al., 1998; Yin et al., 1998; Haney et al., 1999; Pan et al.,
2005; Garcia-Fresco et al., 2006; Buttermore et al., 2011; Golan
et al., 2013). For instance, L1 deficient mice develop progressive
loss of unmyelinated sensory axons owing to reduced axonal
attachment to SC processes (Haney et al., 1999). Notably, loss
of axonal L1 does not lead to failure to myelinate or maintain
large fibers, suggesting that axonal L1 is specifically required
to mediate appropriate contact between non-myelinating SCs
and their axons. In contrast, MAG appears to be necessary for
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maintenance of contact between myelinating SCs and large diam-
eter axons in adult animals, as MAG knockout mice develop
late-onset axonal detachment from EG and consecutive axon
degeneration, while producing comparatively normal myelin (Yin
et al., 1998; Pan et al., 2005). Intriguingly, expression of MAG also
stabilizes injured axons during WD and following other axonal
insults (Nguyen et al., 2009). Thus, the early disturbance of MAG
expression together with other adhesion molecules in chronic
axonopathies may contribute to axonal destabilization (Kinter
et al., 2012). Moreover, Caspr mutant mice develop aberrant
paranodal junctions, axonal transport defects of mitochondria
in sciatic nerves, and dystrophic degeneration of long Purkinje
cell axons (Einheber et al., 2006; Garcia-Fresco et al., 2006).
These findings support the idea that proper structure of nutritive
channels in paranodes is essential for support of axons.

In short, these reports underscore the importance of tight
apposition and correct configuration of critical membrane
domains of EG and axons to ensure delivery of trophic substances
and thus the long-term maintenance of the axon.

THE ROLE OF NEUROTROPHIC FACTORS IN THE SUPPORT
OF AXONS BY ENWRAPPING GLIA (EG)
Correct neurotrophic factor signaling is absolutely necessary for
the function of the nervous system, including normal develop-
ment, differentiation, and survival, as well as synaptic plasticity
and transmitter release. Because EG produce and release various
neurotrophic factors, and these molecules have been implicated
in axonal stability in the last years (see below), it is important
to evaluate their roles in the context of axon-glia interaction.
Neurotrophic factors can be divided into the categories neu-
rotrophins, the glial cell-line derived neurotrophic factor (GDNF)
family, neurokines (e.g., ciliary neurotrophic factor (CNTF)),
and other pluripotent growth factors (e.g., Insulin-like growth
factor 1 (IGF-1)). Neurotrophic functions relevant for neuronal
health are best studied for the neurotrophin family members
nerve growth factor (NGF), NT3, NT4/5, and BDNF, which are
target-derived growth factors that signal through the TrkA, B, and
C members of the receptor tyrosin kinase family, and through
the common low-affinity P75NTR receptor (Chao, 2003). Further,
secreted neurotrophins and other growth factors and mitogens
orchestrate various stages of EG development and myelination by
acting upon their receptors expressed in EG itself or by eliciting
secondary axonal signals, a function studied mostly in in vitro
models (Rosenberg et al., 2006).

In neurons, following interaction with their receptors (on
the axonal surface), many neurotrophin signals are propagated
retrogradely along the axon by endosomal trafficking of
macromolecular complexes towards the cell body in order
to exert their biological effects in neuronal compartments
(Harrington and Ginty, 2013). This is not only important for
neuronal development and maintenance under physiological
conditions, but also for appropriate response to neuronal injury
to initiate regeneration. Studies of cultured primary neurons and
a multitude of knockout mouse models for neurotrophic factors
demonstrated the importance of the downstream pathways for
the suppression of developmental apoptosis, for example by
transcriptional upregulation of pro-survival genes in neurons.

Because of the overall degeneration of all neuronal portions after
neurotrophic factor deprivation in this setting, a maintenance
role for these factors on the axonal compartment is generally
difficult to deduce. However, a direct role for selective axon
maintenance is supported by circumstantial evidence. For
example, although accompanied by premature lethality in the
majority of mutants, surviving NT3 knockout mice initially
form normal appearing motor innervation, which is rapidly
followed by catastrophic breakdown of intramuscular nerve
branches and axon terminals (Woolley et al., 2005). Remarkably,
the nerve degeneration visualized by neurofilament labeling
closely resembles paradigms of experimental axon degeneration
after nerve cut. This suggests that NT3 is not necessary for
development of a subset of motor neurons and their axons, but
later required for axonal preservation. Other in vivo support for a
local action of individual neurotrophins for axon stability comes
from research on peripheral neuropathies that are secondary to
mutations in neurotrophin-retrograde-transport machinery such
as the small GTPase RAB7 implicated in axonal Charcot-Marie-
Tooth type 2B disease (Deinhardt et al., 2006; Zhang et al., 2013).

In the last years significant independent evidence has accu-
mulated supporting local neurotrophic factor function in axons,
primarily that of neurotrophins and CNTF, which control axonal
integrity. By developing a compartmentalized chamber system in
which the somatic portion of the neuron is divided from the axon,
the Campenot laboratory demonstrated that local withdrawal
of NGF from the axonal compartment results in degeneration of
the sympathetic axons, with no immediate effect on survival of
the neuronal cell body (Campenot, 1994). Recently, an emerging
body of literature has more closely implicated neurotrophin sig-
naling in the control of axonal degeneration, and elucidated some
of the downstream signaling events following withdrawal. NGF
deprivation (or withdrawal of other neurotrophins) in axons from
primary neurons in compartmentalized chambers or microfluidic
culture systems simulates a degeneration process often referred
to as axonal pruning. This is considered a model for develop-
mental axon degeneration meant to remove superfluous neuronal
projections, but also for WLD in disease (Raff et al., 2002; Luo
and O’Leary, 2005; Saxena and Caroni, 2007). Using sensory
or sympathetic axons, a number of reports demonstrated the
involvement of selective apoptotic pathway components (mainly
caspase 3, 6 and 9 downstream of the death receptor DR6) in
the local regulation of this mode of axon degeneration (Nikolaev
et al., 2009; Schoenmann et al., 2010; Vohra et al., 2010; Simon
et al., 2012; Uribe et al., 2012; Cusack et al., 2013; Unsain et al.,
2013). The mechanisms that ultimately lead to activation of this
apoptosis-like system are largely unknown. It has been recently
shown, however, that degeneration of axons induced by neu-
rotrophic factor deprivation is regulated by signaling pathways
such as Dual leucine zipper kinase (DLK) and glycogen synthase
kinase-3β (GSK3β) signaling, specific transcriptional regulators,
local protein synthesis of axonal survival factors (Impa1, Lam-
inB2, B-cell lymphoma w (Bcl-w)), and the ubiquitin protea-
some system (Watts et al., 2003; Macinnis and Campenot, 2005;
Andreassi et al., 2010; Ghosh et al., 2011b; Wakatsuki et al.,
2011; Chen et al., 2012b; Yoon et al., 2012; Cosker et al., 2013).
Importantly, some of the discovered pathways in culture model
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systems appear to be relevant for chronic axon degeneration
models in vivo (Courchesne et al., 2011; Smith et al., 2011).

Conversely, neurotrophins can also be axon-destructive
suggesting a disparate nature, similar to what is reported
about opposing neurotrophin effects on cell survival or glial
development (Chan et al., 2004). This initially has been shown
in an in vivo model to study development of sympathetic and
olfactory sensory axons, in which activity-dependent release of
BDNF by axons caused degeneration of competing neighbor
axons via activation of p75NTR (Cao et al., 2007; Singh et al.,
2008). Before that, a function of p75NTR in axonal degeneration
has also been proposed based on studies utilizing p75NTR

overexpression in cultured neurons derived from embryonic stem
cells (Plachta et al., 2007). Moreover, BDNF binding to p75NTR

in adult septal cholinergic axons can induce local degeneration
mediated by axonal caspase-6 activation, and BDNF antibodies
inhibit this effect (Park et al., 2010).

It is widely appreciated that SCs are important providers
of growth factors including neurotrophins, and that the release
is dynamically and differentially regulated in distinct SC pop-
ulations especially following experimental nerve transection
(Sendtner et al., 1992b; Funakoshi et al., 1993; Friedman et al.,
1996; Frostick et al., 1998; Brushart et al., 2013). First, neu-
rotrophic factor secretion from SCs considerably supports axonal
growth and provides important guidance cues for regenerating
fibers to reach appropriate peripheral targets (Chen et al., 2007).
Second, neurotrophins released from SCs have a vital role in
the regulation of pathways leading to myelination (Rosenberg
et al., 2006; Xiao et al., 2009). One of the most notable pathways
was discovered in in vitro studies investigating the function of
SC-derived NGF and BDNF, which were shown to stimulate
myelination of DRG axons via p75NTR or Trk receptors, while NT3
regulates myelination negatively via TrkC on SCs (Chan et al.,
2001, 2004; Cosgaya et al., 2002). Together, these functions form
the basis for therapeutic interventions by SC transplantation in
the injured rodent CNS (Xu et al., 1997; Hu et al., 2005).

Much less interpretable data is available on the role of SC-
derived neurotrophic factors for long-term axonal maintenance
under basal conditions and during chronic neurodegeneration.
SCs clearly are a source of growth factors that largely can affect
the survival of neurons. For example, constitutive neurotrophin
secretion occurs in cultured SCs, and this extends neuronal via-
bility, which is also enhanced if neurons are treated with condi-
tioned SC medium containing these neurotrophins (Taylor and
Bampton, 2004; Thippeswamy et al., 2005). Moreover, following
spinal cord repair, expression of NT3 and other neurotrophins in
SCs sustains survival of newly regenerated axons, and reduction
of NT3 results in axonal die-back (Hou et al., 2012). It has been
speculated that axonal destabilization in peripheral neurodegen-
eration may be due to reduced delivery of neurotrophic factors
from SCs into axons (Friedman et al., 1996; Haney et al., 1999;
Gatzinsky et al., 2003; Nobbio et al., 2009). Indeed, a decline
in SC-derived IGF-1 and other growth factors accompanying
axon degeneration was recently reported in a mutant superoxide
dismutase 1 (SOD1) mouse model for ALS (Lobsiger et al.,
2009). Furthermore, reduced expression of CNTF in SCs is
observed in the most common form of hereditary peripheral

neuropathy (Charcot-Marie-Tooth Disease type 1A (CMT1A)),
which is characterized by axonal atrophy (Friedman et al., 1996;
Nobbio et al., 2009). CNTF, in contrast to other factors not
necessary for neuron development, is predominantly released by
SCs (the release mechanism is essentially unknown), and whole-
body genetic ablation of CNTF in mice results in early degenera-
tion of facial motor axons (Masu et al., 1993). The motor axon
degeneration is preceded by axonal atrophy and abnormalities
at juxtaparanodal junctions between SCs and axons (Gatzinsky
et al., 2003). In line with an axonal maintenance role, CNTF
administration blocks motor axon degeneration in pmn mice
(Sendtner et al., 1992a), and in the mutant SOD1 mouse model
for ALS (Pun et al., 2006), two paradigms with early occurring
distal axon damage. Mechanistically, it was recently demonstrated
that CNTF acts locally in sick motor axons to control microtubule
stability via the Janus kinase-Signal Transducer and Activator of
Transcription 3 (JAK-STAT3) pathway and stathmins (Selvaraj
et al., 2012). Finally, erythropoietin (EPO) released from SCs
appears important for axon protection (Keswani et al., 2004),
and it is possible that EPO both functions by reducing SC pro-
degenerative responses in injured nerves, and by increasing axon
stability (EPO receptor is present on axons as well as on SCs)
(Li et al., 2005; Campana, 2007). Remarkably, administration of
EPO and induction of signaling leading to its enforced expression
ameliorates axon pathology induced by acrylamide in vivo, while
inhibition of SC-derived EPO makes axons more vulnerable to
neurotoxic paradigms (Keswani et al., 2004, 2011). In view of
these results, axo-protective EPO therapy and application of other
neurotrophic factors has been suggested for treatment of heredi-
tary peripheral neuropathies (Nave et al., 2007).

Similar to SCs, OLGs excrete growth factors such as NGF,
NT3, BDNF, GDNF, and IGF-1, with a proposed trophic support
role for various CNS neurons, and also for their axonal compart-
ments under distinct experimental circumstances (Wilkins et al.,
2001, 2003; Du and Dreyfus, 2002; Dai et al., 2003; Wilkins and
Compston, 2005; Smith et al., 2013). Based on exclusion experi-
ments with specific inhibitors and blocking antibodies, Dai et al.
(2003) proposed that other yet-to-be identified trophic substances
sustain neuronal health (Dai et al., 2003). One of these may be
FGF-9, whose expression has been reported in adult OLGs in vivo
(Nakamura et al., 1999). The above data do not fully resolve
the question of whether the trophic effects nourish the axonal
or the cell body compartment or both, but they are certainly
consistent with a possible function in axonal support. Future
experimentation is needed for characterizing their role in more
detail, for example by employing precise spatiotemporal analysis
of axon degeneration in vivo following controlled withdrawal or
block of these factors from OLGs.

Taken together, work from the last few years unveiled a
central role of neurotrophic factors for axonal maintenance,
predominantly in in vitro models. Axons seem to engage an
apoptosis-like cascade following local deprivation or sometimes
elevation of these factors. Although considerable evidence
underscores an important function for release of neurotrophic
factors from SCs and OLGs for axonal growth and myelination,
their precise role as EG-derived axonal maintenance factors
remains to be determined. Future studies, employing inducible
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EG-specific deletion for neurotrophins and other growth factors
in vivo, and compartmentalized culture investigations in vitro,
may elucidate these open points.

SUPPORT OF AXONS BY ENWRAPPING GLIA (EG) VIA
VESICULAR TRANSPORT OF TROPHIC SUBSTANCES
Long axons may not only depend on delivery of neurotrophic
factors, but also on other macromolecules from adjacent glia.
Since there is no evidence for intercellular cytoplasmic junctions
between EG and axons (Nualart-Marti et al., 2013), transport
of extracellular microvesicles that contain trophic components
is a prime candidate (Simons and Raposo, 2009). Exchange of
such vesicular vectors has emerged as key factor for intercel-
lular communication in the last decade, being involved in the
regulation of a diverse range of biological processes. One of the
first clues for vesicular transport from EG into axons came from
studies indicating transfer of labeled proteins, lipids, and RNA
from axon-flanking glia into anucleated giant axons from squid,
crayfish, and goldfish (Jakoubek and Edstrom, 1965; Lasek and
Tytell, 1981; Gould et al., 1983; Tytell et al., 1986). As mentioned
above, such injured axons can survive for months, a feat that
may partially be explained by postulates that squid glial cells
replenish the axonal protein pool by transferring as much as 40%
of their newly synthesized proteins to the giant axon (Lasek and
Tytell, 1981). One particularly interesting group of transported
proteins are heat shock proteins (HSPs), which a study in crayfish
suggested may protect axons from stress and injury (Sheller et al.,
1998). Meanwhile, migration of fluorescently labeled vesicles
from glia into the squid giant axon were observed (Buchheit
and Tytell, 1992), suggesting a special mode of exchange exists
between EG and the axon. Subsequently, similar observations and
interpretations were made in the PNS and CNS of vertebrates
including rodents (Campbell and Peterson, 1993; Edbladh et al.,
1994; Duncan et al., 1996).

Research from the past few years has given significant
insight into the nature of a particular class of EG-secreted
vesicles, and into their neuronal and axonal internalization
(Kramer-Albers et al., 2007; Hsu et al., 2010; Bakhti et al., 2011;
Fruhbeis et al., 2012, 2013; Lopez-Verrilli and Court, 2012).
We now know that at least OLGs follow an unconventional
secretory pathway by releasing lipid-bilayer enclosed exosomes,
50–100 nm large vesicles derived from late endosomes and mul-
tivesicular bodies (MVB), that contain a wide array of putative
trophic components (Kramer-Albers et al., 2007; Hsu et al.,
2010; Bakhti et al., 2011). The secretion occurs in a calcium-
dependent manner and is facilitated by neuronal activity via
glial ionotropic glutamate receptors (Fruhbeis et al., 2013). Exo-
some internalization and functional incorporation of the content
by neurons recently has been demonstrated in vivo (Fruhbeis
et al., 2013). Intriguingly, many of the proteins identified by
mass spectrometry in these exosomes are enzymes involved in
carbohydrate and lipid metabolism and components previously
involved in neuroprotection such as chaperones, HSPs, enzymes
that help reducing oxidative stress, and the sirtuin Sir-two-
homolog 2 (SIRT2; Kramer-Albers et al., 2007). This cytoplasmic
NAD+ dependent sirtuin has been recently implicated in cell-
autonomous axonal stability mechanisms, toxin-induced axon

degeneration, and the pathways mediating the WldS phenotype
(Suzuki and Koike, 2007a,b; Wishart et al., 2012). Moreover,
exosomes contain cytoskeletal elements, ribosomal constituents,
and RNA possibly together with microRNA species. Arguing for a
neuronal maintenance role, it was further shown that the admin-
istration of exosomes from OLGs to cultured neurons supports
their metabolism and increases neuronal viability under stress
conditions (Fruhbeis et al., 2013). It will be interesting to see
in future studies if exosomes protect axons selectively from such
insults.

The exosomal transfer of RNA species is consistent with
a recent study demonstrating transport of 5-Bromouracil
(BrU) labeled RNA from SCs into axons which colocalizes
with actin and myosin after axon transection (Sotelo et al.,
2013). Direct association between these components was shown
using Fluorescence Resonance Energy Transfer (FRET) analysis
(Canclini et al., 2013). In accord with the hypothesis that actin
and myosin drive this RNA transfer, such transport appears
mitigated in myosin5a knockout mice (Sotelo et al., 2013).
There is also evidence for occasional vesicular transport of
entire ribosomes from SCs into peripheral axons, and this
transport appears strongly increased in injured axons (Court
et al., 2008, 2011). This suggests the fascinating possibility that
EG supply axons transcellularly with the entire set of machinery
for production of axo-protective constituents locally. In fact,
axons are autonomous regarding protein translation to some
extent, as ribosomes, mRNA and obligatory translation regulators
can be found in distal axons (Holt and Bullock, 2009; Twiss and
Fainzilber, 2009). These components may be transported into the
long axon all the way from the distant neuronal cell body, and also
transferred from the nearby flanking glia for accelerated delivery.
It is appealing to speculate that axonal translatome components
described as axonal stability or survival factors such as Impa1,
LaminB2 and Bcl-w could be transferred from EG (Andreassi
et al., 2010; Yoon et al., 2012; Cosker et al., 2013).

These studies lend support for the concept that EG maintain
axons by releasing exosomes and other vesicles. Our understand-
ing of the mechanisms regulating the release, transport, and
axonal uptake of these vesicles is still in its infancy. So far it is
unknown if SC-derived exosomes or similar vesicles (Chen et al.,
2012a; Zhu et al., 2013a) can be internalized by peripheral axons,
and exert protective functions. Since these vessels are known to
carry small molecules including RNA, macromolecular complexes
and even entire organelles, they could impact axon integrity
on various mechanistic levels. Future studies employing genetic
mouse models and compartmentalized systems should determine
the effects of disturbed vesicle secretion from EG on axonal
integrity. Such work will also help to understand if exosomes are
positive or negative regulators of myelination (Bakhti et al., 2011).
If vesicular transfer proves axo-protective, the next step will be the
identification of the components crucial for this function.

SUPPORT OF AXONS BY ENSHEATHING GLIA IMPLICATING
INTERMEDIATE ENERGY METABOLIC PATHWAYS
The study of intermediate metabolism in the neurosciences
has been often eclipsed by other subjects in the last decades.
Metabolism recently started to experience a renaissance in light
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of new methodology, the importance for pathophysiology in
man, and compelling evidence that energy metabolism in neu-
rons and glia is closely linked. Additionally, the implication
of crucial metabolic enzymes (i.e., Nmnat) and mitochondrial
function in regulating axon integrity makes this field particularly
appealing. There is no doubt that all anabolic functions are
sustained by properly regulated energy metabolism, that is the
conversion of carbohydrates and other fuels in order to generate
ATP. Thus, it is obvious that the outlined support functions of
EG can be impaired by defective energy metabolism. Further-
more, very specific metabolic functions in EG may support axons
directly, as exemplified in the prevailing energy transfer model
between astrocytes and neurons (astrocyte-neuron lactate shuttle)
(Pellerin and Magistretti, 1994; Belanger et al., 2011). Given the
intimate relationship between axons and EG (Figures 1, 2), a
metabolic cooperativity seems plausible to maintain the EG-axon
unit.

Recent work and novel genetic mouse models gave astounding
initial insight into the consequence of metabolic defects in EG for
axonal integrity both in the PNS and CNS. Disruption of mito-
chondrial respiration in SCs by conditional deletion of the mito-
chondrial transcription factor A gene (Tfam) or the COX10 gene
does not interfere with SC survival, but leads to demyelination
and axonal degeneration (Viader et al., 2011; Funfschilling et al.,
2012). In the CNS, partial inactivation of fatty-acid β-oxidation
by inhibition of peroxisome biogenesis in OLGs is accompanied
by white matter axon degeneration (Kassmann et al., 2007, 2011).
As marked demyelination is observed in both models, and pro-
nounced neuroinflammation in the latter, it remains possible that
at least part of the axon loss is directly due to proinflammatory
signals (Nave, 2010a). Thus, further hypometabolic EG mutants,
free from such confounding effects, will be crucial to ascertain the
importance of intermediate energy metabolism components for
axon support.

The conserved sirtuin family of NAD+-dependent deacetylases
(SIRT1-7) is known to modulate a variety of metabolic processes
ranging from glycolysis to fatty acid oxidation in mitochondria
(Yamamoto et al., 2007; Haigis and Sinclair, 2010). Based on its
prominent reduction in the aforementioned PLP mutant mouse
model with axonal degeneration, the cytosolic sirtuin member
SIRT2 in OLGs may play an axon-supportive role (Werner et al.,
2007). Moreover, arguing for a metabolic role of SIRT2 in SCs, this
sirtuin was identified in gene expression profiling experiments as
highly abundant protein in nascent SCs (Nagarajan et al., 2002).
Surprisingly, SC-restricted SIRT2 knockout mice do not show
axon degeneration even if aged, despite metabolic dysregulation
in SCs (Beirowski et al., 2011). Possible explanations for this
result in conjunction with the other studies may be that metabolic
dysregulation in SIRT2-depleted SCs is not sufficiently severe to
trigger axon loss, or that it is not confined to specific metabolic
targets that are important for axonal survival. In light of these
data it will be interesting to examine the consequences of SIRT2
ablation in OLGs for long-term structural axon integrity.

The idea that glia may provide specific energetic substrates
to axons that are essential for axonal function and integrity
has been expressed by various researchers in the last decades
(Spencer et al., 1979; Hargittai and Lieberman, 1991; Ransom

and Fern, 1997; Wender et al., 2000; Tachikawa et al., 2004), but
only recently has it been revived and expanded (Nave, 2010a,b;
Funfschilling et al., 2012; Lee et al., 2012; Morrison et al., 2013).
Clues for relevant metabolites came from studies investigating
their role for axonal electric function under stress conditions.
Monocarboxylates (glucose and its intermediates) are the primary
energy sources in the nervous system and are utilized to fuel
neuronal activity primarily via oxidative metabolism (Belanger
et al., 2011). Lactate has gained particular attention because it
was proposed to be taken up and oxidatively metabolized by
axons from surrounding glia that produce it from glucose (or
glycogen) (Vega et al., 2003; Brown et al., 2004, 2005, 2012;
Tekkok et al., 2005). This transport was proposed to be mediated
through specific monocarboxylate carrier isoforms (MCTs), of
which MCT2 is predominantly localized on axons, and MCT1 on
ad-axonal glial cells (Tekkok et al., 2005; Rinholm et al., 2011).
Indeed, recent in vivo data suggested that the reduced expression
of the lactate transporter MCT1 in OLGs causes axon damage (Lee
et al., 2012). In contrast, impairment of mitochondrial respiration
in OLGs would not be expected to result in axon degeneration,
since this should not directly interfere with glycolytic lactate
production and transport via MCT transporters. Consistent with
this line of reasoning, COX10 deficient OLGs produce normal
or even increased levels of lactate, and thus were not associated
with axonal degeneration (Funfschilling et al., 2012). It remains
unclear why PNS axon degeneration is triggered by mitochondrial
perturbation in SCs, but the mechanisms governing metabolic
interactions of PNS axons and SCs may differ from that in CNS
fibers (Brown et al., 2012; Evans et al., 2013). Also, as mentioned
above, the accompanying demyelination phenotype and neuroin-
flammation are likely to contribute to axonal destabilization in
this model. It will be interesting to study in future if EG release
other axon-protective metabolites as has been suggested in a dif-
ferent context (Vega et al., 1998; Tachikawa et al., 2004; Belanger
et al., 2011). By the same token, it is not entirely clear if lactate
is the only metabolite transported via axonal and EG-localized
MCTs, as pyruvate and ketone bodies can also be shuttled along
this route (Morrison et al., 2013).

Leaving these aspects about myelination and lactate aside, it
has been proposed that the myelin sheath itself could contribute
to metabolic support for large axons by ectopic combustion
of glucose and ATP generation mediated by mitochondria-
independent oxidative phosphorylation (Ravera et al., 2009,
2013a; Adriano et al., 2011; Morelli et al., 2011). In support
of this hypothesis, glycolytic and tricarboxylic acid cycle (TCA
cycle) enzymes including ATP synthase have been recently iden-
tified in isolated myelin vesicles (IMV) from forebrain prepara-
tions (Ravera et al., 2009, 2011, 2013a). These vesicles display a
transmembrane electrochemical proton gradient and are capable
of consuming oxygen when stimulated with pyruvate. There
seems to also be evidence for aerobic ATP synthesis in IMV,
which can be blocked by various mitochondrial redox complex
inhibitors (Ravera et al., 2009; Rinholm et al., 2011). Notably,
oxygen consumption was impaired in IMVs from adult CMT
model rats that display axonal loss in the PNS (Ravera et al.,
2013b), supporting the possibility that myelin respiratory chain
disruption contributes to axon loss in disease. However, the

Frontiers in Cellular Neuroscience www.frontiersin.org December 2013 | Volume 7 | Article 256 | 11

http://www.frontiersin.org/Cellular_Neuroscience
http://www.frontiersin.org/
http://www.frontiersin.org/Cellular_Neuroscience/archive


Beirowski Enwrapping glia control axon integrity

notion that myelin could serve as an ATP generator has been
recently challenged by several theoretical considerations based
on what is known about electrophysiological parameters of EG
and the configuration of the ATP synthase complex (Harris and
Attwell, 2013). According to these authors, it is most likely that the
presence of respiratory chain components in myelin preparations
reflect contaminations by mitochondrial membranes.

In contrast to myelin’s typically salutary characterization,
myelination also has been proposed to be unfavorable to axons
because it may hinder metabolic exchange due to the pecu-
liar cytoarchitecture of compact myelin sheaths (Edgar et al.,
2009; Nave, 2010b). Consistent with this, axonal degeneration is
observed in EG-specific Phosphatase and tensin homolog (PTEN)
knockout mice with hyperactivation of PI3 kinase leading to sub-
stantially increased myelin sheath thickness (Goebbels et al., 2010,
2012; Harrington et al., 2010). An alternative explanation may be
that physical compression of axons by exuberant glial growth and
excess myelin results in injury. In addition, it is also conceivable
that in these mice metabolic or signaling alterations lead to axonal
compromise because of aberrant PI3 kinase signaling as a direct
consequence of PTEN deficiency in EG.

In sum, recent studies provide growing evidence that interme-
diate metabolic pathways in EG have a crucial role in the non-cell-
autonomous support of structural axonal integrity. Future work,
making use of novel mouse models with metabolic imbalances
that mimic altered metabolic states in aging, diet-associated dis-
ease, and neurodegeneration, while avoiding confounding neu-
roinflammatory signals, will be important for determining the
relevance of the identified pathways. Additionally, emerging liter-
ature from the last year suggests that EG are metabolically coupled
to long axons by conveying small metabolites such as lactate into
the axoplasm to fuel axonal energetic needs. As highly sensitive
optical lactate biosensors together with other tools are becom-
ing available for real-time and single-cell-resolution imaging
(San Martin et al., 2013), it should be possible to visualize lactate
trafficking between EG and axons in future. Finally, in vivo
investigations with conditional ablation of carriers for lactate and
other carbohydrates in axons and EG are warranted to test above
model.

CONCLUSIONS AND FUTURE PERSPECTIVE: LINKING GLIAL
SUPPORT OF AXONS WITH PATHWAYS REGULATING
AXONAL SELF-DESTRUCTION IN DISEASE
The neuroscientific community has long been interested in
the intimate relationship between axons and their EG, but the
role of these glia for axon integrity has been neglected in favor
of neuron-autonomous mechanisms of axon degeneration. As
evident from the data reviewed here, EG can be considered active
players with instructive functions during degeneration, instead
of passive bystanders. At the same time, EG provide support
for structural axon integrity by means of their tight association
to axons, release of trophic substances, and metabolic coupling
with axons. In other words, it becomes clear that long axons in
real circumstances cannot exist without their accompanying glia
throughout life. Powerful evidence indicates that dismantling
of damaged axons is controlled by an auto-destructive cascade
akin to apoptosis (but independent of somatic cell death

mechanisms), which seems to be continuously kept inactive
in healthy axons. Hence, it seems legitimate to speculate that
prevention of this axonal death program is a cooperative
mechanism between neurons and EG (Figure 3, upper glia
portion). The data presented lay a foundation for a conceptual
framework addressing the question of how the described EG
functions could contribute to block self-destruction of axons.
While it seems more straightforward in this perspective to
connect the release of neurotrophic factors from EG to this
mode of axonal protection, establishing the same links to
other released substances and small metabolites is certainly a
more formidable task. Such compounds released by EG and
internalized into axons could directly or indirectly block putative
signaling cascades promoting axonal degeneration (e.g., by
modulating the trafficking and concentration of the axonal
survival factor Nmnat2). Alternatively, EG-derived substances
could impinge on other checkpoints influencing axonal integrity,
such as mitochondrial energetics, axonal sodium and calcium
levels, or regulation of axonal transport mechanisms. Of course,
these alterations may also feed back and influence the levels and
distribution of primary axonal survival factors. This scenario
perhaps appears more relevant for the EG-to-axon transfer of
small energy substrates that are likely to affect many of these
functions by fuelling mitochondrial ATP generation in axons.
Indeed, impairment of mitochondrial bioenergetics (Ferri et al.,
2006), abnormal calcium homeostasis (Parone et al., 2013) as well
as perturbations in axonal transport (Marinkovic et al., 2012)
are hallmarks of ALS models in which axon degeneration is a
primary pathological feature (Fischer et al., 2004). Intriguingly,
early molecular abnormalities in OLGs, consistent with perturbed
metabolic coupling including reduced levels of MCT1 on
oligodendroglia have been recently observed in both mouse
ALS models and in human ALS tissues (Lee et al., 2012; Kang
et al., 2013; Philips et al., 2013). This supports an increasing
perception that progression of motor axon degeneration in ALS
is determined by non-cell-autonomous effects. The reduced
content of MCT1 on oligodendroglia and their cellular precursors
may be a direct consequence of glial mutant SOD1 expression
(Philips et al., 2013). An exciting link between perturbed
neurometabolic coupling and axon degeneration may be even
more apparent in the large group of metabolic peripheral
neuropathies with polygenic etiologies, and most prominently in
those associated with diabetes. Axon degeneration is a cardinal
feature in diabetic peripheral neuropathy (DPN) and it remains
obscure why predominantly sensory fibers, both unmyelinated
and myelinated, are affected early in diabetic axonopathy and
in its animal models (Ramji et al., 2007; Said, 2007; Zochodne,
2007). In principle similarly as above, perturbed neuronal
mitochondrial bioenergetics, defective calcium homeostasis, and
axonal transport deficits in peripheral nerves are documented
in DPN models, although the underlying mechanisms are only
poorly understood (Fernyhough and Calcutt, 2010; Chowdhury
et al., 2013). Remarkably, in addition to characteristics such
as decreased release of neurotrophic factors, accumulation of
detrimental compounds (e.g., polyols, reactive oxygen species),
microvascular complications, and inflammatory changes, a
series of metabolic alterations in SCs have been proposed in
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the pathogenesis of DPN, and it is possible that these directly
contribute to the detrimental effects on axon integrity (Eckersley,
2002; Kennedy and Zochodne, 2005; Sango et al., 2011;
Chowdhury et al., 2013; Hinder et al., 2013; Kim et al., 2013).
This and further examples support the idea that pathogenically
relevant metabolic perturbation in EG might be a commonality
in a number of chronic axonopathies associated with abnormal
cell and whole-body metabolism. The differential metabolic and
bioenergetic requirements for the maintenance of large and small,
as well as myelinated vs. unmyelinated fibers, could provide a
mechanistic basis for the well-known but poorly understood
susceptibility of distinct classes of axons in these conditions (i.e.,
large motor axons in ALS versus small sensory axons in DPN).

On the contrary, in neurodegenerative situations EG may
also directly perpetrate axonal insults by activation of pro-
degenerative signaling or by release of axo-toxic compounds (or
both). This may equally induce active axon degeneration pro-
grams (Figure 3, lower glia portion). In light of evidence that
accumulation and release of abnormal metabolic intermediates
from SCs and OLGs can compromise axons (e.g., psychosine
release) (Cantuti Castelvetri et al., 2013; Viader et al., 2013), it is
conceivable, although speculative at this point, that EG may also
provide axonal support by continuous ad-axonal detoxification
pathways. This idea is consistent with observations of detoxifica-
tion mechanisms by superoxide dismutase activity in SCs, again in
the context of mutant SOD1-mediated ALS (Wang et al., 2012b).

In conclusion, there is now a mounting consensus that axon
degeneration is not simply due to passive decay of axonal
components as a consequence of disconnection from the cell

body. Specific axonal molecules are required for axonal survival,
and these could be direct inhibitors of one or more possible
auto-destructive pathways in axons that are mechanistically inde-
pendent of somatic death. A great challenge in the future will be to
integrate the question of how the model of trophic axonal support
by EG leads to continuous inhibition of these auto-destructive
axon degeneration programs. Moreover, and not mutually exclu-
sive, mechanistic studies are needed to precisely determine how
toxic signals from glia (instead of decreased salutary signals)
can activate axonal degeneration programs. In addition to novel
conditional mutants in the whole-animal setting, valuable tools
that could cast light on these questions include compartmental-
ized microfluidic systems in which specific interactions between
axons from distinct neuronal types and EG can be investigated,
together with methods to globally characterize released molecules
(Hosmane et al., 2010; Park et al., 2012; Shi et al., 2013). To
attain a comprehensive and rounded view of how nerve and
white matter integrity is maintained, and how aberrations in glia
bring about axon degeneration, it is essential not to lose sight of
continuous axon-glia communication. This may open the way to
multimodal therapeutic approaches to stabilize injured axons in
disease.
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FIGURE 3 | Hypothetical model summarizing impact of EG on axonal

integrity by the mechanistic themes discussed. Preservation of healthy
axons is controlled by the cooperative action of both the neuron and adjacent
glia by blocking endogenous axonal auto-destruction. Examples of neuronal
mechanisms blocking this program(s) include somatic delivery of the putative
axonal survival molecule Nmnat2 into axons, or the local translation of axonal
maintenance factors such as Bcl-w. On the other hand, glia inhibit axonal
death by transfer of metabolic substrates, neurotrophic factors, and vesicular

shuttles (upper glia portion). This transfer is mediated by specific transport
mechanisms represented by columns between glia and axon. Vertical lines
embody adhesion mechanisms that ensure correct apposition and formation
of nutritive channels between glia and axon. Under pathological conditions
glia may also contribute to axonal auto-destruction by activating
pro-degenerative signaling, releasing toxic substances, and loosening contact
to axons (lower glia portion). Note that the myelin membrane of EG is
uncoiled in the illustration and myelination thus not represented.
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