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Abstract

Background: The genome is pervasively transcribed but most transcripts do not code for proteins, constituting

non-protein-coding RNAs. Despite increasing numbers of functional reports of individual long non-coding RNAs

(lncRNAs), assessing the extent of functionality among the non-coding transcriptional output of mammalian cells

remains intricate. In the protein-coding world, transcripts differentially expressed in the context of processes essential

for the survival of multicellular organisms have been instrumental in the discovery of functionally relevant proteins

and their deregulation is frequently associated with diseases. We therefore systematically identified lncRNAs

expressed differentially in response to oncologically relevant processes and cell-cycle, p53 and STAT3 pathways, using

tiling arrays.

Results: We found that up to 80% of the pathway-triggered transcriptional responses are non-coding. Among these

we identified very large macroRNAs with pathway-specific expression patterns and demonstrated that these are likely

continuous transcripts. MacroRNAs contain elements conserved in mammals and sauropsids, which in part exhibit

conserved RNA secondary structure. Comparing evolutionary rates of a macroRNA to adjacent protein-coding genes

suggests a local action of the transcript. Finally, in different grades of astrocytoma, a tumor disease unrelated to the

initially used cell lines, macroRNAs are differentially expressed.

Conclusions: It has been shown previously that the majority of expressed non-ribosomal transcripts are non-coding.

We now conclude that differential expression triggered by signaling pathways gives rise to a similar abundance of

non-coding content. It is thus unlikely that the prevalence of non-coding transcripts in the cell is a trivial consequence

of leaky or random transcription events.

Background
Only aminor portion (1.5% to 2%) of mammalian genomic

sequences code for proteins. Over the last decade, tran-

scriptomics has shown that the majority of sequences

in mammalian genomes are pervasively transcribed into

RNA molecules [1-6], an overwhelming fraction of which

is not translated [7]. Despite some dissenting opinions that
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questioned the number of novel intergenic transcripts [8]

and hypothesized that there was a high potential for these

transcripts to contain short open-reading frames [9], the

concept of pervasive non-protein-coding transcription

[10] is increasingly being accepted as a fact. Mammalian

cells are thus capable of producing a plethora of non-

protein-coding RNAs (ncRNAs). ncRNAs have been cate-

gorized rather superficially into long ncRNAs (lncRNAs),

which are longer than 150 or 200 nt, and short ncRNAs.

Most short ncRNAs fall into well-defined classes, such

as microRNAs, piRNAs (piwi-interacting RNA), tRNAs

(transfer RNAs), etc., for which there is some under-

standing of their physiological function and molecular
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mechanism. In contrast, the much larger set of lncRNAs
appears to be highly heterogeneous, and so far no larger
ncRNA classes have been identified with confidence. At
least at the level of the primary sequence, lncRNAs appear
to be poorly conserved [11,12], although in many cases
they can be traced back over very large phylogenetic dis-
tances (see [13,14] for examples). The question to what
extent pervasive transcription – either by the actions of
the transcripts produced or by the process of transcrip-
tion itself – is of functional relevance, however currently
remains unanswered.

The number of reports on the function of individual
lncRNAs is, however, rapidly growing. Many lncRNAs
have been found to be involved in epigenetic pro-
cesses. Several lncRNAs appear to act in trans, targeting
chromatin-modifying enzymes and/or the proteins asso-
ciated with them at their sites of action in the genome
[15-17]. Recent studies suggest this as a rather common
function of lncRNAs [18]. Epigenetic action in cis has
been demonstrated at the cyclin D1 (CCND1) gene, where
an ncRNA tethered to the promoter region recruits pro-
teins that repress CCND1 transcription, at least in part
by inhibiting histone acetyltransferase activity [19]. Sim-
ilarly, the EVF2 ncRNA has been found to recruit either
the DLX2 homeobox protein to transactivate the adja-
cent DLX5/6 gene or the transcriptional repressor MECP2
[20,21]. lncRNAs can also serve as backbones in the struc-
tural organization of large protein complexes, like the
NEAT1 RNA in paraspeckles [22]. Finally, several ncRNAs
are involved in localizing or sequestering proteins in tran-
scription factor complexes. The NRON RNA, for exam-
ple, controls nuclear trafficking and dephosphorylation
of the transcription factor NFAT [23,24]. The pleiotropic
ncRNA GAS5 has recently been shown to sequester the
glucocorticoid receptor and thus prevent its activity as
a transcriptional activator [25]. Modulation of protein
activity has also been observed for a coding RNA, i.e. the
TP53 mRNA binds to and modulates the MDM2 pro-
tein [26]. Competitive endogenous RNAs can sequester
microRNAs to regulate mRNA transcripts with target
sites for the same microRNAs [27-29].

Relative to the extent of identified non-coding tran-
scription, however, the number of lncRNAs for which
a function has been demonstrated or is assumed is still
minute. Reports of a high cell-type specificity for lnc-
RNAs [4,12,30] or the differential expression of many
lncRNAs throughout neuronal cell differentiation [31],
however, hint at a more global relevance of non-coding
transcription.

We argue that over the last decades: (i) the identifica-
tion of protein-coding mRNAs found to be differentially
expressed in the context of important cell-physiological
processes has frequently led to the discovery of pro-
teins with critical functions and (ii) that the differential

expression of many such transcripts turned out to be asso-
ciated with disease. We therefore hypothesize that lnc-
RNAs that are differentially expressed in such processes
are also likely to play functional roles. Although a number
of ncRNAs have been demonstrated to be regulated by cel-
lular signaling pathways, a systematic survey of ncRNAs
that are transcriptionally controlled by such pathways is
still lacking. We therefore focused here on three oncolog-
ically relevant pathways and processes to determine the
extent to which these pathways – in addition to their known
protein-coding target genes – also control the expression
of ncRNAs. For this purpose, we chose the signal trans-
ducer and activator of transcription-3 (STAT3) pathway,
the p53 pathway and cell-cycle regulation. Each of these
systems is intimately involved in tumor development.

The tumor suppressor p53 is activated in response to
DNA damage as well as other stress signals and in turn
induces DNA repair, growth arrest and apoptosis. As
a transcription factor, p53 acts by binding to specific
DNA elements in the promoter and enhancer regions of
target genes, thereby controlling their transcription. Sev-
eral lncRNAs that are induced by the p53 pathway and
involved in the regulation of p53 target genes have been
identified [17]. In turn, ncRNAs that modulate the p53
function have also been reported, e.g. the lncRNAs RoR
[32] and MEG3 [33].

STAT3, originally identified and characterized by us as
the central signal transducer for the interleukin-6 family of
cytokines [34,35], has been shown to be a strongly onco-
genic pathway [36]. Constitutively active STAT3 is found
in many cancers, and STAT3 has been proved to be an
essential component acting downstream of many other
oncogenes [37]. Although contributing a proliferative sig-
nal as well, the STAT3 pathway is primarily known for its
strong anti-apoptotic effect in many tumor cells. We pre-
viously reported that the control of known apoptosis reg-
ulators by STAT3, however, does not sufficiently explain
its strong survival effect on human multiple myeloma cells
[38]. We demonstrated that the gene for the microRNA
miR-21 hosts a phylogenetically conserved enhancer har-
boring two STAT3 binding sites and that the induction
of this ncRNA critically contributes to the anti-apoptotic
and oncogenic potential of the STAT3 pathway [39]. This
raised the question as to whether STAT3 might control the
transcription of other ncRNAs as well.

Cell-cycle regulation resides at the core of tumor devel-
opment and progression. A tightly controlled cellular
machinery defines the pace of proliferation and the
highly ordered progression through the cell-cycle phases
G1, S, G2 and M. This machinery employs a num-
ber of critical oncogenic and tumor-suppressing compo-
nents, like cyclins and cyclin-dependent kinase inhibitors,
respectively. Our knowledge of the involvement of nc-
RNAs in cell-cycle regulation is, however, rather limited.
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Remarkably, Hung et al. reported the extensive transcrip-
tion of ncRNAs from the promoter regions of cell-cycle
genes [40], suggesting that ncRNAs do in fact play a role
in this process.

Here, we used tiling arrays as an unbiased transcrip-
tomic technique to study the differential expression of
lncRNAs: (i) throughout the cell cycle, (ii) controlled by
the pro-apoptotic and anti-proliferative p53 pathway and
(iii) controlled by the pro-proliferative and anti-apoptotic
STAT3 pathway. We showed that a large set of lnc-
RNAs of diverse properties are differentially expressed in
response to these pathways and that up to 87% of the tran-
scriptional response can be non-coding. Among the dif-
ferentially expressed lncRNAs we identified a set of very
long, highly cell-type specific macroRNAs. We demon-
strated that these macroRNAs are likely continuous tran-
scripts, despite their size of up to 400 kb. We investigated
the evolution of the macroRNA STAT3-induced RNA 1
(STAiR1), and found that it contains highly conserved
elements, which maintain their spacing during eutherian
evolution and partly exhibit RNA secondary structure
under stabilizing selection. Based on a comparison of evo-
lutionary rates with adjacent protein-coding genes, we
argue that STAiR1 likely acts locally. Finally, we inves-
tigated lncRNA expression using the nONCOchip cus-
tom array for astrocytoma, a tumor disease not related
to the cell lines initially used, and found differential
expression of macroRNAs between different grades of the
disease.

Results and discussion
Global unbiased assessment of transcriptional activity
We first strove to identify transcriptional activity depen-
dent on cell cycle, pro- and anti-proliferative stimuli.
We decided to use cellular systems that give the clear-
est results for each pathway and process, instead of one
common cell line.

RNA expression in response to STAT3 activation, as a
pro-proliferative anti-apoptotic and oncogenic stimulus,
was studied using the human multiple myeloma cell line
INA-6. The growth and survival of these cells critically
depends on IL-6, and we have shown previously that the
IL-6 signal is transduced almost exclusively by STAT3 in
these cells [38]. RNA was isolated from: (i) INA-6 cells
deprived of IL-6 for 13 h, (ii) cells after 1 h of restimulation
and (iii) cells permanently cultured in IL-6. STAT3 activa-
tion upon IL-6 restimulation is shown in Additional file 1:
Figure S1.

Transcriptional activity under p53 expression as an
anti-proliferative pro-apoptotic tumor suppressor stimu-
lus was studied in D53wt cells. This human colorectal
carcinoma cell line harbors a defunct endogenous p53
and was stably transfected with tetracycline-responsive
wild-type p53. RNA was isolated from cells grown in the

presence of tetracycline (control) and 6 h after tetracy-
cline removal (p53 induced). p53 induction is shown in
Additional file 1: Figure S2.

The expression of RNA throughout cell-cycle phases
was studied by synchronizing human primary foreskin
fibroblasts in G0 using serum starvation for 48 h. Cells
were harvested before and 14 h, 20 h and 24 h after
addition of serum. The cell-cycle phase distribution was
examined using flow cytometry (Additional file 1: Figure
S3). The time points 14 h, 20 h and 24 h correspond to
a maximal enrichment relative to the other phases, G1, S
and G2, respectively.

Global RNA expression was analyzed using Affymetrix
whole genome tiling arrays, which interrogate the non-
repetitive part, i.e. approximately 40%, of the human
genome. Transcriptionally active regions in the genome
(TARs) were identified using TileShuffle [41]. Briefly,
TileShuffle identifies segments in the tiling array data
that are expressed significantly higher than an affinity
controlled background distribution. Figure 1A illustrates
the performance of this procedure, when applied to cyclin
B1 as a positive control for the cell cycle [42]. As expected,
cyclin B1 was marginally expressed in G0, increased dur-
ing cell-cycle progression and peaked in the G2 phase
(Figure 1B). Fragmentation of the expressed intervals due
to signal variation and the lack of knowledge on exon-
exon junctions for non-annotated transcripts results in
numbers of expressed fragments that are somewhat arbi-
trary for tiling array data. Following [41], we therefore
report the number of expressed, differentially expressed
or overlapping nucleotides rather than fragment numbers
throughout the manuscript. We identified 19 million base
pairs (Mb) to 21 Mb, 20 Mb to 22 Mb, and 17 Mb to 21 Mb
expressed for the STAT3, p53 and cell-cycle experiments,
respectively (Additional file 1: Table S1).

Bona fide non-protein-coding RNAs exhibit higher cell type
specificity
One goal of this analysis was to identify the extent of non-
coding transcription in response to pathway actuation.
For novel significantly differentially expressed TARs (DE-
TARs) overlapping or containing open reading frames
we cannot formally rule out expression at the proteome
level. We therefore defined the set of bona fide non-
coding TARs as genomic intervals that did not exhibit
any signal for protein-coding potential in a state-of-the-
art bioinformatic approach. More specifically, bona fide
non-protein-coding TARs were defined as TARs that
are intergenic and have neither predicted protein-coding
potential according to RNAcode (P < 0.05) nor any obvi-
ous similarity with protein-coding sequences as detected
by tblastn (e < 0.05, RefSeq database from 7 March
2012). As expression was analyzed in three different cel-
lular systems, we investigated the cell type specificity
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Figure 1 Differentially expressed TARs (DE-TARs). (A) The CCNB1 locus, a positive control for cell-cycle, illustrating the tiling array data analysis
workflow employed. For each condition (in this case the cell-cycle phases G0, G1, S and G2), the raw tiling array signal intensities (Signal) in
overlapping sliding windows of 200 nt were evaluated to see if the expression was significantly higher than a background distribution, using the
TileShuffle algorithm with q < 0.05. The background distribution was generated from 10,000 GC controlled permutations of the individual
array’s signals. Overlapping windows of significant expression were summarized to intervals labeled H. Analogously, differentially expressed intervals
were generated for each pairwise comparison of interest for all intervals designated H in at least one condition of the dataset. Difference signals in
windows of the same size were evaluated for a significantly higher differential expression than a background of 100,000 difference shuffles, with
q < 0.005 and labeled DE-TAR intervals. Repeat masked intervals are missing in the array design due to the ambiguity of probes mapping to these
regions. (*) Wiggle track scale bars indicate y-axis scales of (6,16), (0,10), (−3.5, 3.5) and (−4, 4) for the signal, z-score, differential signal and
conservation, respectively. (B) Expression signal from (A) aggregated over all exons of CCNB1. Boxes indicate the median, first and third quantiles.
Notches are placed at ±1.58 IQR/

√
n and approximate a robust 95% confidence interval. (C) Overlap in expressed nucleotides between STAT3, p53

and cell-cycle (CC) datasets for known coding exons (Gencode v12, UCSC genes, Ensembl and RefSeq) and bona fide non-coding intergenic
TARs. (D) Overlap between the three datasets in differentially expressed nucleotides. CC, cell cycle; Chr, chromosome; DE-TAR, significantly
differentially expressed TAR; IQR, interquartile range; kb, kilobase; MB, million base pairs; TAR, transcriptionally active region.
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of TARs and observed a substantial overlap (Additional
file 1: Figure S4). This overlap was mainly due to protein-
coding exons. Bona fide non-protein-coding TARs were
expressed in a more cell type-specific manner than cod-
ing exons (Figure 1C). The same holds for bona fide
non-protein coding TARs detected in introns of known
protein-coding genes (Additional file 1: Figure S5). The
higher cell type specificity of non-coding expression is in
line with observations for the ENCODE pilot phase [4]
and subsequent studies [12,30], but in contrast to reports
by Ørom and colleagues [43].

Differentially expressed segments are highly pathway
specific
TileShuffle was used again to identify differentially
expressed segments. To prevent the misidentification of
differential expression due to noise close to the detection
limit, we restricted the analysis of differential expression
to segments that were classified as significantly expressed
in at least one of the compared states (cf. Figure 1A). For
assessing differential expression, TileShuffle again
relates the differential expression in an interval under
consideration to a background distribution obtained by
permuting log signal differences between the two arrays
of interest. We identified 28 kB to 118 kB, 4 Mb, and
9 kB to 1 Mb nucleotides corresponding to 130 to 394,
12,290, and 53 to 5,057 differentially expressed segments
for the STAT3, p53 and cell-cycle experiments, respec-
tively (Additional file 1: Table S2).

DE-TARs were far more specific for the investigated
pathway or cell type – which we cannot strictly discrim-
inate in this setup – than expressed TARs (Additional
file 1: Figure S6). While the overlap was small for coding
exons, it was negligible for bona fide non-coding inter-
vals (Figure 1D, Additional file 1: Figure S7). DE-TARs
differentially expressed upon STAT3 activation hardly
overlapped the other two experiments. In contrast, the
observed substantial overlap of about 300 kB between p53
and cell-cycle DE-TARs likely reflects the role of p53 in
cell-cycle control.

Whole genome tiling array experiments are demanding
of RNA material. This was particularly problematic for the
cell-cycle experiment. To allow estimation of false discovery
rates (FDRs) in replicated experiments with less material
and subsequent quantification of identified TARs in clini-
cal material, we designed a custom array that interrogates
a representative subset of the identified TARs. This cus-
tom array, called nONCOchip, additionally interrogates
the set of human RefSeq mRNAs, structured ncRNAs
predicted with RNAz [44] and evofold [45], and human
ncRNAs from public databases (see Additional file 1:
Tables S11 and S18 for details). Using the nONCOchip
in biological triplicates as a reference, we estimated FDRs
between 0.18 and 0.33 (Additional file 1: Figure S8).

Bona fide non-coding significantly differentially expressed
transcriptionally active regions are enriched for annotated
long non-protein-coding RNAs but largely novel
We determined the extent to which differentially
expressed segments overlapped annotated coding and
non-coding transcripts, and computed the number of
nucleotides overlapping between DE-TARs and Gencode
v12 annotations [46] or additional sources for ncRNAs
listed in Additional file 1: Table S28. To assess whether a
similar overlap would have been observed by randomly
distributing the DE-TARs over the genome, we computed
odds ratios for the relative overlap for DE-TARs and
annotation versus the relative overlap for annotation
and genomic intervals that have been sampled repeatedly
and randomly, while preserving the length distribu-
tion and repeat content of the original DE-TARs.

As expected, cell-cycle and p53 DE-TARs were found
to be strongly enriched for known protein-coding RNAs
(Figure 2A, Additional file 1: Figure S10). Although STAT3
is known to regulate the expression of many mRNAs,
STAT3 DE-TARs were not enriched for coding sequence
(CDS) and 5′ UTRs and had only low enrichment in 3′
UTRs. This may hint at a particular prominence of non-
coding transcription among the targets of STAT3. The
salience of 3′ UTRs might be a consequence of an inde-
pendent expression or processing of 3′ UTRs, which has
been reported by others [47,48]. However, we found only
a few cases where this was plausible (Additional file 1:
Figure S9 and Table S3).

Pathway-controlled intergenic, bona fide non-coding
DE-TARs were enriched for previously experimentally
identified lncRNAs, which corroborates our experimental
approach and strategy for bona fide non-coding filter-
ing (Figure 2B, Additional file 1: Figure S11A). While
all three pathways resulted in enrichment for chromatin-
associated RNAs [50] and lncRNAdb annotations [49],
only cell-cycle and p53 were enriched for lncRNAs from
Gencode and lincRNAs from the expression atlas by
Cabili and colleagues [30]. This outcome may suggest that
the tissue distribution of DE-TARs controlled by these
pathways is broader than that of STAT3 DE-TARs.

In line with the biological role of the pathways we
have triggered, we observed DE-TAR overlaps with lnc-
RNAs of known tumor relevance like MALAT1 [53,54],
MEG3 [55] and GAS5 [56]. A more comprehensive list
of prominent lncRNAs overlapping DE-TARs is given in
Additional file 1: Table S10. With D53wt cells, we did
not observe expression of the p53-controlled lincRNA
identified by Huarte and colleagues for mice [17]. The
human ortholog has only partial sequence complementar-
ity with the murine locus but seems to be inducible by
DNA damage in fibroblasts. However, expression of this
transcript appears to be highly context dependent, as no
spliced transcript could be identified at the human locus
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Figure 2 DE-TAR overlap with genomic annotation. (A,B) Overlaps in nucleotides between DE-TARs and different annotation categories. Log2

transformed odds ratios and their 95% confidence interval for the respective annotation dataset are shown (annotations are described in detail in
Additional file 1: Table S28). To assess the significance of the observed overlap, 100 lists containing random intervals from the genome controlling
for repeat content and DE-TAR length were sampled. Odds ratios of observed versus randomized relative overlaps were calculated and tested using
Fisher’s exact test for significant enrichment or depletion. *** indicates P < 0.001 for the observed versus random nucleotide overlaps, ** P < 0.01
and * P < 0.05. Results are shown for DE-TARs that overlap annotated protein-coding genes (A) (additional annotations are shown in Additional
file 1: Figure S10) and bona fide non-coding DE-TARs that overlap with several classes of experimentally verified and predicted ncRNAs (B) (additional
annotations shown in Additional file 1: Figure S11). For the detailed output of Fisher’s exact tests refer to Additional file 1: Tables S4 and S6.
(C) Fraction of nucleotides in intergenic bona fide non-coding DE-TARs overlapping with known long ncRNAs (large intergenic non-coding RNAs
and transcripts of unknown protein-coding potential as identified in [30], Gencode v12 long ncRNAs, lncRNAs found in the Long Non-Coding RNA
Database (lncRNAdb, [49]) and ncRNAs found in chromatin [50]), short RNAs (UCSC sno/miRNA track), conserved secondary structures (Evofold
[45], RNAz [44,51] and SISSIz [52]) and novel transcribed nucleotides. CAR, chromatin-associated RNA; CC, cell cycle; CDS, coding sequence;
lncRNA, long ncRNA; ncRNA, non-protein-coding RNA; UTR, untranslated region.

in several fibroblast RNAseq datasets from ENCODE
(data not shown).

Intergenic bona fide non-coding DE-TARs were
enriched for H3K4me3 and H3K36me3, patterns that
have been used previously for identification of lin-
cRNA loci [57] (Additional file 1: Figure S11B). Also,
all three pathways seem to trigger transcription from
enhancer sequences, as we observed an enrichment for
the enhancer mark H3K4 mono-methylation (H3K4me1)
and acetylated H3K27 (H3K27ac), which has been found
to discriminate active versus poised enhancers [58].

Despite many overlaps with annotated ncRNAs, the
majority of intergenic bona fide non-coding DE-TARs rep-
resent novel transcripts. Overlaps with annotated RNAs
account for only 4% (STAT3) to 15% (p53), with the major-
ity being overlaps with annotated lncRNAs (Figure 2C).

STAT3-induced macroRNAs
Manual inspection of the STAT3 experiment tiling array
data identified an intergenic region of at least 300 kb in
length that was contiguously upregulated upon STAT3
induction. The region was termed STAT3-induced RNA
1 (STAiR1, Figure 3A). We subsequently identified several
similar regions in this dataset, e.g. the intronic STAiR2

(Additional file 1: Figure S12) and STAiR18 (Additional
file 1: Figure S13). At least at first glance, these large
transcribed regions are reminiscent of imprinted macro-
RNAs such as Airn [59,60], and the highly expressed large
‘dark matter’ very long ncRNA (vlincRNA) transcripts
identified in tumor cells [61-63].

STAiR1 carries hallmarks of conventional polymerase
II (polII) transcribed genes: using chromatin immuno-
precipitation (ChIP) we identified a strong enrichment
for the active promoter mark H3K4me3 compared to
an immunoglobulin G (IgG) control at the transcription
start site but not throughout STAiR1. Within the tran-
scribed STAiR1 regions we observed a strong enrichment
for H3K36me3, which is placed during polII transcription
(Figure 4A).

Due to the ruggedness of tiling array data and the
number of interspersed repeats in the human genome,
a STAiR1-sized region, though strongly differentially
expressed, was not reported as one continuous inter-
val by TileShuffle, but as numerous densely placed
DE-TARs. We therefore investigated whether STAiRs
may represent continuously transcribed macroRNAs.
STAiR1 (and similarly STAiR2 and STAiR18) was hardly
expressed upon IL-6-deprivation. A strong signal covering
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Figure 3 (See legend on next page.)
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(See figure on previous page.)
Figure 3 STAiR1 – a STAT3-controlled macroRNA. (A) STAiR1 is upregulated in response to STAT3 and was identified by manual inspection of
TileShuffle tracks. After 1 h of restimulation with IL-6 (denoted 01 on the left), TileShuffle detects a 130-kB long region of significant
upregulation compared to 13-h IL-6 withdrawn cells (13). In cells permanently cultured with IL-6 (P), the region extends to at least 300 kb. It overlaps
H3K27me3 domains in ENCODE data identified in GM12878 lymphoblastoid cells and peripheral blood mononuclear cells (PBMCs) derived from
healthy donors, which is missing in K562 leukemia cells [5], and several STAT3 binding sites (STAT3 BS). Please refer to the caption of Figure 1, for a
definition of signal, H, and DE-TAR tracks and wiggle track scale bars. (B) STAiR1 contains highly conserved elements. STAiR1 was aligned to all
vertebrate genomes provided by Ensembl using BLAST [64]. Several conserved elements throughout STAiR1 that did not overlap annotated
repeat elements were selected for further analysis. The chart displays the relative location of elements E1 to E8, arbitrarily aligned by E6 for selected
genomes. Hits in additional genomes, including those where no continuous scaffold was available for the interval E1 to E8, are shown in Additional
file 1: Figure S14. (C) BLAST hits from (B) were initially aligned using Clustalw [65], submitted to RNAalifold [66] and trimmed to regions of
conserved secondary structure. The depicted consensus RNA secondary structures were generated by applying LocARNA [67] followed by
RNAalifold to the trimmed sequences. The number of different types of base pairs for a consensus pair, i.e. compensatory mutations supporting
the structure, is given by the hue, the number of incompatible pairs by the saturation of the consensus base pair. ChIP, chromatin
immunoprecipitation; Chr, chromosome; DE-TAR, significantly differentially expressed transcriptionally active region; EST, expressed sequence tag;
kb, kilobase; Laurasiath, Laurasiatheria; MB, million base pairs; PBMC, peripheral blood mononuclear cell; PCR, polymerase chain reaction; qRT-PCR,
quantitative real-time reverse transcriptase PCR; STAiR, STAT3-induced RNA; STAT3, signal transducer and activator of transcription-3.

an approximately 120-kb region was detected 1 h after res-
timulation, and a longer interval for cells permanently cul-
tivated with IL-6 (Figure 4B). Both intervals seem to share
a common start site (Figure 3A). PolII has been found
to synthesize between 1.3 and 4.3 kb/min, corresponding

to approximately 80 to 275 kb/h, although elongation
can be faster under certain circumstances (see [68] and
the references therein). This suggests that the joint end
of both intervals represents the transcription start site
of STAiR1, that the length of the observed transcript

A

C

B

D

Figure 4 STAiR1 – a continuous specifically expressed transcript. (A) INA6 cells were restimulated with IL-6 as described in Figure 3A and
chromatin immunoprecipitated (ChIP-ed) for tri-methylated H3K4 and H3K36, respectively. Enrichment compared to an IgG isotype control was
assessed by quantitative real-time PCR using primer sets P1, P3, P5 and P6. The location of respective amplicons is shown in Figure 3A. Strong
enrichment for H3K4me3 is observed only within P1, indicating an active promoter region. H3K36me3 shows strong enrichment throughout the
STAiR1 transcript. (B) Expression z-score aggregated over STAiR1 expressed after 1 h (STAiR1 short, chr18:41,591,020-41,720,348) or the entire
annotated STAiR1 transcript (STAiR1 long). (C) INA6 cells were restimulated with IL-6 as described and induction of STAiR1 was detected using
qRT-PCR with primer sets P1 to P6, as shown in Figure 3A, and using GAPDH for normalization. This expression time course is consistent with the
time-dependent elongation of STAiR1 observed in the tiling array data shown in Figure 3A. (D) Expression of macroRNAs in different tissues, as
detected by reverse transcriptase PCR, using GAPDH as a normalization control. Tissue specificity varies strongly between different macroRNAs.
STAiR, STAT3-induced RNA; STAT3, signal transducer and activator of transcription-3.
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is limited by polymerase speed and so we detect the
full-length transcript only under permanent IL-6 culture.
We repeated this analysis for six time points, detecting
STAiR1 expression using qRT-PCR (quantitative real-time
reverse transcriptase PCR). Primer pairs P1 to P6 were
designed so that their position roughly corresponds to
the expected progress of the polymerase at different time
points. We found the full-length transcript was expressed
6 h post restimulation. With the exception of primer pair
P3 and the corresponding 120 min time point, qRT-PCR
data were consistent with the tiling array data and thus
corroborate the conclusions drawn from the tiling array
data above (Figure 4C, primer positions are shown in
Figure 3A). Thus, we conclude that STAiR1 is likely a
continuous transcript.

STAiR1 and other STAiR-like intervals showed an
apparent decay in signal intensity over the length of
the transcript. We therefore investigated the tiling array
signal in introns of expressed protein-coding genes as
a bona fide set of continuously transcribed intervals.
The distribution of z-scores along the lengths of all
protein-coding genes detected by TileShuffle showed
a steady decay towards their 3′ ends (Additional file 1:
Figure S17A). Intergenic or fully intronic STAiR-like
intervals displayed a similar decay (Additional file 1:
Figure S17C). We therefore conclude that the observed
STAiR-like intervals represent continuously transcribed
macroRNAs.

STAiR1 contains conserved structured domains and is
syntenic in mammals, birds and reptiles
STAiR1 is located between two evolutionary old protein-
coding genes, SYT4 and SETBP1. This interval is syn-
tenic in mammals, birds and reptiles – in rodents but
not generally in Glires, synteny has been lost. Over-
all, STAiR1 did not exhibit a high degree of conserva-
tion (Figure 3A). However, aligning STAiR1 regions not
overlapping repeats to vertebrate genomes provided by
Ensembl using BLAST [64] (e < 10−5) identified sev-
eral conserved elements. These elements were found to
maintain their order in all investigated genomes. Ele-
ment E1, located at the H3K4me3-enriched region of the
presumed transcription start site and element E2 were
more weakly conserved (primates and Laurasiatheria). E3
was conserved in Eutheria and contained a conserved
STAT3 binding site (Additional file 1: Figure S15). While
for sauropsids the highly conserved elements E4 to E8
formed a more compact structure, for mammals the dis-
tances observed in human were roughly conserved. Abso-
lute distances within these elements were more stable
than to the surrounding protein-coding genes SYT4 and
SETBP1 (Figure 3B, Additional file 1: Figure S14). Com-
paring the relative distance changes between man and
dog to length changes of conserved introns, we found

that both, including the distances to the adjacent protein-
coding genes, were comparable (Additional file 1: Figure
S16). We concluded that maintenance of distances within
STAiR1 at a level comparable to introns of continuously
transcribed genes again suggests that STAiR1 is a sin-
gle transcript. Remarkably, the distances to both adjacent
protein-coding genes were also constrained; however, they
were rather large for distant exons. We therefore reasoned
that the conserved elements are unlikely transcribed with
the protein-coding genes, for which we had no evidence
from the tiling array data, and that the constraint on dis-
tance rather points at some functional relevance for this
distance.

Because of the constrained spacing of the conserved
elements, we speculated whether these might keep some
functional elements at particular distances, e.g. RNA sec-
ondary structure motifs serving as protein binding sites.
We generated an initial multiple sequence alignment from
the BLAST hits using Clustalw [65], computed a con-
sensus secondary structure using RNAalifold [66] and
trimmed the sequences to the regions with secondary
structure. Elements E3, E5 and E8 had RNA secondary
structures, which appeared to be under stabilizing selec-
tion given the number of compensatory mutations, which
we observed after realigning the trimmed elements with
LocARNA [67], followed by application of RNAalifold
(Figure 3C).

STAiR1 is highly specifically expressed, likely unspliced and
may act locally
STAiRs showed a broad range of tissue specificity. While
STAiR1 was detected in INA-6 cells only, STAiR2 was
additionally expressed at a very low level in the brain but
was absent from all other organs tested. In addition to its
expression in INA-6 cells, STAiR18 was highly expressed
in the heart, kidney, spleen and thymus while it showed
low expression in the brain, colon, liver, muscle and testis
(Figure 4D).

Whether or not STAiR1 may be spliced remains unclear.
It overlapped a few expressed sequence tags (ESTs), some
of which were spliced. However, there was no spliced
EST that is confined within STAiR1 and spans a sub-
stantial region of the macroRNA. Compared to a spliced
protein-coding RNA, such as CCNB1 in Figure 1A, the
tiling signal of STAiR1 also did not hint at splicing. The
transcript spans repetitive elements of several types, but
there was no general enrichment for repeats. However,
STAiR1 was significantly depleted for Alu elements, while
enriched for LINE and RNA repeats (Additional file 1:
Table S15).

Given the size of STAiR1 one might speculate that if it
is functional, it acts rather locally or regionally. STAiR1
is located adjacent to SETBP1, which encodes a protein
that binds to the SET nuclear oncogene and other proteins
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containing the SET domain. High expression of SETBP1
and SET is associated with myeloid malignancies (e.g.
[69,70]), diseases in which STAT3 is a central oncogene
(e.g. [71]). We hypothesized that if STAiR1 interfered
in cis with SETBP1, these would exhibit similar evolu-
tionary patterns, i.e. the substitution rates should not
differ significantly. Wong and Nielsen introduced a phy-
logenetic model, which found faster evolution in non-
coding regions compared to a protein-coding ‘reference’
gene [72]. Comparing the substitution rates detected in
multiple sequence alignments of STAiR1 and SETBP1,
we could not reject a joint model in favor of mod-
els of independent evolutionary rates (Additional file 1:
Table S16). We thus concluded that STAiR1 likely acts
locally.

Both STAiR1 and STAiR2 overlap domains of tri-
methylated lysine 27(H3K27me3) in ENCODE data for
the lymphoblastoid cell line GM12878. STAiR1 also
does for peripheral blood mononuclear cells. Both cell
lines were derived from healthy donors. For K562 cells
from a leukemia donor, this modification is missing [5]
(Figure 3A, Additional file 1: Figure S12). Given that other
lncRNAs have been found to interfere with H3K27 methy-
lation [15,16], one might speculate on the roles of STAiR1
and STAiR2 in this pathway. As these RNAs are induced
by an oncogenic stimulus, and H3K27me3 marks are miss-
ing at their loci of expression in tumor cells, they might
repress H3K27 methylation in cis.

STAiR-like macroRNAs regulated by p53 and cell-cycle
We suspected differential expression of similar macro-
RNAs would also be found for the p53 and cell-cycle
data. As pointed out above, STAiR-like regions cannot
be reported as continuous blocks by TileShuffle.
We therefore developed an algorithm to identify
comprehensively long differentially expressed intervals of
this type in all three experiments.

The stairFinder algorithm uses a flooding approach
for the density of TARs and DE-TARs to identify STAiR-
like intervals in tiling array data (Figure 5A). While
stairFinder reliably identifies STAiR-like regions in
the tiling array data, it only ranks the RNAs accord-
ing to a score combining coverage of the identified
region and its silhouette. It cannot discriminate, how-
ever, between weakly differentially expressed STAiR-like
regions and multi-exon genes with many exons sepa-
rated by short introns. We therefore manually curated
the stairFinder output to obtain a list of bona fide
STAiR-like intervals.

Using stairFinder, we identified STAiR-like regions
for the p53 and cell-cycle experiments as well. Over-
all, we found 60 such differentially expressed regions
of at least 104 nucleotides in length (Figure 6A,
Additional file 1: Table S12). Applying stairFinder

to expressed intervals, we found numerous STAiR-like
regions (Additional file 2). Roughly, six types of STAiR-like
intervals in DE-TARs can be derived due to their genomic
organization: (i) fully intergenic, (ii) fully intronic, (iii)
overlapping annotated exons, (iv) overlapping annotated
exons of non-coding RNAs, (v) regions that start with
annotated transcription start sites of protein-coding genes
that do not, however, show intron/exon structures and ter-
minate in an intron of the gene and (vi) intervals starting
at known transcription start sites and ending at known
termini of protein-coding genes, thus most likely repre-
senting accumulating primary transcripts. The latter does
not necessarily exclude a function at the RNA level, at
least not for primary transcripts of lncRNAs. The Air
macroRNA appears to function as an unspliced long RNA
although spliced transcripts have been identified [73].
The distribution of these types in the different experi-
ments is shown in Figure 5B and examples are given in
Figure 5C. The different types of macroRNAs have similar
size distributions (Figure 6A).

In DE-TARs, most STAiR-like intervals were found for
the p53 experiment. Many of these fall into the category
of presumed primary transcripts. Since in this experiment
an exogenous TP53 overexpression was used, it cannot be
formally ruled out that this high number of STAiR-like
intervals was in part due to unphysiological TP53 levels.
STAT3 activation by IL-6 in INA-6 cells is a physiolog-
ical way of activating the transcription factor. However,
STAiRs expression might be a consequence of the many
genomic aberrations found in INA-6 cells. In contrast, no
such artifacts are expected in the primary fibroblasts used
for the cell-cycle experiment, where we also identified sev-
eral STAiR-like regions. We therefore conclude that we
did observe a physiological process.

Ignoring suspected primary transcripts, a majority
of the macroRNAs overlapped ENCODE H3K36me3
domains and polII binding sites (Figure 6B), substan-
tiating that most of these transcripts are generic polII
products. As already demonstrated for STAiR1, many of
these macroRNA loci included H3K27me3 sites. Further-
more, the majority of them seemed to contain enhancers,
indicated by H3K4 mono-methylation (H3K4me) and
acetylated H3K27. Several macroRNA loci also contained
promoter sites with H3k4me3 but only a few contained
these modification in CpG islands.

Two of the macroRNAs identified here had a sub-
stantial overlap with intronic chromatin-associated RNAs
[50], and four overlapped the vlincRNAs from [63]. Of
these, maR-31 is presumably a primary transcript, maR-
33 an annotated spliced lncRNA linc0278, maR-42 a
strongly p53-induced intergenic macroRNA, and maR-
57 a snoRNA (small nucleolar RNA) host gene. Also, we
observed significant expression of KCNQ1OT1 in p53-
induced cells, a macroRNA well known to be involved
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Figure 5 Genomic organization of DE-macroRNAs. (A) Schematic representation of the algorithm used to identify macroRNAs resembling the
example in Figure 3A. DE and expressed intervals identified by TileShuffle are summarized as the density of positive nucleotides. Local
maxima are identified and the density curve is ‘flooded’ to 50% of the local maximum to identify the boundaries of the region. Overlapping regions
are merged and for each region a score based on coverage by positive nucleotides and silhouette is calculated. (B) Computationally identified
macroRNAs with a score >10, 000 were manually inspected to discard false positives, which are typically long protein-coding genes with many
exons interspersed by small introns. Identified DE-macroRNAs fall into different genomic categories: intergenic (IG), overlapping exons (E),
overlapping non-coding exons (EN), located in introns (I), joint start but different end as coding RNA (ES) and presumed primary transcript (P).
(C) DE-macroRNA examples for the E, EN, ES, I and P cases. The IG case is illustrated in Figure 3A. Only z-scores and selected transcript isoforms are
shown. CC, cell cycle; E, overlapping exons; EN, overlapping non-coding exons; ES, joint start but different end as coding RNA; I, located in introns;
IG, intergenic; kB, kilobase; Nr, number; P, presumed primary transcript; STAT3, signal transducer and activator of transcription-3.

in imprinting. Hardly any overlap was found with lnc-
RNAs annotated in Gencode or lncRNAdb or detected
by Cabili and colleagues (Figure 6C). Johnson and col-
leagues reported a set of REST-controlled macroRNAs,
which are, however, not conserved in human [74].

Pathway-controlled long non-coding RNA expression in an
independent brain tumor disease
Given the important role of cell-cycle regulation, p53 and
STAT3 in oncogenesis, we hypothesized that pathway-
controlled lncRNAs could be of more general relevance
in tumor diseases. We therefore investigated expression
of the identified DE-TARs in a tumor disease where

the selected pathways are of key importance, but which
was otherwise not closely related to the cells used for
identification of pathway-controlled DE-TARs. We used
the above-mentioned nONCOchip custom microarray to
investigate RNA expression in different grades of astrocy-
toma, a neoplasia of glial cells in the brain. Four samples
of each of WHO grade I (associated with good progno-
sis), grade III and grade IV (i.e. primary glioblastomas)
astrocytomas were used [75]. Grades III and IV are associ-
ated with an increasing reduction in median survival time
(Additional file 1: Table S17).

Using principal components analysis on the expression
data of all mRNAs that passed unspecific filtering, we
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Figure 6 Characterization of DE-macroRNAs. (A) The size distribution of DE-macroRNAs indicates similar sizes for the different genomic
categories of DE-macroRNAs (intergenic, overlapping exons, overlapping non-coding exons, located in introns, joint start but different end as
coding RNA and presumed primary transcript) and throughout the three different transcriptome surveys (cell cycle, p53 and STAT3). (B) Fraction of
nucleotides in DE-macroRNAs overlapping with putative promoter regions, transcription factor binding sites, polII binding sites and epigenetically
modified regions. (C) Fraction of nucleotides in DE-macroRNAs overlapping with known ncRNA annotations. Annotations are described in detail in
Additional file 1: Table S28. CC, cell cycle; E, overlapping exons; EN, overlapping non-coding exons; ES, joint start but different end as coding RNA; I,
located in introns; IG, intergenic; P, presumed primary transcript; STAT3, signal transducer and activator of transcription-3.

observed a clear separation into the three grades, when
plotting the two first principal components. A similar
quality of separation into grades was obtained using bona
fide non-coding RNAs. This indicates that the investigated
non-coding RNAs and mRNAs convey similar degrees of
disease information (Figure 7A). This is in line with sev-
eral other observations that lncRNA expression patterns
have diagnostic potential in tumor diseases (e.g. [76,77]
and references therein).

Overall, we found 13,308 probes differentially expressed
between astrocytomas of grade I compared to the aggres-
sive states grades III and IV, 5,550 of which are bona fide
non-coding and map to 126 known non-coding long ncR-
NAs (Gencode v12) (Additional file 1: Table S19). How-
ever, we observed comparably few differentially expressed
probes that corresponded to pathway-controlled DE-
TARs. This appeared to be mainly a consequence of the

specific expression of pathway-controlled DE-TARs. Of
those expressed at all in astrocytoma (807), more than
40% were differentially expressed between grades (354,
Figure 7B).

Differentially expressed probes were mainly enriched
for the known lncRNAs represented on the custom
array: intergenic chromatin-associated RNAs, Gencode-
annotated lncRNAs, annotations in lncRNAdb, Cabili’s
catalogue of lincRNAs and snoRNAs (Additional file 1:
Figure S18A).

STAT3-controlled macroRNAs are differentially expressed
between grades of astrocytoma
Despite the low number of differentially expressed probes
mapping to DE-TARs, we observed remarkable enrich-
ment in three STAT3-controlled macroRNAs. STAiR1
and STAiR2 were both upregulated in aggressive forms of
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Figure 7 Disease-associated ncRNAs. The custom microarray was used with diffuse astrocytoma samples of different grades. (A) Principal
component analysis for probes passing non-specific filtering. For at least four samples, the expression of the probe must be larger than the
background, where background expression is defined by the mean intensities plus three times the standard deviation of negative control spots. The
probe must have a non-specific change of expression of IQR > 0.5. A separate principal components analysis was done for probes mapping to
exons of known protein-coding genes (Gencode v12) and probes for which no evidence of short open reading frames was detected (see
Materials and methods). The first two principal components accounted for 55% and 63% of overall variation, for probes mapping to exons of
protein-coding genes and bona fide non-coding probes, respectively. (B) Number of bona fide non-coding DE-TARs either expressed in astrocytoma,
i.e. overlapping at least one probe with an intensity larger than the background intensity for at least four samples, or differentially expressed in
astrocytoma, i.e. overlapping at least one probe significantly differentially expressed between astrocytoma of grade I and aggressive states of grades
III and IV (glioblastoma) (FDR < 0.05). (C) Box plots depicting normalized log2 intensities of all probes significantly regulated in astrocytoma (grade I
compared to aggressive states, FDR < 0.05) and located in the genomic loci of three selected macroRNAs, STAiR1, STAiR12 and STAiR2. Notches
depict 95% confidence interval of the median intensity. Normalized log2 intensities of a significantly regulated probe corresponding to SETBP1, a
gene proximal to STAiR1, is shown next to the STAiR1 plot. (D) Overview of probe positions of probes located in the genomic loci of STAiR1, STAiR12
or STAiR2. CC, cell cycle; DE-TAR, significantly differentially expressed transcriptionally active region; GBM, glioblastoma; IQR, interquartile range;
STAiR, STAT3-induced RNA; STAT3, signal transducer and activator of transcription-3.

astrocytoma (Figure 7C,D). STAiR12 was primarily down-
regulated; however, there appeared to exist another tran-
scriptional unit, which was upregulated but represented
by fewer probes. For STAiR1 and STAiR2, induction was
observed on both strands. However, more significantly
differentially expressed probes were located on the +
strand, which corresponds to the direction of transcrip-
tion that was inferred from the tiling array signals.
We also observed upregulation of the SETBP1 gene in

aggressive grades and thus correlated expression with the
adjacent STAiR1. This might again hint at some cis inter-
action between those two transcripts, which we already
suspected based on comparison of evolutionary rates.
Apart from STAiR1 and SETBP1, we observed a num-
ber of pairs of adjacent lncRNA and disease-relevant
mRNA with a correlated or anti-correlated expression pat-
tern (Additional file 1: Figure S19 and Table S23, and
Additional file 2).
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Conclusions
Pathway-controlled non-coding transcription
The extent of functionality among the mass of non-
coding transcripts that have been discovered over the
last few years is one of the pivotal questions in cur-
rent genomics. Here, we show that just three crucial
regulatory processes of the cell control the expression
of as many as approximately 17,000 genomic segments
within the human genome. Assuming an average of three
to five exons per transcript, this may roughly corre-
spond to 3,000 to 5,000 distinct transcripts. Among the
well-known protein-coding targets of cell-cycle, p53 and
STAT3, which we also picked up in our analysis, are regu-
lators of apoptosis and proliferation as well as components
of checkpoint mechanisms. It is plausible, thus, that nc-
RNAs controlled by the same mechanisms likely partici-
pate in these or similarly relevant control processes.

About 30% to 40% of differentially expressed segments
(counting by nucleotide) in our cell-cycle experiment did
not have any signal for protein-coding capacity using
state-of-the-art bioinformatic procedures, and hence have
to be considered as bona fide non-coding RNAs. This
number rises to an impressive 87% for the STAT3
experiment, the majority of which is intergenic. In con-
trast, the regulated ncRNAs were predominantly intronic
in the cell cycle and p53 datasets. This salience of
STAT3 is not unexpected. The anti-apoptotic effect of
STAT3 cannot be sufficiently explained by its known
protein-coding targets [38] and has been attributed in
part to the upregulation of miR-21 [39]. Kapranov and
colleagues observed that in terms of the total mass of
RNA, more than 50% of non-ribosomal transcripts are
‘dark matter RNA’, and hence non-coding [61]. We can
now conclude that differential transcription triggered by
signaling pathways gives rise to a similar abundance
of dark matter content. We observed overlaps of bona
fide ncRNAs, significantly enriched compared to a ran-
dom control, for lncRNA annotations from Gencode
[46], lncRNAdb [49], Mondal [50] and Cabili and col-
leagues [30]. However, despite these overlaps and the
rapidly increasing number of annotated lncRNAs, more
than 85% of the identified bona fide non-coding differ-
entially expressed segments were novel. This extent of
novelty may reflect a high degree of tissue and context
dependence of ncRNA expression even within the same
pathway, which might explain why we did not observe
expression of the few known cases of p53-controlled
lncRNAs.

MacroRNAs controlled by cell-cycle, p53 and STAT3
We identified a series of pathway-controlled macro-
RNAs, very large coherently transcribed regions that likely
constitute continuous transcripts. Considering their over-
laps with ENCODE ChIP data, macroRNAs appear to be

generic polymerase II transcripts. Most are highly path-
way specific and some, e.g. STAiR2 and even more so
STAiR1, exhibit a very precise tissue distribution. The
macroRNAs resemble the concept of vlincRNAs, very
long ncRNAs with a suspected role in neoplastic transfor-
mation [61,63]. Of our 60 differentially expressed macro-
RNAs, four overlap vlincRNAs completely or partially.

We found these macroRNAs in diverse genomic con-
texts: intergenic, intronic as well as overlapping either
coding or non-coding exons. Several experiment-specific
macroRNAs share boundaries with annotated protein-
coding genes in particular as seen for the p53 data. As
we are analyzing total RNA including non-polyadenylated
transcripts, the latter are likely primary transcripts. Alter-
natively, we might not be able to discriminate mature
transcripts and removed introns, due to the unusual sta-
bility of the latter. However, bona fide spliced transcripts
in our datasets show tiling array signals that are very
different from those of macroRNAs. Also, it appears
unlikely that all macroRNA introns are equally stabi-
lized or sequestered from the degradation machinery. A
global analysis of splicing in the ENCODE project has
recently shown that splicing occurs predominantly co-
transcriptionally but is inefficient for lncRNAs [78]. We
might therefore speculate that we should observe, in addi-
tion to macroRNAs overlapping annotated lncRNAs, a
class of mRNA-derived macroRNAs that have functions
at the RNA level as unspliced primary transcripts.

Pathway-controlled macroRNAs resemble in appear-
ance transcriptional units involved in imprinting, such as
mouse Air or human Airn and KCNQ1OT1 (e.g. [59,79]).
Some of the examples are understood rather well, e.g.
Airn, and appear to function mainly by the continuing act
of ongoing transcription [79]. One might speculate that
the macroRNAs we have identified play similar regula-
tory roles and act in a mechanistically similar manner.
Although cell-type specific imprinting and thus differ-
ential expression of imprinting macroRNAs has been
observed [79], there is no indication that imprinting is
differential over the cell cycle or regulated by an early
response pathway such as STAT3. In line with this rea-
soning, the only RNA known to be involved in imprinting
and detected in our data, KCNQ1OT1, is not differentially
expressed.

STAT3-induced RNA 1 – a conserved, locally acting
scaffold?
STAiR1 is most likely a continuously transcribed
macroRNA, as we inferred from: (i) the time-dependent
elongation in the tiling array and qRT-PCR data at the
known speed of polymerase II, (ii) the characteristics
of tiling array signals and (iii) conserved subsequences
that maintain a particular spacing throughout eutherian
evolution, comparable to intron length conservation of
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continuously transcribed mRNAs. Also, there was no hint
of splicing of the entire macroRNA either from the tiling
array signals or the available EST data.

The macroRNA exhibited a remarkably specific tissue
distribution in non-malignant tissue. However, in astro-
cytoma we observed expression and upregulation in more
aggressive cases. One may speculate that STAiR1 is devel-
opmentally regulated and completely shut off in adult
tissues but reactivated by aggressive forms of tumors.
Expression solely due to genomic aberrations in a tumor
might be a different cause for this expression pattern, but
it is not a consistent reason for the identified conservation
pattern of STAiR1.

For the tumor tissue, we also detected correlated expres-
sion of STAiR1 and the adjacent oncogenic SETBP1,
which might just be a coincidental consequence of the
chromatin state of the entire locus, or point at some cis
interaction between both transcripts or loci. The latter
would fit with our observation that the evolutionary rates
of STAiR1 and SETBP1 are consistent with a local action
of the non-coding RNA.

Conserved elements, which in part had an RNA sec-
ondary structure under stabilizing selection, support
functioning at the level of the transcript as opposed to the
mere act of transcription, like Airn. STAiR1 and STAiR2
could have a role in the local repression of H3K27 methy-
lation since there is an apparent anti-correlation of their
expression in a tumorigenic pathway and an observed
lack of H3K27me3 at their loci in tumor cells of lym-
phoid origin, whereas there is a strong H3K27me3 signal
in non-tumorigenic cells. In summary, we speculate that
a possible role for STAiR1 might be local action as a scaf-
fold for a larger ribonucleoprotein complex that promotes
but is not sufficient for induction of SETBP1 and might
interfere with H3K27 methylation.

Materials and methods
Cell culture and RNA isolation
STAT3
The human myeloma cell line INA-6 was maintained
in RPMI 1640 medium, supplemented with 50 μM 2-
mercaptoethanol, 10% FCS and 100 U/ml of penicillin
and streptomycin (all from Invitrogen GmbH, Karlsruhe,
Germany). RNA was isolated from cells either withdrawn
from IL-6 for 13 h with or without restimulation with IL-
6 for 1 h or permanently maintained in the presence of 1
ng/ml IL-6 (permanent IL-6). Recombinant human IL-6
was a gift from S Rose-John (Kiel, Germany).

P53
D53wt cells were grown in 10% FCS in McCoys 5A mod-
ified medium containing 400 μg/ml geneticin (Gibco®,
Thermo Fisher Scientific, Waltham, MA, USA) and 250
μg/ml hygromycin (Roche, Mannheim, Germany). D53wt

are a derivative of the colorectal carcinoma cell line DLD-
1, kindly provided by Bert Vogelstein [80]. These cells har-
bor an inactive 241F p53 mutant and are stably transfected
with a tetracycline-responsive p53 expression system (tet-
off ). Induction of p53wt was performed by replacing the
medium with tetracycline-free cell culture media [81].
Previous studies have shown that p53 is efficiently upregu-
lated after 6 h [82,83]. As we were interested in identifying
the direct effects of p53 transcriptional regulation, we
chose to induce for 6 h for the tiling array experiment [83].
Induction of p53 mRNA and upregulation of the known
p53 target gene p21CIP1/WAF1 was controlled by qRT-PCR
(Additional file 1: Figure S2, [83]).

Cell cycle
Human foreskin fibroblasts obtained from ATCC (Ameri-
can Type Culture Collection, LGC Standards, Teddington,
Middlesex, UK) were cultured in DMEM (Gibco®, Thermo
Fisher Scientific, Waltham, MA, USA) supplemented with
10% FCS (Lonza, Basel, Switzerland). Then 106 cells were
subcultured in T300 flasks. After 24 h, the fibroblasts
were synchronized in G0 by serum deprivation for 48 h
[84]. Restimulation was carried out by adding a medium
containing 20% FCS. Cells were harvested at different
time points to obtain cell populations mainly at G1, S
or G2/M phases of the cell cycle. Synchronized cells
were analyzed by flow cytometry as described previously
[82-84]. Total RNA was extracted using TRIzol® (Invit-
rogen GmbH, Karlsruhe, Germany). The RNA integrity
for each sample was controlled with the total RNA
Nano Assay and the Agilent 2100 Bioanalyzer (Agilent
Technologies, Santa Clara, CA, USA) [84]. All samples
included in the experiments had RIN > 8.

Whole genome tiling arrays
The Affymetrix Human Whole Genome Tiling Array 1.0
Set consisting of 14 arrays was used according to the
manufacturer’s instructions, except that separate labeling
reactions were used for each array starting from 10 μg
total RNA.

Tiling array data analysis
We used the TileShuffle algorithm described
in [41] to determine expressed and differentially
expressed genomic intervals in an unbiased way. Briefly,
TileShuffle differentiates expression signals from
background noise taking into account common tiling
array biases. Windowing was used to reduce cross-
hybridization effects. The significance of windows was
assessed using empirical q-values that were estimated by
repeatedly permuting probes on the array. Probes were
binned with respect to the GC content of their sequences,
and probes belonging to different bins may not be inter-
changed during permutation. The analysis of differential
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expression was implemented in a similar manner. Here,
log-fold-changes between tiling arrays in both cellular
states were used as measures of differential expression.
Since sequence-specific effects were canceled out, affin-
ity binning was obsolete in this context. We avoided
considering signal intensity variation at the detection
limit as differential expression by requiring that differ-
entially expressed intervals must also be significantly
expressed relative to the background distribution in at
least one of the investigated conditions. Such intervals
are called DE-TARs. This is analogous to the common
non-specific filtering in conventional microarray data
analysis.

Affymetrix Human Whole Genome Tiling Array 1.0
Set raw signal intensities were mapped to human
genome version NCBI36 using Affymetrix BPMAP
files [85]. Expressed segments were detected with the
TileShuffle parameter settings: window size = 200,
the window score was defined as the arithmetic mean
trimmed by the maximal and minimal values over signal
intensities of all probes in a window, number of per-
mutations = 10, 000 and number of GC classes = 4.
All windows with an adjusted P < 0.05 according to
Benjamini and Hochberg [86] were defined to be signif-
icantly expressed. DE-TARs are differentially expressed
TileShuffle intervals with adjusted P < 0.005 (win-
dow size = 200, the window score was defined as the log-
fold-change discarding all probes with converse behavior
as observed for the relevant significantly expressed win-
dows, number of permutations = 100, 000 and number
of GC classes = 1). Finally, the genome coordinates of all
significantly expressed and all significantly differentially
expressed segments were lifted over to GRCh37 (hg19)
using [87].

Defining a set of bona fide non-coding segments
Apart from overlaps with protein-coding annotation, we
mainly relied on RNAcode [88] for predicting likely
protein-coding segments within the TARs and DE-TARs.
RNAcode considers synonymous amino acid substitu-
tions, reading frame conservation and the occurrence
of premature stop codons. It was applied to genome-
wide Multiz alignments [89] for 46 vertebrate genomes
downloaded from [90]. All segments with an RNAcode
P < 0.05 were considered de novo protein-coding regions.
We refrained from adjusting P values for multiple test-
ing, as we were not interested in a set of highly reliable
protein-coding segments (i.e. reducing the number of
false positives), but in reducing the number of regions
falsely interpreted as non-coding (i.e. reducing the num-
ber false negatives). An RNAcode P < 0.05 resulted
in 84.8% sensitivity (according to known protein-coding
exons annotated in Gencode v12) and 97.2% speci-
ficity (according to 10,000 sampled intergenic intervals

preserving the length distribution and repeat content of
protein-coding exons). RNAcode requires an input align-
ment of at least three evolutionarily related sequences
leaving stretches of genomic DNA without an RNAcode
score, because DNA sequence is not sufficiently con-
served.

Bona fide non-coding intervals in intergenic and
intronic regions were constructed from the significantly
expressed and differentially expressed segments by: (i)
removing all nucleotides overlapping exons of known
protein-coding transcript isoforms (Gencode v12 [46],
UCSC genes [91], RefSeq [92] or Ensembl [93] gene
annotation) or known pseudogenes (Gencode v12), (ii)
removing all nucleotides overlapping predicted protein-
coding segments (RNAcode [88]), (iii) removing all seg-
ments not classified by RNAcode having a sequence
similarity to known human amino acid sequences
(RefSeq database from 7 March 2012, tblastn
with -word-size 3 [94] and e < 0.05) and (iv) as the
smallest species of ncRNAs so far described in humans –
tinyRNAs and splice-site RNAs – are between 17 and 18
bp in length, the remaining intervals smaller than 17 bp
were discarded.

Detection of macroRNAs
The statistical tiling array data analysis outlined above
reports segments deemed as highly or differentially
expressed. Individual segments are typically short but
often appear strongly enriched in large genomic inter-
vals. Gaps within such accumulations of segments may be
caused by variations in signal intensity, a drop of signal
within intronic regions or by repeat regions that are not
covered by the tiling array. Regions in which significant
segments are highly enriched may thus reflect large bio-
logically relevant entities. Merging segments with a max-
imum distance only reproduces the same picture at lower
resolution but is inadequate for identifying local accumu-
lations. Instead, stairFinder is based on estimating
segment density using biweight kernels (see e.g. [95]) and
a given bandwidth where segments are represented by
their center position and weighted by their length. The
bandwidth of the kernel is a smoothing parameter that
significantly influences the resulting estimate, because a
larger bandwidth tends to aggregate more segments into
one single density peak. A bandwidth of 100,000 gave the
best results, relative to known annotation. Each estimated
peak including its flanking density minima was then pro-
cessed to identify the accumulation boundaries using a
flooding procedure to exclude single short outlying seg-
ments. More precisely, the boundaries were defined as the
leftmost and rightmost positions between the two flank-
ing minima where the density estimate remains above the
local flooding level, which is set to the current peak multi-
plied by a given level parameter (0 ≤ level ≤ 1). We used
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a local flooding level of 50%. Setting the flooding level to
0 thus identifies the flanking minima as the boundary of
the accumulation region. In the final step, accumulation
regions that overlap with each other were combined. The
stairFinder software reports these combined regions
together with information on their segment coverage and
silhouette as a clustering measure.

Annotation categories
A detailed listing of annotation sets used is given in
Additional file 1: Section 7.2 and Table S28.

Statistical analysis of annotation overlaps
The overlap with annotation sets was calculated using
R version 2.14.2 [96] and the Bioconductor library
genomeIntervals [97]. We further used the R library
Snow to enable parallel processing [98]. For each of the
three experimental settings (STAT3, p53 and cell cycle),
the overlap with a particular annotation set was com-
puted in terms of: (i) the absolute number of nucleotides
in the DE-TAR overlapping with a particular annotation
and (ii) the odds ratio of the observed relative overlap
versus a mean relative overlap of N = 100 randomized
background lists. Each background list consists of ran-
domly generated genomic intervals of the same length
distribution as observed for the corresponding DE-TARs
excluding assembly gaps and repeat regions as annotated
by RepeatMasker version Open-3.0 [99]. Each
list contains as many intervals as in DE-TAR. The sam-
pling space for bona fide non-coding intergenic DE-TARs
and bona fide non-coding intronic DE-TARs was reduced
to intergenic regions (the complement of protein-coding
gene annotation derived from Gencode release v12,
UCSC genes, RefSeq and Ensembl genes) or intronic
regions (all nucleotides not overlapping with any exon
annotated as a protein-coding exon in Gencode release
v12, UCSC genes, RefSeq or Ensembl genes). Observed
odds, randomized odds and odds ratios are defined as
follows:

oddsDE-TAR = ovDE-TAR
nDE-TAR − ovDE-TAR

(1)

oddsBG =
∑

i ovBGi
N∑

i nBGi −ovBGi
N

(2)

odds ratio = oddsDE-TAR
oddsBG

(3)

The observed number of overlapping nucleotides is
given as ovDE-TAR, while ovBGi corresponds to the num-
ber of overlapping nucleotides in the ith background list.
The number of unique nucleotides contained in DE-TAR
is nDE-TAR and the number of unique nucleotides in the
ith background list is nBGi . The significance of odds ratios

was assessed using Fisher’s exact test as implemented in
R. We also report the 95% confidence interval of the odds
ratio, which is larger than 1 for an enriched number of
overlapping nucleotides and less than 1 for depletion.

The same procedure was followed for assessing the sig-
nificance of overlaps observed for significantly differen-
tially expressed probes in astrocytoma custom microarray
data. Here, the background consists of one list containing
all probes on the custom microarray. A probe was inter-
preted as an overlapping probe if it maps by at least 90%
to an interval of the relevant annotation set, and the over-
lap was calculated in terms of overlapping probes instead
of overlapping nucleotides.

nONCOchip design
We used Agilent 244k microarrays for realizing the cus-
tom microarray. Probes of length 60 bp where all genomic
regions identified by TAS [100] are significantly differ-
entially expressed in at least one contrast of the three
different tiling array experiments were designed follow-
ing Agilent’s standard design protocol for expression exon
microarrays, as available from eArray [101]. Further-
more, probes for known or predicted ncRNAs derived
from public databases (Additional file 1: Table S18) as well
as probes for all human RefSeq mRNAs (the Agilent
014850 probeset of all mRNAs from the Agilent Whole
Human Genome Microarray) were added to the microar-
ray. The eArray was designed according to the base
composition methodology where probes are equally dis-
tributed across the target sequence and the uniqueness of
probes is checked against all human RefSeq RNAs. Tar-
get sequences were grouped into three length categories
defining the required number of probes. Target sequences
of length 60 ≤ l < 300 were represented by exactly one
probe, while target sequences of length 300 ≤ l < 1, 000
were represented by five probes. Target sequences longer
than 1,000 bp were split into intervals of 1,000 bp and the
number of probes selected according to the length of the
subsequence. Probes for the plus and minus strands were
designed for target sequences of unknown reading strand,
i.e. sequences originating from all tiling array experiments
or ncRNA predictions.

nONCOchip processing
First, 1 μg of total RNA was labeled using the Quick
Amp Labeling Kit (Agilent Technologies, Santa Clara, CA,
USA), according to the manufacturer’s instructions with
the adaptation of using an N6 − T7 primer instead of a
polyT-T7 primer. Hybridization and scanning were per-
formed following the manufacturer’s instructions (Agi-
lent Technologies, Santa Clara, CA, USA). Arrays were
scanned using a GenePix® 4200 Scanner and the GenePix
Pro® 6.1 Software (Molecular Devices, Sunnyvale, CA,
USA). Laser power was set to 40%, resolution to 5 μm,
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focus to 1 μm and PMT (photomultiplier tube) was set
between 300 and 400 to maximize the dynamic range
for each experiment. Three different biological repli-
cates were used to estimate the FDR of the tiling array
experiments.

nONCOchip data analysis
Differentially expressed probes were identified using R
version 2.14.2 [96] and the Bioconductor library
limma [102]. The quality of arrays was measured by
checking the distribution of ‘bright corner’ and ‘dark
corner’ probes and the relative spike-in concentration
compared to the normalized signal. Further, we checked
whether unsupervised clustering of arrays recovered the
grouping of replicates in the experiment. This resulted
in good quality for all arrays. To retrieve a set of probes
that map to unique genomic positions in hg19, we used
BLAT [103] with parameter -minIdentity=95, allow-
ing us to detect probes spanning splice sites. All probes
that mapped to more than one distinct genomic region
were discarded. Quantile normalization was used for nor-
malizing between arrays [104]. For unspecific filtering we
retained only probes that: (i) were expressed higher than
the background in a predefined number of arrays and (ii)
showed an interquartile range across all arrays of > 0.5.
Background expression was defined as the mean intensity
plus three times the standard deviation of negative control
spots (Agilent’s 3xSLv spots). Finally, a linear model was
fitted using the R package limma and reliable variance
estimates were obtained by empirical Bayes moderated
t-statistics. The FDR was controlled by a Benjamini–
Hochberg adjustment [86].

Bona fide non-coding probes were identified similarly
to the approach described above for DE-TARs: (i) probes
were discarded if they overlapped any strand with at least
one nucleotide with protein-coding exons from databases
(see section on DE-TARs for details), (ii) probes were
discarded if they overlapped a significant RNAcode seg-
ment (P < 0.05) and (iii) probes overlapping segments
not classified by RNAcode due to low sequence conser-
vation were discarded if they overlapped genomic regions
with a sequence similar to known human proteins (see
section on DE-TARs for details). Applying these filters
resulted in 53,219 bona fide non-coding probes in inter-
genic regions and 70,863 in introns of protein-coding
genes. Probes antisense to protein-coding exons but not
containing a significant RNAcode hit on the probe’s sense
strand defined a separate set of 14,139 antisense probes.

Identification of proximal ncRNA-mRNA pairs
For each bona fide non-coding probe significantly differ-
entially expressed (FDR < 0.05) between astrocytoma
of grade I compared to aggressive states III and IV, the
protein-coding gene (Gencode release v12) in closest

genomic proximity independent of the reading strand
was identified. The ncRNA-mRNA pair was retained only
if the protein-coding gene was differentially expressed
at the same FDR cut-off and if the fold-changes of
probes mapping to exons of the same protein-coding
gene had the same sign. Preconditions were used to
exclude potentially non-annotated long-distance exons of
the protein-coding gene: (i) if the bona fide non-coding
DE-probe and the protein-coding gene were located on
the same reading strand, only those pairs that had sig-
nificant expression changes in opposite directions were
used and (ii) if the bona fide non-coding DE-probe and
the protein-coding gene were located on different reading
strands, all pairs with significant expression changes were
excluded.

Gene ontology term enrichment analysis
Gene ontology (GO) term enrichment analysis for the
ontology biological process was performed using the R
library GOstats [105]. Mapping of genes to GO terms
was based on the NCBI gene information table [106]. GO
terms with evidence code IEA were removed in order to
discard all automatically assigned annotations. GO terms
with evidence codes IBA, IKR or IRD had to be removed
because the version of the GOstats library used did not
accept these as valid codes. The significance of enrich-
ment was assessed by a one-sided hypergeometric test
where the universe contained all genes of the custom
microarray that passed non-specific filtering.

Estimation of false discovery rate using the nONCOchip
Following [41], we ran the custom microarray in tripli-
cate for each of the cell-cycle, p53 and IL-6 experiments
with the same samples hybridized on the Affymetrix tiling
arrays. The custom microarray was used as a reference to
estimate the sensitivity (TP/P), the specificity:

1 − FP
N

and the false discovery rate:

FDR = FP
FP + TP

for the DE-TARs detected on the tiling arrays. The num-
ber of true positives (TP) was the number of nucleotides
that are significantly differentially expressed in the tiling
array analysis (TileShuffle false discovery rate q
ranging from 10−4 to 1) and overlap with nucleotides
of a probe that was found significantly differentially
expressed in the corresponding custom microarray exper-
iment (FDR < 0.05). The number of false positives (FP)
was defined as the number of DE-TAR nucleotides that
overlap with a probe that is not significantly differen-
tially expressed in the custom microarray experiment. The
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number of positive nucleotides (P) was defined as the
sum over all nucleotides of probes that are significantly
differentially expressed in the custom microarray exper-
iment. Analogously, the number of negative nucleotides
(N) was the sum of all nucleotides of probes that are not
differentially expressed.

Detection of macroRNAs using qRT-PCR
To detect the induction of STAiR1 using qRT-PCR, total
RNA was prepared from INA-6 cells (permanently culti-
vated with IL-6 or withdrawn from IL-6 for 13 h and res-
timulated with IL-6 for 30, 60, 120, 240 or 360 min) using
TRIzol® Reagent (Life Technologies, Carlsbad, USA).
RNA was quantified using the NanoPhotometer (Implen
GmbH, Munich, Germany). Then 1 μg of total RNA was
used for reverse transcription with the RevertAid First
Strand cDNA Synthesis Kit (Thermo Fisher Scientific,
Waltham, MA, USA). cDNA was amplified and detected
by quantitative real-time PCR using the LightCycler™
TaqMan™ Master Kit (Roche Diagnostics, Mannheim,
Germany) with a set of specific primer pairs and a hydrol-
ysis probe from the Universal Probe Library (Roche Diag-
nostics, Mannheim, Germany). Signals were normalized
to values obtained for glyceraldehyde-3-phosphate dehy-
drogenase. Sequences of the primers we used are provided
in Additional file 1: Table S27.

Tissue distribution of STAiRs
Total RNA (FirstChoice™ Human Total RNA Survey Panel,
Ambion, Thermo Fisher Scientific Waltham, MA, USA)
from nine different normal human tissues was reverse
transcribed using specific primers. cDNA was ampli-
fied by PCR using specific primers followed by gel elec-
trophoresis. PCR primers are listed in Additional file 1:
Table S27.

Chromatin immunoprecipitation
ChIP assays were performed according to the protocol
provided with the ChIP assay kit from Upstate (Millipore,
Schwalbach, Germany). INA-6 cells were either with-
drawn from IL-6 for 12 h or withdrawn from IL-6 for
12 h and restimulated for 1 h. Recombinant human IL-6
was a generous gift from S Rose-John (Kiel, Germany).
Cells were cross-linked by addition of formaldehyde to
the medium at a final concentration of 1% and incu-
bated for 10 min. Sonication was carried out 30 times,
30 sec on/off, level ‘high’ using the Bioruptor (Diagen-
ode, Liège, Belgium). Aliquots containing chromatin from
3×106 cells were used for immunoprecipitation with anti-
bodies against H3K4me3 (ab1012), H3K36me3 (ab9050,
both Abcam, Cambridge, UK) and rabbit IgG (# 12-370,
Millipore, Schwalbach, Germany), as an isotype control.
Co-immunoprecipitated DNA was amplified and detected
by qRT-PCR using the LightCycler™ TaqMan™ Master Kit

(Roche Diagnostics, Mannheim, Germany) and a set of
specific primer pairs and a hydrolysis probe from the
Universal Probe Library (Roche Diagnostics, Mannheim,
Germany). Primer sequences are given in Additional file 1:
Table S27.

Non-protein-coding RNA expression profiling of brain
samples
Patients and samples
A total of 12 patients with astrocytoma (WHO grades
I and III) and primary glioblastoma (WHO grade IV)
were analyzed. All patients underwent complete tumor
resection and recovered without neurological deficits. All
tumors were diagnosed and classified according to WHO
criteria [75]. Clinical and pathological data are summa-
rized in Additional file 1: Table S17. The study was
approved by the local ethics review board at the Medical
Faculty of the University of Leipzig (086-2008) and was
performed in accordance with the Helsinki declaration.
All patients provided written informed consent.

RNA extraction
After surgical resection, tumor samples were immedi-
ately frozen in DMSO (Dimethyl sulfoxide) and stored
at −80°C. For RNA extraction, samples were transferred
to a mortar resting in liquid nitrogen. Still in the cooled
mortar, small pieces (5 to 30 mg) of tumor tissue were
separated from ice and crushed mechanically. The mate-
rial was then transferred directly into 1 ml TRIzol®
(Invitrogen GmbH, Karlsruhe, Germany), and immedi-
ately vortexed vigorously for at least 1 min. After further
incubation at room temperature for 5 min, the solu-
tion was pulled up and down through a 21 gauge nee-
dle, if necessary, to dissolve all remaining visible tissue.
To remove any remaining particles, the samples were
centrifuged at 13,400 rcf for 10 min at 4°C. All subse-
quent procedures were performed on a clean bench. RNA
was extracted with chloroform according to standard
TRIzol® protocols. GlycoBlue (Ambion Inc., Applied
Biosystems, Darmstadt, Germany) was added to support
precipitation. RNA pellets were washed twice with 75%
ethanol and RNA was resuspended in RNase-free water.
RNA samples were subjected twice to DNA digestion
for 30 min at 37°C with TURBO DNA-free (Ambion
Inc.) as suggested by the supplier. DNase was inacti-
vated using the supplied Inactivation Reagent. RNA con-
centration and quality were assessed using a NanoDrop
ND-1000 UV/VIS spectrophotometer (Thermo Scientific,
Wilmington, Delaware, USA) and the RNA 6000 Nano
Kit on an Agilent 2100 Bioanalyzer (Agilent Technolo-
gies, Waldbronn, Germany). Sample concentrations were
adjusted to between 0.31 and 1 μg/μl with RNase-free
water. If necessary, ammonium acetate precipitation and
resuspension in RNase-free water preceded adjustment of
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concentrations. RNA samples were stored at −80°C until
use.

Data availability
All expression and differential expression studies are
accessible from the Gene Expression Omnibus (GEO)
database. In detail, transcriptome-wide surveys for highly
expressed segments during mitotic cell cycle are available
through [GEO:GSE44627] (G0), [GEO:GSE44628] (G1),
[GEO:GSE44629] (S) and [GEO:GSE44630] (G2M). Sig-
nificantly differentially expressed segments are stored
in [GEO:GSE44631] (G0/G1), [GEO:GSE44632] (G1/S),
[GEO:GSE44633] (S/G2M) and [GEO:GSE44634]
(G0/G2M).

Transcriptional activity under p53 expression can
be accessed through [GEO:GSE43912] (defunct p53),
[GEO:GSE43913] (p53 induced), while significant
changes are available through [GEO:GSE43914] (p53
induced/defunct p53).

Transcriptional activity in response to STAT3 activa-
tion is available through [GEO:GSE44657] (INA-6 cells
deprived from IL-6 for 13 h), [GEO:GSE44656] (restim-
ulated after 1 h) and [GEO:GSE44658] (permanently cul-
tured in IL-6). Significant changes of expression are stored
in [GEO:GSE44659].

Microarray data used to estimate the FDR are deposited
in [GEO:GSE29792] (G0/G1), [GEO:GSE29794] (p53
induced/defunct p53) and [GEO:GSE29793] (INA-6 cells
deprived from IL-6 for 13 h and restimulated after 1 h)
and to estimate differential expression in brain tumors in
[GEO:GSE43911].

Additional files

Additional file 1: Supplemental material.

Additional file 2: Online supplemental material containing BED
formatted files of differentially expressed regions and macroRNAs, as
well as CSV tables listing all proximal ncRNA-mRNA pairs regulated in
astrocytoma.
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