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a b s t r a c t

Disease severity through an immunized population ensconced on a physical network to-
pology is a key technique for preventing epidemic spreading. Its influence can be quan-
tified by adjusting the common (basic) methodology for analyzing the percolation and
connectivity of contact networks. Stochastic spreading properties are difficult to express,
and physical networks significantly influence them. Visualizing physical networks is
crucial for studying and intervening in disease transmission. The multi-agent simulation
method is useful for measuring randomness, and this study explores stochastic charac-
teristics of epidemic transmission in various homogeneous and heterogeneous networks.
This work thoroughly explores stochastic characteristics of epidemic propagation in ho-
mogeneous and heterogeneous networks through extensive theoretical analysis (positivity
and boundedness of solutions, disease-free equilibrium point, basic reproduction number,
endemic equilibrium point, stability analysis) and multi-agent simulation approach using
the Gilespie algorithm. Results show that Ring and Lattice networks have small stochastic
variations in the ultimate epidemic size, while BA-SF networks have disease transmission
starting before the threshold value. The theoretical and deterministic aftermaths strongly
agree with multi-agent simulations (MAS) and could shed light on various multi-dynamic
spreading process applications. The study also proposes a novel concept of void nodes,
Empty nodes and disease severity, which reduces the incidence of contagious diseases
through immunization and topologies.

© 2024 The Authors. Publishing services by Elsevier B.V. on behalf of KeAi
Communications Co. Ltd. This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Humans from diverse societies or communities are connected through networks in real-world phenomena as the world
comprises human social interactions. In social networks, nodes symbolize individuals, while edges characterize the
connection between two individuals. As networks are not uniform in structure, spreading infection on networks is also
distinct in diverse communities. If any disease spreads in physical networks (human-human interaction), disease trans-
mission dynamics show different physical appearances, heterogeneous infection rates, levels of intimacy, and contact
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frequency for realistic diseases. People's immunity levels for combating infectious diseases vary due to physical and social
conditions, naturally achieving immunity, innate immunity, vaccination, and hygienic food habits (Kabir & Ullah, 2023; Ullah
et al., 2022a, 2022b). The present research focuses on how an individual's immunity influences disease transmission on
diverse homogeneous and heterogeneous networks, which can assist in providing policymakers with more qualitative and
quantitative insights to stop an epidemic. To understand the disease dynamics more rigorously, we initially consider ER-
random (Erd}os & R�enyi, 1959), Random regular (Bollob�as, 2001), BA scale-free (SF) (Barab�asi & Albert, 1999), Ring (Watts
& Strogatz, 1998a), Lattice (Newman et al., 2006), and the small world (WS) (Watts & Strogatz, 1998b) network topologies
to investigate the impact of disease incidence in dynamic networks. Then, to stop the transmission of newly developing or
reemerging infectious illnesses, we added void nodes of the perfect immunized individual to the aforementioned social
network. Employing such immunized individuals, nonetheless, incurs infections in every individual in society.

J. A. Barnes (Barnes, 1954) is credited with introducing the concept of social networks in 1954 through an anthropology
paper focused on the social aspects of connections between hubs within a network. In 1985, Klovdahl (Klovdahl, 1985)
utilized social network analysis (SNA) for the first time in epidemiological models. Additionally, the network structure is vital
in developing effective interventions or awareness initiatives (Christakis & Fowler, 2010), which gives practical tools for
understanding the “dynamic disease's” underlying environment and tracking the development and effect of different stra-
tegies. The identification of groups of persons, peripheral individuals, and the explanation of the network's macrostructure in
amanner that should influence disease transmission rate as individuals are interconnected, which impacts social networks. In
contrast, the person (node) with the most connections (edges) is more likely to come into contact with other people and,
consequently, is more susceptible to infection. Thus, the complex social networks provide a realistic technique for analyzing
the spread of epidemics compared to the limitations of ODE compartmental models (Atifa et al., 2022; Haq et al., 2023; Kabir
et al., 2020; Kabir and Tanimoto, 2019a, 2019b; Ngonghala et al., 2023).

Contemporary research has shown that the topology of social, biological, and technological networks in the real world has
many epidemiological properties that govern how diseases emerge in various networks and how individuals behave
regarding the disease transmission process directly related to public health. Numerous researchers have examined the
transmission of epidemic diseases in physical networks, namely, BA scale-free and small-world (WS) networks (Moreno et al.,
2002; Wang et al., 2016; Zhang & Fu, 2009; Zhang & Jin, 2011; Zhang & Sun, 2014). Following analyzing many epidemic
models on networks (Goltsev et al., 2012; Yuan et al., 2013a, 2013b), Zhu andWang (Zhu&Wang, 2017) studied amodified SIR
model to examine the transmission of rumors across BA and WS complex social networks. For example, scale-free networks
can withstand arbitrarily but are highly susceptible to purposeful assaults from densely interconnected nodes (Boguna et al.,
2003; Callaway et al., 2000). SF networks, which follow power-law distributions, describe the number of heterosexual
partners reported by diverse populations (Boguna et al., 2003; Callaway et al., 2000; Liljeros et al., 2001). Pastor-Satorras and
Vespignani established the existence of an epidemic threshold in finite SF networks in their investigation of the SIS model
(Liljeros et al., 2001; Newman, 2003; Pastor-Satorras and Vespignani, 2001, 2002a, 2002b). Yuan et al. (Yuan et al., 2018)
introduced a SIR model with two susceptible groups and investigated it on complex networks, where human interactions are
seen as an SF social network. Chen et al. (Chen et al., 2018) present an SIS-type disease transmission model including age-
dependent infection, birth, and death on a heterogeneous network to evaluate epidemic disease propagation and dynamic
behavior. Wei (Wei, 2024) researched a network-based SIR epidemic model incorporating a saturated treatment function. In
addition, many epidemic diseases emerge in regions where a scale-free network is predicted to exist, such as in locations
where human interactions occur. Tatsukawa et al. (Tatsukawa et al., 2022) thoroughly investigate the stochastic outcomes by
modifying the topology, average degree, and starting number of infected individuals in agent-based simulations for net-
worked SIR processes. Li and Yousef provide in (Li & Yousef, 2019) the network-based SIR epidemic model that includes a
treatment function that has reached its maximum potential. In their study, Lou and Ruggeri (Lou& Ruggeri, 2010) investigate
the epidemic threshold and transmission dynamics of sexually transmitted diseases (STDs) by using multiple susceptible-
infected-removed-susceptible models on scale-free networks. Wang et al. (Wang et al., 2017) present a knowledge trans-
mission model and create mean-field equations that characterize the knowledge transmission process's dynamics by
considering the self-learning mechanism in a complex network. These equations describe how information is passed from
one person to another. According to Kuga and Tanimoto, introducing void nodes into a network creates a more diverse
network and minimizes the final epidemic size (Kuga & Tanimoto, 2022).

Our initial model included birth and death rates to explore theoretical and numerical aspects. In subsequent simulations,
we maintained a constant population within the network by assuming equivalent birth and death rates. Furthermore, we
integrated the concept of birth and death agents into our epidemic model by examining the function of the Empty node,
which involved the birth of agents from an empty node, contributing as susceptible agents, and the death of agents, leaving
the Empty node vacant.

Based on the discussed background, the present study first explored to depict the SIR process with a multi-agent simu-
lation (MAS) technique by borrowing the social network concepts, i.e., random (ER), random regular (RR), BA-SF, Ring, Lattice,
and small world (WS) network. Due to the implementation of immunized individuals in the social network's static form into
the epidemic transmission process, we propose a novel concept of void nodes, which embeds the phenomena toward im-
munization on the premise that including void nodes reduces the contagious disease severity. To perform multi-agent
simulation, we used the Gilespie algorithm (Allen, 2008; Gillespie, 1977; Meyer & Shackelton, 2019) to model epidemics
and other infectious diseases, as it allows for the inclusion of stochastic effects and individual-level heterogeneity.
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1.1. Network-based SVIR epidemic model

We suggest a multiagent-based epidemic SIR dynamics on a complex social network. Themodel presented in this research
work is a mean-field approximation approach since the complex network is dynamic, and the linkages are constantly rewired
throughout the dynamics of an epidemic. The analyzed network is allocated for N, where it is either vacant or employed by a
single agent, and each site in N may connect one of the states of S, I, and R.

Additionally, n groups are created for each state based on the degree of the site. For k ¼ 1;2;3;…;n, the maximum degree
number n symbolizes the fate of those with a degree kwho are susceptible ðSkÞ, infected ðIkÞ; and recovered ðRkÞ. The pace at
which each site's status may change varies. A healthy person from a vulnerable group may be born at a rate L in an empty
location. If there are sick people around, a healthy member of a susceptible group gets infected by contact at a rate of b. A
specific rate of recovery g is possible for the sick person. Node mortality is equal to m. Therefore, one canwrite the mean-field
equations (Chen et al., 2018; Wei, 2024; Yuan et al., 2018):

_SkðtÞ¼L� bkSkðtÞQðtÞ � mSkðtÞ; (1.1)

_I ¼bkS ðtÞQðtÞ � ðgþmÞI ðtÞ; (1.2)
k k k

_Rk ¼gIkðtÞ � mRkðtÞ: (1.3)
If a link connects to a site of degree k, the probability that it does so is proportional to the degree of distribution kPðkÞ (Haq
et al., 2023; Kabir et al., 2020) for uncorrelated complex degree networks, then QðtÞ is represented as

QðtÞ¼ 1
< k>

Xn
k¼1

kPðkÞIkðtÞ; (2)

where PðkÞ > 0; the degree distribution of the network, which satisfies the normalized equality
Pn

k¼1PðkÞ ¼ 1; and < k> ¼Pn
k¼1kPðkÞ symbolizes the average degree of the network.
The proposedmodel (1.1e1.3) with equation (2) and the initial condition Skð0Þ ¼ S0k ; Ikð0Þ ¼ I0k ;Rkð0Þ ¼ R0k must be satisfied

with inequality 0< S0k þ I0k þ R0k � 1; which describes the dynamics of the basic SIR model on uncorrelated networks with
degree distribution kPðkÞ. Any system (1.1e1.3) solution starting from the nonnegative cone R3nþ is shown to stay nonnegative.
Therefore, we examine the R3nþ model (1.1e1.3) in the following sections. Additionally, combining the four equations in the
model (1.1e1.3) results in

d
dt

ðSk þ Ik þRkÞ¼L� mðSk þ Ik þRkÞ (3.1)

L
Therefore, lim
t/∞

sup ½SkðtÞþIkðtÞþRkðtÞ� � m : As a result, the feasible compact region

P¼fS1; I1;R1;…; Sk; Ik;Rkg2R3nþ : SkðtÞþ IkðtÞþRkðtÞ �
L

m
; (3.2)

3n
contains a positive invariant concerning themodel (1.1e1.3) that is included in the nonnegative cone of Rþ with 1 � k � n.

1.2. Networks

Euler's solution to a bridge problem in 1735 started graph theory, developing network science (Euler, 1741; Alexanderson,
2006). Moreno extended the concept of networks to social systems, leading to the study of social networks (Moreno, 1934).
Network science has applications in many fields, including statistical physics, computer science, biology, economics, finance,
and public health (Barab�asi, 2016; Caldarelli & Catanzaro, 2012; Cayley, 1857; Hamilton, 1858; Kirchhoff, 1845; Newman,
2018). In a physical network, a node represents an individual, while edges represent their connections or relationships.
The degree of a node in a social network refers to the number of neighbors. A hub in a social network is a node with a
significantly higher number of links than others, indicating its importance or influence within the network. With the
assumption of epidemic dynamics (equation (1.1)-(1.3)) by the set of the system of ordinary differential equations, we
consider six distinct social networks: Erd€os and R�enyi (ER) random, Random Regular (RR), Barabasi and Albert (BA) scale-free,
Ring, Lattice and WS (Watts and Strogatz) small-world network.

Different network structures have been applied to epidemic spread modeling. In an Erd€os-R�enyi random network, con-
nections between individuals are formed randomly, resulting in a Poisson degrees distribution. On the other hand, random
regular (RR) networks have a uniform degree distribution, where each individual in the society has the same number of
connections. In Barabasi-Albert scale-free networks, the degree distribution is uneven, following a power law, where a few
individuals have many connections, and many individuals have few connections, which can significantly impact epidemic
spread. A ring network, where each node is connected to its two neighbors in a cycle, is a simple structure used to model the
3
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spread of an epidemic. Lattice graphs are suitable for modeling epidemics in populations with a well-defined local structure,
such as a two-dimensional grid. The small-world network, built on a regular lattice where each node is connected to its
nearest neighbors, replicates the spread of diseases in populations where people have close and distant interactions.

1.3. Erd€os and R�enyi (ER) random network

Erd€os and R�enyi's (ER) work on random graphs, where vertices are randomly connected, significantly contributed to
establishing network science (Erd€os & R�enyi, 1960; Erd}os & R�enyi, 1959). The random graph model, despite its differences
from existing networks, is crucial for showing the existence of graphs meeting particular criteria or for explaining almost
universal attributes. The easiest method for constructing a random graph is to draw connections between possible pairs of
vertices with probability p until all pairs have been connected. The equation for the number of edges in an ER graph with N
nodes and probability p is:

E¼NðN � 1Þ p
2

(4.1)

whereN is the total number of nodes in the graph and p ¼ < k>
N�1 is the probability that an edgewill connect any two nodes. This

equation holds because there are NðN�1Þ
2 possible pairs of nodes in the graph and each pair of nodes is connected by an edge

with a probability p:

1.4. Random regular (RR) network

In 1979, mathematician Joel Spencer suggested the idea of a random regular graph, where each vertex has the same
degree, and edges are given arbitrarily subject to this constraint (Bollob�as, 2001). Random regular graphs have intriguing
characteristics, such as a small diameter and a considerable girth, and are still a hot topic for study in computer science,
mathematics, and related disciplines today. They provide insights into the structure and behavior of systems like social
networks, transportation networks, biological networks, and information science. The equation for the number of edges in an
RR graph with N nodes and average degree < k> is:

E¼ < k>
N
2

(4.2)
1.5. Barabasi and Albert (BA) scale-free network

Barabasi and Albert proposed a mathematical model of network evolution with hubs and a scale-free degree distribution
(Barab�asi & Albert, 1999). New nodes are added to an initial nucleus and preferentially attached to existing nodes with
numerous connections. This model accounts for the properties of many existing networks, like social media, biology, physics,
and computer science. The equation for the number of edges in a BA network with N nodes is:

E¼mðN � 1Þ (4.3)
where m is the number of edges added to the graph at every time during the initial growth phase of the network.

< k> ¼ 2m:
1.6. Ring network

The ring graph is a simple structure studied by mathematicians and computer scientists for many years, where each node
is linked to its two neighbors in a cycle of nodes (Watts & Strogatz, 1998a). It is still a topic of study today and is used as a
model for various systems, including social networks, transportation networks, and power grids. Ring graphs are also used to
simulate distributed algorithms and communication networks. The formula for determining the number of edges in a ring
network with N nodes is:

E¼ < k>N
2

(4.4)
4
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1.7. Lattice

Lattice (Newman et al., 2006) graphs have a stable, grid-like structure that mathematicians and physicists have studied for
decades. They have applications in various fields, including statistical physics, materials research, and computer science.
Lattice graphs are used to model the structure and complexity of algorithms, optimization problems, and the dynamics of
social and communication networks. The number of edges in a two-dimensional square lattice graph can be computed for N
nodes and < k> average degrees using the following formula:

E¼ < k>
N
2

(4.5)
1.8. Watts and Strogatz (WS) small-world network

Milgram and Travers (Milgram, 1967; Travers & Milgram, 1969) conducted tests in 1967 and found that human social
networks have short path lengths, leading to “six degrees of separation.” Watts and Strogatz (Watts & Strogatz, 1998b)
attempted to create small-world networks in 1998 by startingwith a regular ring lattice and adding randomness. Small-world
networks have diverse architectures and connection patterns, resulting in a variable equation for the relationship between
the number of nodes and edges. For a small-world network with N nodes and average degree < k> , the number of edges can
be estimated by,

E¼ < k>
N
2

where E is the total number of edges in the network. This equation assumes that the network is sufficiently large and well-
connected and that the degree distribution is approximately Poisson or exponential. In a small-world network, the average
degree < k> can be tuned by adjusting the rewiring probability, which controls the balance between regularity and
randomness in the network structure. The above equation approximates and may not hold strictly for all small-world net-
works, especially those with highly skewed degree distributions or other non-random features.

1.9. Theoretical analysis

Positivity and boundedness of solutions.

Lemma 1. Let us assume that the solution ðS1; I1;R1;…Sn; In;RnÞ of the proposed system illustrated in equation (1.1)-(1.3) for the
given initial condition ; where Qð0Þ>0: Therefore, 0< SkðtÞ<1;0< IkðtÞ<1;0<RkðtÞ<1;andQðtÞ>0;c t>0, where k ¼ 1;2;3;
…;n:

Proof: Firstly, consider that QðtÞ>0;c t>0. Then one can write from equation (2)

_QðtÞ¼ 1
< k>

Xn
k¼1

kPðkÞ _IkðtÞ

1 Xn

¼

< k>
k¼1

kPðkÞðbkSkðtÞ4ðtÞ � ðgþmÞIkðtÞÞ

 
1 Xn !
¼QðtÞ
< k>

k¼1

bk2PðkÞSkðtÞ � ðgþmÞ :
Then we can write,

QðtÞ¼Qð0Þexp
8<
:� ðgþmÞtþ

Zt
0

bk2PðkÞ
< k>

Xn
k¼1

SkðvÞdv
9=
;:
As Qð0Þ>0; and QðtÞ>0;c t>0:
According to the initial condition, Skð0Þ � 0;Vkð0Þ � 0: Then from the continuity of susceptible individuals SkðtÞ;d d> 0,

which implies that Skð0Þ>0 for t2ð0; dÞ: Therefore, we have to show that SkðtÞ>0c t: Otherwise, we can locate t0 � d> 0
such that Skðt0Þ ¼ 0 and SkðtÞ>0 for some t2ð0; t0Þ: Thus, from equation (1.1), we have,
5
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_SkðtÞ¼L>0:
It means the fact that Skðt0Þ<0 for some t2ð0; t0Þ seems to be in a contradiction. As a result, SkðtÞ>0c t: The following
relationship can be derived from equation (1.2) using the positivity of SkðtÞ and QðtÞ:

_Ik � bkSkðtÞQðtÞ þ ðgþmÞIkðtÞ>0 for t >0:
Then, we can write,
IkðtÞ> Ikð0Þexpð�g� mÞt � 0 for the positivity of SkðtÞ and QðtÞ.
Therefore, IkðtÞ>0c t:
And finally, we can show that RkðtÞ>0c t:
Here, the total population, NkðtÞ ¼ SkðtÞ þ IkðtÞ þ RkðtÞ; where k ¼ 1;2;3;…;n:
Then, _NkðtÞ ¼ _SkðtÞþ _IkðtÞþ _RkðtÞ:
Substituting the value of _SkðtÞ; _IkðtÞ; _RkðtÞ from equation (1.1)-(1.3) in the above equation, we have (when L ¼ m i:e:; the

population is static).
_NkðtÞ ¼ 0 c t � 0; which assures that the sum of the population NkðtÞ is fixed.
Now, NkðtÞ ¼ SkðtÞ þ IkðtÞ þ RkðtÞ ¼ 1c t>0: As SkðtÞ>0; IkðtÞ>0 and RkðtÞ>0; as a result, we accomplish that 0< SkðtÞ<

1;0< IkðtÞ<1;0<RkðtÞ<1;andQðtÞ>0;c t>0, which concludes the proof.

1.10. Disease-free equilibrium point

The equilibrium at which the population is free of infection, i.e., all affected classes will have a value of zero, is known as
the “disease-free equilibrium,” and the symbol represents it E0 ¼ ðE0;…; E0ÞT2Fn. Thus, E0 ¼ ð1;0;0;0;…;1;0;0;0Þ and F ¼
R4:

1.11. Basic reproduction number R0 and endemic equilibrium point (EEP) E*

The basic reproduction number R0, a threshold value of an average number of secondary case counts a typical infected
person produces throughout their whole infectious period in a fully susceptible community. It determines the global dy-
namics of epidemic systems and is also a significant indicator of the control efforts for infectious diseases (Diekmann et al.,
1990; Driessche & Watmough, 2002). For epidemic models in homogeneous/heterogeneous populations, Diekmann et al.
(Diekmann et al., 1990) provided a precise mathematical description and calculation of the basic reproduction number in
1990. Van den Driessche and Watmough (Driessche & Watmough, 2002) simplified this formulation, which applies to most
ODE compartmental disease models. Generally speaking, the global dynamics of epidemic models are governed by the
disease threshold R0 ¼ 1: In particular, if R0 <1, the endemic equilibrium is locally asymptotically stable; conversely, if R0 > 1,
the disease-free equilibrium is locally asymptotically unstable. In the following section, we now demonstrate the existence of
a threshold value R0 that is connected to equation (1.1)-(1.3) parameters and the network topology such that if R0 > 1, an
endemic equilibrium occurs.

Lemma 2. Let us define the threshold value

R0 ¼
b< k2 >

ðgþ mÞ< k>
;

where < k2 > ¼Pn
k¼1k

2PðkÞ: Thus, the system of nonlinear equation (1.1)-(1.3) has an endemic equilibrium point denoted by
E* whenever R0 >1:

Proof: To determine the EEP of the heterogeneous-based network model, we suppose E* ¼ ðS*1; I*1;R*1;…S*n; I
*
n;R

*
nÞ is an EEP

of the proposed model. Thus, E* must be satisfy

L� bkSkðtÞQðtÞ � mSkðtÞ¼0;

bkSkðtÞQðtÞ � ðgþmÞIkðtÞ¼0; (5.1)
gIkðtÞ � mRkðtÞ¼0; k ¼ 1;2;3;…;n:
Then

S*k ¼
L

bkQþ m
;

6



M.D.S. Islam, M. Sharif Ullah and K.M.A. Kabir Infectious Disease Modelling 10 (2025) 1e27
I*k ¼
LbkQ

ðbkQþ mÞðgþ mÞ ;

* g
�

LbkQ
�

Rk ¼m ðbkQþ mÞðgþ mÞ (5.2)
Replacing the value of Ik in equation (2), we get

Q

 
1� 1

< k>

Xn
k¼1

Lbk2QPðkÞ
ðbkQþ mÞðgþ mÞ

!
¼0
Let,

FðQÞ¼1� 1
< k>

Xn
k¼1

Lbk2QPðkÞ
ðbkQþ mÞðgþ mÞ

1 Xn Lbk2PðkÞ

0Fð1Þ¼1�

< k>
k¼1

ðbkþ mÞðgþ mÞ

1 Xn bk2PðkÞ

> 1�

< k>
k¼1

bk
¼ 0:
Here, F is continuous on the close interval [0, 1], and according to the Intermediate Value Theorem, if Fð0Þ< 0; then there
exists a positive solution FðQÞ ¼ 0; which implies that R0 >1: Therefore, wewill obtain the EEP after replacing the value of the
positive solution, which concludes the proof of the above lemma.

1.12. Stability analysis of the disease-free and endemic equilibrium point

This section presents the stability analysis of the DFE point E0 and EEP E*:Here, we demonstrate that E0 is locally as well as
globally asymptotically stable (GAS) and attractive when R0 <1. On top of that, then represent the instability and the endemic
equilibrium point E* is asymptotically stable for R0 >1:

Theorem 1. The DFE point E0 of the proposed vaccinated SVIR model is locally asymptotically stable (LAS) if R0 < 1 and unstable
when R0 >1:

Proof: Suppose, SkðtÞ ¼ xkðtÞ; IkðtÞ ¼ ykðtÞ:
Here, xkðtÞ; ykðtÞ and zkðtÞ is the small perturbation of E0: Then, we can write the linear system as follows:

_xkðtÞ¼L� mxkðtÞ �
bk

< k>

Xn
k¼1

kPðkÞykðtÞ;

bk Xn

_ykðtÞ¼ � ðgþmÞykðtÞ þ < k>

k¼1

kPðkÞykðtÞ;

_zkðtÞ¼gykðtÞ � mzkðtÞ: (6)
Then we can write,

d
dt

0
BBBBBBBB@

x1ðtÞ
y1ðtÞ
z1ðtÞ
«

xnðtÞ
ynðtÞ
znðtÞ

1
CCCCCCCCA

¼ P

0
BBBBBBBB@

x1ðtÞ
y1ðtÞ
z1ðtÞ
«

xnðtÞ
ynðtÞ
znðtÞ

1
CCCCCCCCA
;

where,
7
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JðE0Þ¼

2
666666666666664

�m U1q1 0 0 U1q2 0 / 0 �U1qn 0
0 �ðgþ mÞ þ U1q1 0 0 �ðgþ mÞ þ U1q2 0 / 0 U1qn 0
0 g �m 0 0 0 / 0 0 0
0 �U2q1 0 �m �U2q2 0 / 0 �U2qn 0
0 U2q1 0 0 �ðgþ mÞ þ U2q2 0 / 0 U2qn 0
0 0 0 0 g �m / 0 0 0
« « « « « « 1 « « «
0 �Unq1 0 0 �Unq2 0 / �m �Unqn 0
0 Unq1 0 0 Unq2 0 / 0 �ðgþ mÞ þ Unqn 0
0 0 0 0 0 0 / 0 g �m

3
777777777777775
Here,

Uk ¼
bk

< k>
; qk ¼ kPðkÞ; for k ¼ 1;2;3;…;n:
Thus, the characteristic polynomial of Jacobian matrix JðE0Þ has n eigenvalues, which are equal to �m;�m; and the ðn e 2Þth
eigenvalue is

Xn
k¼1

Ukqk � ðgþmÞ¼ ðgþmÞðR0 � 1Þ<0:
As all eigenvalues of the Jacobian matrix JðE0Þ are negative if R0 <1, therefore, by the Routh-Hurwitz principle (Martcheva,
2015), E0 is LAS. Alternatively, E0 is unstable when R0 >1, because of positive eigenvalues, concludes the proof of the above
theorem.

Theorem 2. The DFE point E0 of the proposed vaccinated SIR model is globally asymptotically stable (GAS) and attractive when
R0 � 1:

Proof: (1st part).
The Lyapunov function LðtÞ (Yang et al., 2019; Yang & Xu, 2018) of the proposed model for t � 0 is as follows:

LðtÞ¼
Xn
k¼1

kPðkÞ
< k>

f½SkðtÞ � 1� ln SkðtÞ� þ IkðtÞg: (7.1)
Then

_LðtÞ¼
Xn
k¼1

kPðkÞ
< k>

��
1� 1

SkðtÞ
�
_SkðtÞþ _IkðtÞ

�
(7.2)
Substitute the value of _SkðtÞ; _IkðtÞ in equation (7.2), we get

_L¼
Xn
k¼1

kPðkÞ
< k>

��
1� 1

Sk

�
½L� bkSkQ� mSk� þ ½bkSkQ� ðgþmÞIk�

�
;

Xn kPðkÞ � L
�

¼
k¼1

< k>
L� bkSkQ� mSk � Sk

þ bkQþmþ bkSkQ� ðgþmÞIk

Xn kPðkÞ � L
�

¼
k¼1

< k>
L� mSk � Sk

þ bkQþm� ðgþmÞIk

Xn kPðkÞ �
mS 1 m

� Xn kPðkÞ
¼
k¼1

< k>
L 1� k

L
�
Sk

þ
L

þ
k¼1

< k>
½bkQ� ðgþmÞIk�:
As L ¼ m and 0< SkðtÞ<1; then the first and the second term of _LðtÞ is negative. Thus,
8
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_LðtÞ<
Xn
k¼1

kPðkÞ
< k>

½bkQ� ðgþmÞIkðtÞ�

k2
¼b
< k>

Q� ðgþmÞQðtÞ:
Since 0< IkðtÞ<1 for k ¼ 1;2;3;…;n and the probability of taken edge, which is linked to an infected individual 0< QðtÞ< 1;
then can write

_LðtÞ <
"
b

k2

< k>
� ðgþmÞ

#
QðtÞ¼ ðgþmÞ½R0 � 1�QðtÞ (7.3)

_
It is evident that if R0 <1 then LðtÞ<0c ðSkðtÞ; IkðtÞÞsð1;0Þ; which follows that according to Lyapunov’s theorem, the DFE
point is GAS.

(2nd part).
To prove the DFE point is globally attractive when R0 � 1, from the 1st part (equation (7.3)), we can write

_QðtÞ¼ ðgþmÞðR0 � 1ÞQðtÞ:
Assume, Qð0Þ ¼ gð0Þ: Then

_gðtÞ¼ ðgþmÞðR0 � 1ÞgðtÞ:
Talking integration on both sides, we get

gðtÞ¼ gð0ÞeðgþmÞðR0�1Þt : (7.4)
Here, we have gðtÞ/0 when t/0; as R0 � 1:
Using the concept of the functional differential equation’s comparison theorem, we can write

0�QðtÞ � gðtÞ;c t >0:
Finally, gðtÞ/0 when t/0 indicates that for ¼ 1;2;3;…;n IkðtÞ/0. Thus, the DFE point is globally attractive for R0 � 1:

Theorem 3. The EEP E* of the proposed model is unique, and GAS if R0 >1:
Proof: The Lyapunov function Lk of the proposed model for t � 0 is as follows:

Lk ¼
�
Sk � S*k ln Sk

	þ �Ik � I*k ln Ik
	
:

After employing the equilibrium equation and differentiating Lk; we get

_Lk ¼
�
1� S*k

Sk

�

L� bkSkQ� mSk �LþbkS*kQ

* þmS*k
�þ�1� I*k

Ik

�
½bkSkQ� ðgþmÞIk�:

�
S* S

� �
S*
�� * 	 �

I*
��

I *
�

¼ mS*k 2� k
Sk

� k

S*k
þ 1� k

Sk
bkS*kQ � bkSkQ þ 1� k

Ik
bkSkQ� k

I*k
bkS*kQ

�
S*
�� * * 	 �

I*
��

Ik * *
�

� 1� k
Sk

bkSkQ � bkSkQ þ 1� k
Ik

bkSkQ�
I*k
bkSkQ

Xn bkjPðkÞ
 

S* IjSkI
* Ij I

!

¼

J¼1
< k>

S*kI
*
j 2� k

Sk
� k

IkS*kI
*
j

þ
I*j
� k

I*k
(7.5)
As

S*k
Sk

þ Sk
S*k

� 2
9
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equivalence is true if and only if

S*k ¼ Sk:
Assume,

bkj ¼
kjPðkÞ
< k>

bS*kI
*
j ;Hj

�
Ij
	¼ � Ij

I*j
þ ln

Ij
I*j
;4ðbÞ¼1� bþ lnb; Fkj ¼HðIkÞ � H

�
Ij
	
:

Therefore, for b>0, 4ðbÞ � 0: Furthermore, b ¼ 1 assists in holding uniformity. Thus,
ð7:5Þ0 _Lk ¼
Xn
J¼1

bkjPðkÞ
< k>

S*kI
*
j

 
HðIkÞ � H

�
Ij
	þ4

�
S*k
Sk

�
þ4

 
IjSkI

*
k

IkS*kI
*
j

!!

Xn kjPðkÞ * *� � 		 Xn

�

J¼1
< k>

bSkIj HðIkÞ � H Ij ¼
J¼1

bkjFkj:
Now, we will find the following matrix

bkj ¼

2
6666666664

Pð1Þ
< k>

bS*1I
*
1 2

1Pð1Þ
< k>

bS*2I
*
1 / n

1Pð1Þ
< k>

bS*nI
*
1

2Pð1Þ
< k>

bS*1I
*
2 2

2Pð1Þ
< k>

bS*2I
*
2 / n

2Pð1Þ
< k>

bS*nI
*
2

« « 1 «

nPð1Þ
< k>

bS*1I
*
n 2

nPð1Þ
< k>

bS*2I
*
n / n

nPð1Þ
< k>

bS*nI
*
n

3
7777777775
¼A:

Let us assume that the k th diagonal element of the matrix L is j ; the Laplacian matrix of the matrix A. According to lemma 2.1
k
(Guo et al., 2006), jk is positive for k ¼ 1;2;3;…;n: Thus, Lk* ; Fkj;Hk and bkj holds the theorem (3.1) and corollary 3.3 (Li & Shuai,
2010).

As a result, one can write,

Lk ¼
Xn
J¼1

jkLk*;
a Lyapunov function for the system of equation (4) is well-defined in Theorem 3.1 of (Li & Shuai, 2010), specifically, Lk � 0;c
ðSk; IkÞ2U; k ¼ 1;2;3;…;n: Using the same justification as in (Caldarelli & Catanzaro, 2012; Diekmann et al., 1990; Driessche &
Watmough, 2002; Driessche and Watmough, 2002, 2002; Erd€os & R�enyi, 1960; Guo et al., 2006, 2008; Li & Shuai, 2010;
Martcheva, 2015; Milgram,1967; Newman, 2018; Ruoyan., 2010; Travers&Milgram,1969; Yang et al., 2019; Yang& Xu, 2018),
one can easily demonstrate that the most significant invariant subset in the case when _Lk ¼ 0 is the singleton E*. Thus, the proof
concludes that E* is GAS in U according to the LaSalles Invariance principle (LaSalle, 1977).

Ourmathematical epidemic model’s birth and death rates were incorporated solely for theoretical investigation.However, in our
later simulations, we assumed that birth and death rates balance, keeping the total population constant within the network’s
framework. This method prevents any addition or removal of nodes or agents from the network, offering a stable basis for our
analysis.
1.13. Simulation approach

In order to model the transmission of diseases across networks, we considered the MAS (multi-agents simulation)
approach that randomly selected a subset of agents initially infected while the rest were considered susceptible. Generally
speaking, each agent is programmed to behave according to rules, objectives, and decision-making strategies and can interact
with other agents and the environment to achieve its goals. Using a discrete time-step approach following the Gillespie
algorithm (Gillespie, 1977) t ¼ �log ð1� uÞ=l; where u is the probability generated randomly, and l is the total transmission
rate of the society.

Agents are autonomous entities that can perceive their environment, make decisions, and act based on their objectives and
available information. Interactions are how agents communicate with each other and the environment, such as exchanging
information, performing actions, and updating their state. In epidemiology, suppose agents have a chance of becoming
infected by their infected neighbor's agent, as determined by a randomly chosen agent from the network. In that case, they
10
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change their status from susceptible to infected. At the same time, the transmission rate of all susceptible neighbors of the
infected is updated. Alternatively, if an agent recovers from the disease in the current time step, the status changes from
infected to recovered. Again, the recovery rate of all susceptible neighbors of the recovered agent will be updated accordingly.
Averaging the outcomes of these realizations, we can estimate the infected, recovered, and final epidemic size (FES).

A practical and intriguing approach is determining whether targeted vaccination or interventions of a subset of the
population can effectively halt and reverse the development of an epidemic. The network SIR model used, in this circum-
stance, is equivalent to bond percolation. At the same time, individual intervention can be seen as a fixed void node, which
means that solving the immunization problem in the network SIRmodel is equivalent to solving a mixed percolation problem
(Fig. 1). The concept of birth and death agents is also incorporated into the epidemic model by considering the role of the
Empty node. Agents are born from an empty node and contribute as susceptible agents. Conversely, agents die and remain in
the Empty node. In particular, randomly select a subset of immunized individuals, while some individuals are randomly
infected, and the remaining individuals are susceptible. Since the immunized individuals cannot become vulnerable or
infected, they remain void nodes throughout the simulation. By simulating the transmission of disease in such a manner, one
can examine the consequences of immunization on the dynamics of infectious diseases. This study contributes to our un-
derstanding of the effect of vaccination on disease transmission and provides insights into the design of effective public health
strategies.
2. Result and discussion

Network epidemic dynamics research is currently experiencing a surge in popularity, with recent discoveries highlighting
the heterogeneity in the networks that have a crucial role in the transmission of infections. Our study findings offer new
insights into the propagation of epidemics and their control policies. In addition to introducing immunization void nodes in
complex networks as a new concept, physicists are also bringing new methodologies to the field of epidemiology.

The present research aims to investigate the disparities between the deterministic model and stochastic aspect as a form of
multi-agent simulations (MAS). Also, the plots display the outcomes of various average degree distributions and initially
infected agents. Figs. 2 and 3 show the graphical representations of the final epidemic size (FES) along with the basic
reproduction number R0 for all six networks: (a) ER, (b) RR, (c) BA, (d) Ring, (e) Lattice, and (f) WS. In each sub-figure, the line-
colored red, blue, green, and violet represent the average degree < k> ¼ 8, < k> ¼ 16, < k> ¼ 64; and < k> ¼ 4,
respectively. The line-colored black depicts a simple deterministic SIR epidemic model. The visual setup of Figs. 2 and 3 stated
in this subsection is drawn and tracked by the consequent Figures A1-A6 in the Appendix. Due to stochasticity and
randomness, each plot exhibits significant dispersion, and thus, we derived the average (ensembles) of the entire set.

Fig. 2 illustrates the line graphs of deterministic and six networks for randomly selected five initially infected individuals
Ið0Þ ¼ 5. The FES colored with black in the deterministic aspect shows that the threshold value for the epidemic disease is
precisely equal to 1, switching between disease-free and endemic equilibrium. Sub-panel (a) represents that the endemic
equilibrium in the ER random network starts after the black line. Consequently, the disease curve is approaching the
deterministic curve for increasing average degree values. RR network (subfigure (b)) shows almost the same characteristics
but is slightly slow compared to ER random networks. However, BA-SF networks (c) represent that the endemic equilibrium's
switching threshold value occurs before the deterministic curve. The BA network has highly connected hubs, which can
perform as super-spreaders for the disease, implying that if a hub node becomes infected, the sickness may spread to the
plethora of other nodes in the network. In the Ring and Lattice networks illustrated in sub-panel (d) and (e), the disease
transmission process is much slower than the other four networks; in the Ring and Lattice network topologies, the endemic
equilibrium starts when the value is approximately near to R0 ¼ 2 and R0 ¼ 2:5, respectively. The WS network (f) also
demonstrates a similar tendency for disease transmission as ER and RR. Therefore, the endemic equilibrium starts after the
deterministic line graph in all mentioned networks except the BA-SF network. All line graphs reveal an increasing tendency
with the increase of average degree distribution. Finally, comparing Fig. 2 for Ið0Þ ¼ 5 and Fig. 3 for Ið0Þ ¼ 50 shows a similar
but faster disease-spreading tendency.

To assess the immunization effect as void notes on the epidemic social networks, we display the 2D heatmap of FES in
Fig. 4. The impact of average degree distribution and the network structures is considered to examine the influence of void
nodes against contagious diseases. The final epidemic size corresponding to the basic reproduction number Ro and the
fraction of immunized agent (FIA) is displayed in Fig. 4 for network topologies: Erd}os-R�enyi (ER) random (panel a*), random
regular (RR) graph (panel b*), BA-SF (panel c*), Ring (panel d*), Lattice (panel f*), and small-world (panel e*) network. Here,
panels (*-i), (*-ii), and (*-iii) display for varying average degree < k> ¼ 8; < k> ¼ 16; and < k> ¼ 64 (for Lattice (*-i) < k>
¼ 4 and (*-ii) < k> ¼ 8).

As shown in Fig. 4 for the epidemic threshold and the FES, the fraction of void (immunized) nodes inserted into the
existing physical network strongly affects the FES to reduce infection. Thus, the FIA of void nodes directly affects the FES when
void nodes are randomly dispersed in the networks. When the average rate of connections (degree) between individuals
increases, the threshold for an epidemic to transition from a disease-free state to an endemic state also increases, which
means that a more significant proportion of the population must be infected before the epidemic becomes self-sustaining.
11



Figure: 1. A pictorial representation of epidemic disease dynamics of basic SIR (Susceptible-Infected-Recovered) model with void node and Network Topologies.
Network Topological study includes Homogeneous (Random-Regular, Ring, Lattice) and Heterogeneous Networks (ER-random, BA-Scale Free, Small-World).
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Figure: 2. Representations of the basic reproduction number ðR0Þ versus the final epidemic size (FES) of deterministic and (a) ER random, (b) RR, (c) BA-SF, (d)
Ring, I Lattice, and (f) WS physical networks for initially infected individuals, Ið0Þ ¼ 5 with varying degrees of connectivity. The color black represents the FES of
the deterministic line graph, whereas violet, green, blue, and red represent the FES of average degree < k> ¼ 4;8;16;64: Here; total population N ¼ 104;g ¼ 1

3 :
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The FES will also be more prominent due to the increased connections between individuals. These results are consistent with
Figs. 2 and 3, as explored above. However, by introducing void nodes, the number of connections between infected agents is
decreased, suppressing the transmission of the epidemic in the network because the void nodes act as barriers or buffers
between infected individuals, making it more difficult for the disease to spread through the network.

All the physical networks have a basic disease-spreading tendency except scale-free networks (c-*), which occur when the
endemic equilibrium begins; however, different network types have diverse tendencies regarding the transmission of in-
fectious illnesses. Meanwhile, the average degree of all physical networks also affects disease transmission. In Fig. 4 (Panel A),
we can see that the disease spreads more if the average degree increases. In an Erdos-Renyi (ER) network (a-*), connections’
random and stochastic nature can create a situationwhere the disease spreadsmore easily among high-degree nodes, leading
to a faster initial spread. In contrast, a Random-Regular (RR) (b-*) network exhibits a slower spread of the disease. In a BA-SF
network (c-*), in the early phases of an epidemic, the existence of nodes that are heavily linked to one another, also known as
hubs, might hasten the spread of the disease.

Additionally, the BA network has a power-law degree distribution, which means many nodes with low degrees and only a
fewwith very high degrees, which can create a situationwhere the disease spreads rapidly among the low-degree nodes, but
the epidemic takes longer to reach the high-degree hubs. As a result, endemic equilibrium occurs, but the disease can still
spread rapidly in the early phases of an epidemic, particularly when highly infectious. In a ring network (d-*), the disease can
continue to spread after the final epidemic size reaches its highest due to the cyclic and circular nature of the network.
Therefore, the epidemic can peak relatively quickly, but the disease transmission slows considerably oncemost nodes become
infected. In a small-world network (e�*), each node is connected to its nearest neighbors and a few randomly selected nodes,
13



Figure: 3. Representations of the basic reproduction number ðR0Þ versus the final epidemic size (FES) of deterministic and (a) ER Random, (b) RR, (c) BA-SF, (d)
Ring, I Lattice, and (f) WS physical networks for initially infected individuals, Ið0Þ ¼ 50 with varying degrees of connectivity. The color black represents the FES of
the deterministic line graph, whereas violet, green, blue, and red represent the FES of average degree < k> ¼ 4;8;16;64: Here; total population N ¼ 104;g ¼ 1

3 :
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combining local clustering and long-range connections. These long-range connections can create shortcuts in the network,
allowing the disease to spread more quickly between distant nodes. The presence of clustering can create a situation where
the disease can spread rapidly in the early stages of the epidemic. Still, once most nodes become infected and the epidemic
peaks, the disease's transmission slows considerably. However, due to the presence of shortcuts, the disease can continue to
spread. Therefore, the behavior of a small-world network is distinct from other types of networks, such as a ring network,
where the cyclic and circular nature of the network can slow down the transmission of the disease once the epidemic reaches
its peak. In a lattice network (f-*), each node has a fixed number of neighbors connected to them in a regular pattern, resulting
in a uniform distribution of degrees. As a result, the disease may spread rapidly in the epidemic's early stages. Still, disease
transmission slows once the epidemic peaks and most nodes are infected because each node in the lattice network (e�*) has
a limited number of neighbors, and once the disease has spread to all of them, there are no new nodes left to infect.

Fig. 4 (Panel B) presents the spreading graphs along time steps of five points taken from block f(ii) in Fig. 4 (Panel A) for the
Lattice structure with degree < k> ¼ 8. The points are ðR0; FIAÞ ¼ ð2:0;0:8Þ; ð3:5;0:25Þ; ð3:5;0:2Þ; ð4:0;0:15Þ; and ð4:5;0:05Þ;
where R0 is the basic reproduction number, and FIA is the fraction of immunized agents. The blue, red, black, and white colors
display the number of susceptible, infected, recovered, and void (immunized) individuals, respectively. The leftmost panel
shows the initial setup at t ¼ 0. Other columns are presented for time step t ¼ 10, t ¼ 30, t ¼ 50; and t ¼ 100. The first point
ðR0; FIAÞ ¼ ð2:0;0:8Þ; represents that when R0 ¼ 2; and FIA ¼ 0:8, the disease faded from society in just t ¼ 10 days. In the
current global pandemic caused by COVID-19, it has been observed that when a significant proportion of the population,
around 80%, has been immunized against existing diseases, the spread of the disease is effectively stopped. This phenomenon
is known as herd immunity or community immunity. However, it is essential to note that there may still be a small proportion
14



Figure: 4 (Panel A). Presented the 2D heat maps of the final epidemic size (FES) of the individuals concerning the basic reproduction number ðR0Þ and the
fraction of immunized agents ðFIAÞ. Subpanels (a*), (b*), (c*), (d*), (e�*), and (f*) show for ER random, RR, BA-SF, Ring, WS, and Lattice physical networks,
whereas (*-i), (*-ii), (*-iii), (*-iv), (*-v) represents the average degree < k> ¼ 8;16;64 except for Lattice < k> ¼ 4;8: Here, total population N ¼ 104 ;g ¼ 1
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Figure: 4 (Panel B). The subsystem presents a stability analysis of five points taken from block f(ii) in Fig. 4 (Panel A) for the Lattice structure with < k> ¼ 8.
The points are (ðR0, FIA)¼ (2.0, 0.8), (3.5, 0.25), (3.5, 0.2), (4.0, 0.15), and (4.5, 0.05). The blue, red, black, and white colors display number of susceptible, infected,
recovered, and void (immunized) individuals, respectively. The leftmost panel shows the initial setup at t ¼ 0. Other columns are presented for time step t ¼ 10,
t ¼ 30, t ¼ 50; and t ¼ 100.

M.D.S. Islam, M. Sharif Ullah and K.M.A. Kabir Infectious Disease Modelling 10 (2025) 1e27
of individuals who are not immune despite the high FIA rate. These individuals may still be susceptible to the disease and can
transmit it to others, leading to localized outbreaks or clusters of infections. The likelihood of such outbreaks occurring is
influenced by several factors, including the disease's infectiousness, the vaccine's effectiveness, and the social and envi-
ronmental conditions inwhich people live. As such, it is crucial to continue monitoring andmanaging the spread of infectious
diseases, even in communities with high levels of immunization, to maintain the benefits of herd immunity.

The severity of a disease outbreak can be influenced by several factors related to network topology, degree distribution,
and immunization. Network topology refers to the network structure or the pattern of connections between nodes. In the
case of disease transmission, the network topology can influence the spread of the disease by determining how easily the
infection canmove from one node to another. For instance, in a networkwith a high degree of clustering, where nodes tend to
16
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be more closely connected, the disease can spread quickly and easily compared to a network with low clustering. Immuni-
zation, however, can slow down or stop the spread of disease. When a certain proportion of nodes in a network are
immunized, either through vaccination or prior exposure to the disease, the disease cannot spread to those nodes, which
limits the number of potential new infections. Here, Figs. 5e8 illustrate the impact of the disease's severity along the basic
reproduction number R0: Moreover, the fraction of immunized agent (FIA), subtracting the deterministic outcome from six
different networks, where the blue (positive) and red (negative) colors represent the less and highly severe situations. In
contrast, the white color illustrates neutral situations, meaning that the network did not have a significant impact; we can
consider any network.

In Fig. 5, panels A, B, and C represent the disease severity graphs for ER, RR, and WS, respectively, in which sub-panels (i),
(ii), and (iii) display average degree distribution, < k> ¼ 8; < k> ¼ 16;and < k> ¼ 64, respectively. As a general tendency,
we could observe that ER, RR, andWS present almost similar tendencies when the average degree distribution increases from
< k> ¼ 8 to < k> ¼ 64. The disease is not highly severe in any community when the average degree is < k> ¼ 8. However,
in the case of < k> ¼ 64, subfigure (iii), the blue region faded out, and the red region revealed up, illustrating a realistic
scenario when the agents’ number of connections is higher. Consequently, the probability of disease transmission increased
and tended to a well-mixed situation that the deterministic model performed.

In the context of disease severity, the Barabasi-Albert (BA) network has been shown to have some unique features
compared to other types of networks (Fig. 6). One key characteristic of the BA network is the presence of highly connected
hubs, which can act as super-spreaders for the disease (independent of < k> ) means that if a hub node becomes infected, it
can spread the disease to another node in the network. More preciously, a few nodes have a very high degree, whereas few
Figure: 5. Presented disease severity through 2D heat maps of the final epidemic size (FES) of the individuals concerning the basic reproduction number ðR0Þ and
the fraction of immunized agents ðFIAÞ in ER random, RR, and WS networks. Subpanels A, B, and C show for ER random, RR, and WS physical networks. Here, we
subtract deterministic results from the degree (i) < k> ¼ 8, ðiiÞ< k> ¼ 16; and ðiiiÞ< k> ¼ 64. The total population N ¼ 104;g ¼ 1

3 :
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Figure: 6. Presented disease severity through 2D heat maps of the final epidemic size (FES) of the individuals concerning the basic reproduction number ðR0Þ and
the fraction of immunized agents ðFIAÞ in BA-SF networks. Here, we subtract deterministic results from the degree (i) < k> ¼ 8, ðiiÞ< k> ¼ 16; and ðiiiÞ< k> ¼
64. The total population N ¼ 104;g ¼ 1

3 :

Figure: 7. Presented disease severity through 2D heat maps of the final epidemic size (FES) of the individuals concerning the basic reproduction number ðR0Þ and
the fraction of immunized agents ðFIAÞ in Lattice networks. Here, we subtract deterministic results from the degree (i) < k> ¼ 4 and ðiiiÞ< k> ¼ 8. The total
population N ¼ 104;g ¼ 1

3 :

Figure: 8. Presented disease severity through 2D heat maps of the final epidemic size (FES) of the individuals concerning the basic reproduction number ðR0Þ and
the fraction of immunized agents ðFIAÞ in Ring networks. Here, we subtract deterministic results from the degree (i) < k> ¼ 8, ðiiÞ< k> ¼ 16; and ðiiiÞ< k> ¼
64. The total population N ¼ 104;g ¼ 1

3 :
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have a low degree; the disease can spread more quickly because the highly connected nodes can act as hubs for the infection
to spread to many other nodes.

Furthermore, the BA network is particularly vulnerable to targeted attacks, where the most interconnected nodes are
removed; removing hubs can quickly fragment the network into smaller, separate components, limiting the spread of the
18



Figure: 9. The subsystem presents a spreading graph by considering both birthrate and death rate of five points taken from block f(ii) in Fig. 4 (Panel A) for the
Lattice structure with < k> ¼ 8. This figure is a counter graph of Fig. 4 (Panel B). The points are (ðR0, FIA)¼ (2.0, 0.8), (3.5, 0.25), (3.5, 0.2), (4.0, 0.15), and (4.5,
0.05). The blue, red, green, yellow and white colors display number of susceptible, infected, recovered, Empty, and void (immunized) individuals, respectively.
Here, Empty ¼ 0:05;L ¼ 0:01;and m ¼ 0:01. The leftmost panel shows the initial setup at t ¼ 0. Other columns are presented for time step t ¼ 10, t ¼ 30, t ¼
50; and t ¼ 100.
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disease. Random networks or regular lattices may bemore resilient to targeted attacks than other networks, as they lack hubs
critical to the network's connectivity. Finally, the BA network's scale-free structure can significantly affect epidemic spread
and control, making it an essential model for understanding disease dynamics in real-world networks.

Lattice is a type of network with a highly organized structure where it is not feasible to disrupt the pattern, and the lo-
cations of the agents remain fixed permanently (Fig. 7). Such network structures can be compared with a structured pop-
ulation, which is not awell-mixed situation and is usually for a particular community, not the general public. Thus, the Lattice
network structure mechanism is the best strategy to combat epidemics and pandemics because of its low disease severity
(blue region).
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Figure: 10. The subsystem displays the entry and exit of birth and death agents from an empty node over elapsed time for a lattice structure with an average
degree < k> ¼ 8. This is illustrated in Fig. 9 (Panel A) for birth and death agents. The specified points are (R0;FIA) ¼ (A) (2.0, 0.8), (B) (3.5, 0.25), (C) (3.5, 0.2), (D)
(4.0, 0.15), and (E) (4.5, 0.05). In the figure, blue represents the number of new births, while red indicates the number of deaths. Parameters are set as follows:
Empty ¼ 0:05, L ¼ 0:01, and m ¼ 0:01.
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Finally, Fig. 8 illustrates the disease severity situation of Ring networks, where both red and blue regions are observed for
< k> ¼ 8; and the entirely red (higher severity) region is seen for < k> ¼ 64: Here, increasing the degree of a ring network
can increase the spread of disease because higher degrees correspond to more connections between nodes, meaning that
individuals in the network have more direct contact with others, increasing the likelihood of disease transmission from one
individual to another. Additionally, as the degree of the network increases, there may be more shortcuts between distant
nodes, which can allow the disease transmission mechanism to move more quickly throughout the complex network.
Therefore, a higher degree of connectivity in a ring network can lead to a faster and more extensive spread of disease.

We now incorporate the concept of birth and death agents into our epidemic model by considering the role of the Empty
node. Some agents will be born from an empty node and contribute as susceptible agents. Conversely, some agents will die
and remain in the Empty node. Using this concept of the Empty node for birth and death agents, we draw Figs. 9 and 10.

In Fig. 9, we present a spreading graph that accounts for both the birth and death rates at five points taken from block f(ii)
in Fig. 4 (Panel A) for the lattice structure with an average degree < k> ¼ 8. This figure serves as a counterpart to Fig. 4 (Panel
B). The points are ðR0; FIAÞ ¼ (2.0, 0.8), (3.5, 0.25), (3.5, 0.2), (4.0, 0.15), and (4.5, 0.05). In the figure, blue, red, green, yellow,
and white represent the number of susceptible, infected, recovered, Empty, and void (immunized) individuals, respectively.
Parameters are set as follows: Empty ¼ 0:05,L ¼ 0:01, and m ¼ 0:01. The leftmost panel shows the initial setup at t ¼ 0:Other
columns present snapshots at time steps t ¼ 10; t ¼ 30; t ¼ 50; and t ¼ 100.

In the context of epidemic diseases, it has been observed that when a significant proportion of the population, around 80%,
has been immunized against existing diseases, the spread of the disease is effectively halted. However, it is essential to note
that there may still be a small proportion of individuals who are not immune despite the high FIA rate. These individuals may
still be susceptible to the disease and can transmit it to others, potentially leading to localized outbreaks or clusters of in-
fections. The likelihood of such outbreaks occurring is influenced by the factors of birth and death agents on Empty nodes.
Thus, it can be observed that introducing the concept of birth and death rates as Empty nodes has a significant impact on
epidemic dynamics.
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In Fig. 10, we display the entry and exit of birth and death agents from an empty node over elapsed time for a lattice
structure with an average degree < k> ¼ 8. In this figure, blue represents the number of new births, while red indicates the
number of deaths. By considering the inclusion of birth and death agents through the Empty node concept, we gain a more
comprehensive understanding of the dynamic interactions within the population during an epidemic. This approach high-
lights the importance of accounting for population changes due to births and deaths in modeling the spread of infectious
diseases and their containment strategies.
3. Conclusion

This research systematically analyses the network's (ER Random, RR, BA-SF, Ring, Lattice, and WS) topology, average
degree distribution, and several infection states to reveal the gap between structural population on disease incidence and
severity. The concept of immunized nodes or agents (individuals) defined as void effects is also incorporated to provide an in-
depth summary of the uses of a physical network in epidemiology. More precisely, the FIA of void nodes directly affects the
FES when void nodes are randomly dispersed in the networks, i.e., void nodes act as barriers or buffers between infected
individuals, limiting the disease's ability to propagate via the network. We have outlined the many diverse contributions to
our knowledge of the processes behind spreading infectious diseases, focusing on those that entail physical contact. From
among the systems that include physical interactions, we have separated network models and multi-agent-based models. In
varied degrees, these models mimic the intricacy of physical networks, but they still fall short of solutions that include real
interactions. In particular, we have shown that graph labeling and link mining can be pretty helpful for the current ap-
proaches. Incorporating birth and death agents into the epidemic model via Empty nodes significantly impacts epidemic
dynamics. This approach emphasizes the importance of population dynamics in modeling infectious disease spread and
containment strategies. It reveals that high immunization rates can effectively halt disease transmission despite the presence
of susceptible individuals. We have explained the precise conditions under which these techniques show promise when used
with a network model. We thus want to implement these concepts as soon as possible and compare them to rival techniques
based simply on different centrality assessments. In the long term, it is fascinating to leverage the modeling power of multi-
agent systems to get richer data from simulations for supply to analytical tools, which may be done by employing the
modeling capabilities of multi-agent systems.
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Appendix
Figure-A1. Representations of the basic reproduction number ðR0Þ versus the final epidemic size (FES) of ER random physical networks for initially infected
individuals, (*-i) Ið0Þ ¼ 5 and (*-ii) Ið0Þ ¼ 50 with varying degrees of connectivity. Blue represents the average FES. Subpanels (a*), (b*), and (c*) show ER random
physical networks for the average degree < k> ¼ 8;16;64. Here, total population N ¼ 104; ensembles number 100;g ¼ 1

3:
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Figure-A2. Representations of the basic reproduction number ðR0Þ versus the final epidemic size (FES) of RR physical networks for initially infected individuals,
(*-i) Ið0Þ ¼ 5 and (*-ii) Ið0Þ ¼ 50 with varying degrees of connectivity. Blue represents the average FES. Subpanels (a*), (b*), and (c*) show RR random physical
networks for the average degree < k> ¼ 8;16;64. Here, total population N ¼ 104; ensembles number 100;g ¼ 1

3 :
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Figure-A3. Representations of the basic reproduction number ðR0Þ versus the final epidemic size (FES) of BA-SF physical networks for initially infected in-
dividuals, (*-i) Ið0Þ ¼ 5 and (*-ii) Ið0Þ ¼ 50 with varying degrees of connectivity. Blue represents the average FES. Subpanels (a*), (b*), and (c*) show BA-SF
random physical networks for the average degree < k> ¼ 8; 16;64. Here, total population N ¼ 104; ensembles number 100;g ¼ 1
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Figure-A4. Representations of the basic reproduction number ðR0Þ versus the final epidemic size (FES) of Ring physical networks for initially infected individuals,
(*-i) Ið0Þ ¼ 5 and (*-ii) Ið0Þ ¼ 50 with varying degrees of connectivity. Blue represents the average FES. Subpanels (a*), (b*), and (c*) show Ring random physical
networks for the average degree < k> ¼ 8;16;64. Here, total population N ¼ 104; ensembles number 100;g ¼ 1

3 :

Figure-A5. Representations of the basic reproduction number ðR0Þ versus the final epidemic size (FES) of Lattice physical networks for initially infected in-
dividuals, (*-i) Ið0Þ ¼ 5 and (*-ii) Ið0Þ ¼ 50 with varying degrees of connectivity. Blue represents the average FES. Subpanels (a*), (b*), and (c*) show Lattice
random physical networks for the average degree < k> ¼ 4; 8. Here, total population N ¼ 104; ensembles number 100;g ¼ 1

3 :
25



M.D.S. Islam, M. Sharif Ullah and K.M.A. Kabir Infectious Disease Modelling 10 (2025) 1e27
Figure-A6. Representations of the basic reproduction number ðR0Þ versus the final epidemic size (FES) of WS physical networks for initially infected individuals,
(*-i) Ið0Þ ¼ 5 and (*-ii) Ið0Þ ¼ 50 with varying degrees of connectivity. Blue represents the average FES. Subpanels (a*), (b*), and (c*) show WS random physical
networks for the average degree < k> ¼ 8;16;64. Here, total population N ¼ 104; ensembles number 100;g ¼ 1

3 :
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