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Collagen, stiffness, and adhesion: 
the evolutionary basis of vertebrate 
mechanobiology

ABSTRACT The emergence of collagen I in vertebrates resulted in a dramatic increase in the 
stiffness of the extracellular environment, supporting long-range force propagation and the 
development of low-compliant tissues necessary for the development of vertebrate traits 
including pressurized circulation and renal filtration. Vertebrates have also evolved integrins 
that can bind to collagens, resulting in the generation of higher tension and more efficient 
force transmission in the extracellular matrix. The stiffer environment provides an opportu-
nity for the vertebrates to create new structures such as the stress fibers, new cell types such 
as endothelial cells, new developmental processes such as neural crest delamination, and new 
tissue organizations such as the blood–brain barrier. Molecular players found only in verte-
brates allow the modification of conserved mechanisms as well as the design of novel strate-
gies that can better serve the physiological needs of the vertebrates. These innovations col-
lectively contribute to novel morphogenetic behaviors and unprecedented increases in the 
complexities of tissue mechanics and functions.

INTRODUCTION
Three major driving forces in the evolution of vertebrates are the 
development of a stiffer extracellular environment, the emergence 
of collagen-binding integrins, and the significant increases in force 
generation in nonmuscle cells. These conditions, together with two 
rounds of whole genome duplications at the base of vertebrate evo-
lution, give rise to new structures and cell types. The purpose of this 
Perspective is to speculate on how collagen I, stiffness, and adhe-
sion impacted the evolution of mechanobiology, resulting in diver-
gent mechanisms in vertebrates and nonvertebrates (Nakatani 
et al., 2007; Hufton et al., 2008; Hoffmann et al., 2012).

Multiple biological and animal models are used to study cellular 
behaviors such as tissue morphogenesis. However, in many in-
stances, different systems produce conflicting observations and, in 
the field of mechanobiology, very different conclusions. These 

discrepancies are seen at many levels of investigations. At the tis-
sue level, cell movement appears to result from different mecha-
nisms during the development of Drosophila and Xenopus em-
bryos (Keller, 1986; Keller et al., 1992; Keller and Winklbauer, 1992; 
Shih and Keller, 1992; Irvine and Wieschaus, 1994; Bertet et al., 
2004; Zallen and Wieschaus, 2004; Shindo, 2018). At the signaling 
level, collective cell migration appears to be activated by distinct 
ERK-dependent mechanisms in Drosophila and mammalian cells 
(Aoki et al., 2017; Ogura et al., 2018). At the molecular level, differ-
ent amounts of molecular force appear to be exerted at cell–cell 
adhesions in the developing Drosophila and zebrafish embryos 
(Yamashita et al., 2016; Eder et al., 2017; Lagendijk et al., 2017). 
Furthermore, the physiological roles of mechanosensitive mole-
cules such as vinculin also appear to be different. For example, 
knockout of vinculin has little effect in Drosophila but is detrimental 
to zebrafish and mice (Alatortsev et al., 1997; Xu et al., 1998; 
Zemljic-Harpf et al., 2004; Cheng et al., 2016; Lausecker et al., 
2018). In Drosophila, hyperactive vinculin inhibits the formation of 
integrin adhesion complexes, whereas the opposite is true for the 
mouse (Marg et al., 2010; Maartens et al., 2016). At the cellular 
level, novel cellular and molecular structures are found only in ver-
tebrates. One novel structure found in nonmuscle cells is the stress 
fiber, which has an alternating actin and myosin II arrangement, 
analogous to the sarcomeres in muscle cells. The “sarcomere-like” 
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actomyosin organization has not been described in nonvertebrate 
cells, although basal actin arrays and oriented actin bundles are 
found in Drosophila (Byers and Fujiwara, 1982; Drenckhahn and 
Wagner, 1986; Nehls and Drenckhahn, 1991; Delon and Brown, 
2009; Cetera et al., 2014; Xie et al., 2014; Goodwin et al., 2016; Qin 
et al., 2017; Cerqueira Campos et al., 2020). Sarcomeric stress fi-
bers are present at the apical junction of vertebrate epithelial cells 
but are not found at the Drosophila junction despite the signifi-
cance of junctional actomyosin networks in intercellular movements 
(Fernandez-Gonzalez et al., 2009; Fernandez-Gonzalez and Zallen, 
2011, 2013; Martin et al.,2010; Sawyer et al., 2011; Curran et al., 
2017; Heuze et al., 2019). While such differences might reflect sim-
ple interspecies variability, it is also possible that much of mechano-
regulation is not well-conserved between vertebrates and nonver-
tebrates (Stephenson et al., 2017; Soslau, 2020).

THICKER AND STIFFER FIBRILS INCREASE THE 
STIFFNESS OF EXTRACELLULAR MATRIX
Collagen I is the primary component of the vertebrate extracellular 
matrix (ECM), making up ∼30% of the total protein mass in humans 
(Huxley-Jones et al., 2007; Kadler et al., 2007; Silver, 2009; Exposito 
et al., 2010). Collagen I forms thick, stiff, and long fibrils that are re-
sponsible for the dramatic decrease in tissue compliance in verte-
brates (Silver et al., 2001, 2002; Ushiki, 2002; Boot-Handford and 
Tuckwell, 2003; Yang et al., 2008). Depending on the density and 
packing order of collagen I fibrils, vertebrates can construct ECM up 
to hundreds of megapascals in stiffness (van der Rijt et al., 2006; 
Candiello et al., 2007; Shen et al., 2008, 2011; Yang et al., 2008; 

FIGURE 1: A reductionist’s view of the extracellular experience in vertebrates and 
nonvertebrates. (A) The evolutionarily conserved fibronectin, collagen IV, and laminin form 
meshwork-type matrixes with stiffnesses up to hundreds of kilopascals (kPa). In vertebrates, 
collagen I forms matrixes with stiffnesses ranging from megapascals (MPa) to gigapascals (GPa). 
Nonvertebrates and vertebrates can bind to laminin and fibronectin, whereas only vertebrates 
interact directly with collagen (see the text for details). (B) Two cells are interacting with the 
ECM and with each other. Force generated by stress fibers inside the cell can be transmitted to 
the extracellular collagen matrix via collagen-binding integrins. A basement membrane 
containing a mixture of matrix proteins is present in some specialized tissues.

Svensson et al., 2010; Aifantis et al., 2011; 
Kohn et al., 2015); Mineralization of colla-
gen I fibers further increases the stiffness of 
the matrix to several gigapascals, a magni-
tude that is orders of magnitude higher than 
the ECMs than most nonvertebrates would 
have ever experienced (Figure 1A) (Kawasaki 
et al., 2004; Landis and Silver, 2009; Chlasta 
et al., 2017).

CONNECTING ECM TO CELLS
The major force-transmission pathway con-
necting the force-generating actomyosin 
structures inside the cells to the ECM occurs 
via cell surface integrins (Figure 1B) (Niland 
et al., 2011; Livne and Geiger, 2016; Carey 
et al., 2017). Vertebrate and nonvertebrate 
cells can interact with the evolutionarily 
more conserved fibronectin and laminin 
through fibronectin-binding and laminin-
binding integrins. However, only vertebrates 
have evolved collagen-binding integrins to 
interact with collagens. Thus, despite the 
presence of collagen IV in all metazoa, non-
vertebrate cells do not interact directly with 
collagen IV because they do not have the 
collagen-binding integrins (Ewan et al., 
2005; Chouhan et al., 2014; Johnson and 
Chouhan, 2014).

In vertebrates, fibronectin can coas-
semble with collagen I to form fibers that 
potentially can interact with both fibronec-
tin-binding and collagen-binding integrins 
concomitantly (Kadler et al., 2008; Singh 

et al., 2010; Kubow et al., 2015; Lemmon and Weinberg, 2017; 
Mezzenga and Mitsi, 2019). Thus, the emergence of collagen I not 
only increases the stiffness of the overall extracellular environment, 
it also alters the rigidity and organization of the fibronectin network, 
allowing a softer meshwork-type matrix to behave as a stiffer fibril-
lar-type substrate. This has far-reaching implications and conse-
quences because fibronectin-binding integrins have mechanotrans-
duction roles and can sense the stiffness of the fibronectin matrix 
(Tee et al., 2011; Trichet et al., 2012; Carraher and Schwarzbauer, 
2013; Ribeiro et al., 2014; van Geemen et al., 2014; Zhou et al., 
2017; Janmey et al., 2020). By dramatically increasing the stiffness 
and organization of the fibronectin matrix, collagen I supports a 
wider range of mechanotransduction responses elicited by fibronec-
tin-binding integrins.

COLLAGEN-BINDING INTEGRINS FORM THE 
STRONGEST CELL–ECM BONDS
The emergence of collagen-binding integrins is one of the most 
important events in the evolution of vertebrate mechanobiology 
(Calderwood et al., 1995; Tuckwell et al., 1995; Tulla et al., 2001; 
Jokinen et al., 2004; Ewan et al., 2005; Chouhan et al., 2014; John-
son and Chouhan, 2014). Collagen-binding integrins form bonds 
with collagen that are stronger than any integrin–fibronectin or in-
tegrin–laminin bonds, and thus are the load-bearing structures for 
the vertebrate cell-matrix adhesion (Tiger et al., 2001; Chen et al., 
2004; Huhtala et al., 2005; Zhang et al., 2006; Louis et al., 2007; 
Kong et al., 2009; Roca-Cusachs et al., 2009, 2012; Carracedo 
et al., 2010; Hu et al., 2011; Niland et al., 2011; Popov et al., 2011; 
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Zeltz and Gullberg, 2016; Ciuba et al., 2018). The direct coupling 
between integrin and collagen plays a significant role in the gen-
eration of higher tension and more efficient force transmission in 
the collagen matrix (Hu et al., 2011; Mohammadi et al., 2015b). 
Furthermore, the ability to exert force directly on collagen fibers 
allows the acquisition of novel cellular behaviors including multicel-
lular streaming and contact guidance (Tiger et al., 2001; Tamariz 
and Grinnell, 2002; Wolf et al., 2003, 2009; Miron-Mendoza et al., 
2010; Carey et al., 2016; Grossman et al., 2016; Han et al., 2016; 
Nuhn et al., 2018; Sarker et al., 2019). Collagen-binding integrins 
and fibronectin-binding integrins form discrete molecular com-
plexes and have distinct mechanotransduction functions, contribut-
ing to cell-matrix biology in complementary ways in vertebrates 
(Ylanne et al., 1993; Hocking et al., 2000; Teravainen et al., 2013; 
Ribeiro et al., 2014; Burridge and Guilluy, 2016; Roca-Cusachs 
et al., 2013).

COLLAGEN I SUPPORTS LONG-RANGE FORCE 
TRANSMISSION
Vertebrate collagen I has evolved new biochemical strategies to 
form compact, staggered, and covalently cross-linked fibrils that are 
thicker, stiffer, and longer than any ancestral fibrillar or meshwork 
collagens (Pins et al., 1997; Eyre and Wu, 2005; Ricard-Blum, 2011; 
Kwansa et al., 2016). Collagen I is more efficient for directional force 
propagation due to the increased fiber length, the higher rigidity, 
and the precise alignment of collagen I molecules in the fibers. The 
amount of force that can be generated in collagen I matrixes is sub-
stantially higher, up to several orders of magnitude, than that that 
can be supported by fibronectin, laminin, or collagen IV meshwork-
type matrixes (Hocking et al., 2000; Boot-Handford and Tuckwell, 
2003; Candiello et al., 2007; Dominguez-Gimenez et al., 2007; Araki 
et al., 2009; Silver, 2009; Exposito et al., 2010; Maruthamuthu et al., 
2011; Sztal et al., 2011; Tee et al., 2011; Fahey and Degnan, 2012; 
Trichet et al., 2012; Roca-Cusachs et al., 2013; Teravainen et al., 
2013; Cetera et al., 2014; Xie et al., 2014; Adams et al., 2015; 
Kubow et al., 2015; Burridge and Guilluy, 2016; Goodwin et al., 
2016; Chlasta et al., 2017; Fidler et al., 2017, 2018; Filla et al., 2017; 
Qin et al., 2017; Sancho et al., 2017; Shook et al., 2018; Zollinger 
et al., 2018; Draper et al., 2019; Cerqueira Campos et al., 2020; 
Chronopoulos et al., 2020).

How exactly might collagen I bring new mechanobiology to ver-
tebrates? At least four factors are important (Figure 2):

(1) The number of binding sites matters. The number of integ-
rin-binding sites on a matrix molecule determines whether it can 
cluster the integrins and how much force it can transmit (Figure 
2A). A laminin trimer interacts with only one integrin, whereas a 
fibronectin dimer has two integrin-binding sites. A collagen fibril 
contains tens to hundreds of covalently cross-linked molecules, 
providing many integrin-binding sites (Xu et al., 2000; Pichard 
et al., 2001; Turner et al., 2020). In vivo, fibronectin can form 
larger assemblies via noncovalent interactions, increasing the 
apparent binding sites. Collagen IV can also form large assem-
blies via noncovalent interactions and disulfide bonds. However, 
these networks are deformable and can buckle, collapse, or rup-
ture when stretched. On the other hand, the extensively cross-
linked collagen fiber behaves as one unit under force. Thus, the 
total amount of force that can be applied to a collagen fiber is 
substantially higher than the forces that can be applied to mesh-
work-type matrixes. Multiple interactions between integrins and 
the collagen fiber would allow force integration necessary for 
stiffness sensing by the cells (Jiang et al., 2016; Janmey et al., 
2020).

(2) Size and length matters. The nonmuscle myosin II minifila-
ment, which is ∼300 nm long, forms the force-generating unit of 
the stress fiber (Pellegrin and Mellor, 2007; Billington et al., 2013; 
Dasbiswas et al., 2018). To generate tension at integrin adhe-
sions, two integrins must be positioned at least as far apart as the 
length of a myosin II minifilament. A fibronectin dimer has a 

FIGURE 2: Collagen I forms stiffer, thicker, and longer fibers to 
support the generation of tension and long-range force propagation. 
(A) In nonvertebrates, cells can interact with laminin and fibronectin 
(FN) via laminin-binding and fibronectin-binding integrins. However, 
nonvertebrates do not have collagen-binding integrins and cannot 
exert force on the collagen (COL) IV matrix. Vertebrate cells have both 
fibronectin-binding and collagen-binding integrins and can bind 
directly to fibronectin and collagens (see the text for details). (B) Pulling 
on fibronectin-binding integrins that are bound to fibronectin dimers 
results in movement of the integrins with no change in tension in the 
matrix. (C) Pulling on collagen-binding integrins will generate tension in 
collagen IV meshworks (see the text for details). Pulling on a 
distensible fibronectin network may also result in the generation of 
tension in the matrix (see the text for details). (D) Long-distance force 
transmission and tension generation is supported by collagen I fiber 
attached to two cells via collagen-binding integrins. Pulling a collagen 
fiber by a cell can translocate the fiber.
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length of ∼100 nm, and while it can cluster two integrins it cannot 
support tension generation. Thus, contraction of the stress fiber 
will pull on both integrins, dragging the fibronectin dimers and 
the integrins in the same direction. If the fibronectin dimers are 
isolated, there will be no resistance to the movement and no 
tension will be generated within the matrix (Figure 2B). In a fibro-
nectin network, pulling on fibronectin would lead to stretching of 
the network. However, if the pulling force exceeds the strength 
of the noncovalent bonds, the fibronectin network could break, 
interrupting the force-transmission pathway and tension genera-
tion. Collagen IV meshworks are held together by disulfide 
bonds and noncovalent interactions and thus can withstand pull-
ing force when stretched, possibly permitting tension to build up 
in the distorted matrix (Figure 2C). In vertebrates, a collagen I 
fiber can be up to tens of microns in length and thus can inte-
grate many “sarcomere-like” contractile units, increasing the 
force exerted at individual cell-matrix adhesions and resulting in 
greater tension to be generated within the ECM. When two non-
contacting cells are bound to the same long collagen I fiber, pull-
ing force from one cell can be sensed by a neighboring cell 
(Figure 2D). Traction force generated at collagen-binding integ-
rins can realign or translocate the collagen I fiber, resulting in the 
remodeling of the ECM (Ramos and DeSimone, 1996; Davidson 
et al., 2002, 2004, 2008; Marsden and DeSimone, 2003; Miron-
Mendoza et al., 2008; Wang et al., 2014; Han et al., 2018; Ban 
et al., 2019; Shiflett et al., 2019).

(3) Stiffness matters. Matrixes composed of fibronectin, laminin, 
and collagen IV form meshworks that are stretchable by cellular 
force, whereas collagen I is long and compact fibers that are stiff 
and relatively unbendable by cellular force. The propagation of 
force within fibronectin and collagen IV meshworks primarily 
goes through noncovalent protein–protein interfaces. In the 
presence of pulling force that can break noncovalent bonds, 
meshwork-type matrixes will fail to transmit force while the cova-
lently cross-linked collagen I fiber will continue to support force 
propagation. In vertebrates, the interaction of fibronectin with 
fibrillar collagen I via noncovalent bonds could alter the appar-
ent biophysical properties and stiffness of the fibronectin net-
work. However, fibronectin is extremely distensible and unfolds 
almost completely under physiological force, reaching a tensile 
stiffness of only 1–2 MPa when maximally stretched, which is at 
least two orders of magnitude lower than the tensile stiffness of 
collagen I fibrils (van der Rijt et al., 2006; Shen et al., 2008; Yang 
et al., 2008; Klotzsch et al., 2009; Svensson et al., 2010; Brad-
shaw and Smith, 2014). Moreover, fibronectin–integrin bonds are 
not as strong as collagen–integrin bonds. Therefore, force prop-
agation in collagen I matrix is much more efficient due to the 
covalent intermolecular bonds, the higher tensile stiffness of the 
collagen I fibers, and the stronger bonds between collagen and 
collagen-binding integrins. In this regime, higher levels of ten-
sion can be accumulated within the ECM. The tensile energy in 
the stiffer matrix, in turn, would increase the stiffness of the cell 
and promote greater force generation that can be used to as-
semble stress fibers, remodel focal adhesions, promote cell–cell 
adhesions, and ultimately increase the overall potential energy 
of the tissue (Walcott and Sun, 2010; Maruthamuthu et al., 2011; 
Wolfenson et al., 2011; DeMali et al., 2014; Wang et al., 2014; 
Wong et al., 2014; Ye et al., 2014; Broaders et al., 2015; Ronan 
et al., 2015; Hall et al., 2016; Hu et al., 2017; Le et al., 2017; 
Dasbiswas et al., 2018; Han et al., 2018; Kuragano et al., 2018b; 
Chang et al., 2019).

(4) Geometry matters. Collagen IV and fibronectin form mesh-
works that are isotropic and would dissipate force in all direc-
tions, thus cannot faithfully reproduce the vector quality of force 
(Figure 2A). In contrast, collagen I fibrils behave like linear cables 
that can support the propagation of directional information, 
alignment of stress fibers, and the asymmetric growth of focal 
adhesions (Figure 2D). Importantly, linear collagen I fibers pro-
vide physical cues for directed protrusions and cell migration 
(Kaunas et al., 2005; Besser and Safran, 2006; Miron-Mendoza 
et al., 2010; Foolen et al., 2014; Tondon and Kaunas, 2014; 
Mohammadi et al., 2015a; Han et al., 2016; Xie et al., 2017; 
Brauer et al., 2019; Sarker et al., 2019).

THICKER, STIFFER, LONGER FIBRILS SUPPORT HIGHER 
FORCE PRODUCTION
Vertebrate cells stiffen when attached to collagen I, exerting forces 
up to hundreds of nanonewtons which is nearly an order of magni-
tude higher than that can be generated by fibronectin-attached 
cells (Hocking et al., 2000; Araki et al., 2009; Maruthamuthu et al., 
2011; Tee et al., 2011; Trichet et al., 2012; Roca-Cusachs et al., 
2013; Teravainen et al., 2013; Kubow et al., 2015; Burridge and 
Guilluy, 2016; Sancho et al., 2017; Zollinger et al., 2018; 
Chronopoulos et al., 2020). Experimental evidence indicates that 
the maturation process of fibronectin-based adhesions is indepen-
dent of force (Oakes et al., 2012; Stricker et al., 2013), raising the 
possibility that fibronectin-based adhesions are fundamentally dif-
ferent from collagen-based adhesions.

There are many possible ways to increase force production at 
collagen-based adhesions in vertebrates:

(1) Turn on myosin II ATPase. One way to increase force produc-
tion is to activate pathways that phosphorylate and activate myo-
sin II and turn off pathways that dephosphorylate and inactivate 
myosin II (Tojkander et al., 2012; Ciuba et al., 2018). The mole-
cular motor myosin II is responsible for force generation in cells 
and is regulated by the phosphorylation status of the myosin 
light chain. In cells, myosin light chain is phosphorylated by myo-
sin kinase. Thus, activating signals such as Rho, Rock, and cal-
cium-calmodulin that increase the activities of myosin kinase 
would stimulate myosin contraction. Myosin phosphatase, in 
turn, dephosphorylates the myosin regulatory light chain and 
ends contraction. Activating signaling pathways that inhibit myo-
sin phosphatase will promote myosin light chain phosphorylation 
and sustained contractility.

(2) Modify core machinery. To increase force production, myosin 
II assemblies with more motor heads can be formed by regulating 
the stability and the assembly of myosin II minifilaments. Increas-
ing the duty ratio of the myosin motor would increase the dura-
tion of myosin interaction with actin, thus increasing the processiv-
ity of individual motors. In addition, altering the mechanoresponse 
of the myosin motor would increase the strength of the myosin–
actin bond under mechanical stress. These properties are already 
implemented by the vertebrate-specific myosin IIB (Figure 3A), a 
paralogue of the ancestrally derived myosin IIA (Murakami et al., 
1998, 2000; Chantler et al., 2010; Stam et al., 2015; Heissler and 
Sellers, 2016; Kuragano et al., 2018a; Melli et al., 2018).

(3) Build new structures using existing components. Each my-
osin II minifilament is capable of producing force of ∼30–50 pi-
conewtons, but when the cells are attached to the collagen I 
matrix, they can generate forces up to hundreds of nanonewtons 
(Kaya and Higuchi, 2010; Sim et al., 2015; Sancho et al., 2017). 
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This means that thousands of myosin II minifilaments must work 
synergistically to produce the amount of force that is measured 
at collagen I–based adhesions. To amplify force production, the 
cell organizes the myosin minifilaments and arranges them in 
parallel and in series, rather than randomly positioning them in-
side the cytoplasm (Figure 3B). Indeed, this organization is used 
in vertebrate nonmuscle cells to build actomyosin stress fibers 
capable of generating force that is an order of magnitude higher 
than the sum produced by individual myosin motors (Pellegrin 
and Mellor, 2007; Lohner et al., 2019).

Forces generated by stress fibers are transmitted to the ECM 
through focal adhesions, which are sites of primary traction consist-
ing of clustered integrins and strengthened linkage to actin (Ye 
et al., 2014; Burridge and Guilluy, 2016; Livne and Geiger, 2016). 
Focal adhesions formed by collagen-binding integrins are essential 
for vertebrate mechanobiology by participating in stiffness sensing, 
cell migration, and remodeling of the ECM (Burridge and Fath, 
1989; Fath et al., 1989; Plotnikov et al., 2012; Bays et al., 2014; Hall 
et al., 2016; Chang et al., 2019; Puleo et al., 2019).

TUNING FORCE IN A STIFFER ENVIRONMENT 
SUPPORTED BY WHOLE GENOME DUPLICATIONS
To manage the new biology that comes with a stiffer environment, 
vertebrates are provided with a new toolbox, brought in part by a 
major evolutionary event consisting of two rounds of whole genome 
duplications (Vandepoele et al., 2004; Dehal and Boore, 2005; 
Holland and Ocampo Daza, 2018; Marletaz et al., 2018). This major 
evolutionary event gives rise to paralogues at a genomic scale that 
marks the branching of vertebrates from the invertebrates ∼500–550 
million years ago. Thus, a significant percentage of adhesion and 
cytoskeletal proteins in vertebrates have multiple copies, one from 
the ancestral gene and the others from duplicated genes, for ex-
ample, filamin A-C, paxillin α-γ, myosin IIA-C, α-actinin-1-4, tropo-
myosin1-4, WAVE 1-3, RhoA-C, Rac1-3, and talin1-2 (Boureux et al., 
2007; Gehler et al., 2009; Kurisu and Takenawa, 2009; Rahimzadeh 
et al., 2011; Billington et al., 2013; Austen et al., 2015; Mohammadi 
et al., 2015b; Meacci et al., 2016; Schiffhauer et al., 2016; Kuragano 
et al., 2018a; Pathan-Chhatbar et al., 2018; Puleo et al., 2019; Sao 

FIGURE 3: Controlling force production by myosin II regulation. (A) Force generation by stress 
fibers can be modified by increasing the duty ratio of the myosin II motor, processivity of the 
myosin II minifilament, mechanosensitivity of the myosin molecule, and the size of the myosin 
minifilament. (B) Force production by myosin II minifilaments can be amplified by arranging them 
in series and in parallel.

et al., 2019). While the ancestral copy often 
retains its original function, the duplicated 
copies frequently acquire new functions due 
to the lack of selection pressures on the 
copies. The expanded protein toolbox 
provides new options for the vertebrates 
to increase complexity and evolve novel 
molecular structures, mechanisms, and reg-
ulations (Brady et al., 2009; Laurin et al., 
2019).

One way to build complexity into mecha-
noregulation is to adjust force production 
and tune mechanoresponses. Vertebrates 
have many options to handle this challenge:

(1) Assign new functions to an ancestral 
protein that has no essential function in 
nonvertebrates. For example, vinculin is 
expendable in Drosophila but, in verte-
brates, it plays an important role in the 
strengthening of cell–cell and cell–matrix 
adhesions under mechanical stress 
(Alatortsev et al., 1997; Cheng et al., 2016; 
Bays and DeMali, 2017; Le et al., 2019).

(2) Evolve new proteins and structures that are absent in nonver-
tebrates. Many newly emerged vertebrate proteins and struc-
tures are designed to work with conserved molecules and core 
mechanisms to increase complexity (Mariani et al., 2020). One 
example is the intermediate filament vimentin, which localizes to 
focal adhesions and regulates the assembly of integrin adhesion 
complexes under mechanical stress (Tsuruta and Jones, 2003; 
Sanghvi-Shah and Weber, 2017). Another example is the tight 
junction, which can modulate the mechanical input at the adher-
ens junction in epithelial cells (Hatte et al., 2018).

(3) Subfunctionalize paralogues to tune force production. 
Force generation can be adjusted by controlling stress fiber dy-
namics or focal adhesion stability. One example of subfunction-
alization is the differential use of SORBS family members to con-
trol the amount of force applied to the ECM (Kuroda et al., 2018). 
While the vertebrate paralogue SORBS2 interacts with α-actinin 
to regulate stress fiber contractility, the ancestral paralogue 
SORBS1 interacts with vinculin to control focal adhesion matura-
tion (Ichikawa et al., 2017). Another example is the differential 
usage of myosin IIA and IIB paralogues, resulting in the spatial 
regulation of stress fiber formation, front–back polarity, ECM re-
modeling, and intercellular junction dynamics (Even-Faitelson 
and Ravid, 2006; Vicente-Manzanares et al., 2007; Sandquist and 
Means, 2008; Solinet and Vitale, 2008; Smutny et al., 2010; 
Doyle et al., 2012; Gutzman et al., 2015; Stam et al., 2015; Ridge 
et al., 2017; Kim et al., 2018; Kuragano et al., 2018a,b; Heuze 
et al., 2019).

A COMPLEX EXPERIENCE FOR THE VERTEBRATE CELL
The expanded toolbox, along with collagen I and collagen-binding 
integrins, created exceptional opportunities for the vertebrates to 
build complexities in mechanobiology (Figure 4, A and B). To illus-
trate, two cells were drawn in Figure 4A; the cell on the left has a 
myosin II minifilament that is composed of myosin IIA (red motor 
heads) and IIB (black motor heads). The hybrid myosin IIA/IIB 
minifilament is attached to two focal adhesions containing collagen-
binding integrins; one focal adhesion is bound to collagen IV 
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meshwork (red dotted circle on the left cell), and the other focal 
adhesion is bound to a collagen I fiber. Myosin IIB pulls harder than 
myosin IIA and moves the minifilament toward the collagen I fiber, 
exerting force on the collagen IV meshwork and ultimately breaking 
the noncovalent bonds within the collagen IV matrix (Figure 4B, red 
dotted oval on the left cell). Using the same argument, the cell on 
the right in Figure 4A has a hybrid myosin II minifilament composed 
of myosin IIA (red motor heads) and IIB (black motor heads). The 
stress fiber is attached to two focal adhesions; one focal adhesion is 
bound to the fibronectin meshwork via fibronectin-binding integrins 
(red dotted circle on the right cell), and the other focal adhesion is 
bound to a collagen I fiber via collagen-binding integrins. Myosin IIB 
wins the tug-of-war, and the asymmetric hybrid myosin IIA/IIB mini-
filament moves toward the collagen I fiber, pulling on the fibronec-
tin-binding integrins and breaking their interaction with the fibro-
nectin matrix (Figure 4B, red dotted oval on the right cell). Thus, the 
weakest link in the chain dictates the upper limit of force transmis-
sion (Burridge and Guilluy, 2016). This concept is central to mecha-
nobiology and holds the biophysical basis for mechanoregulatory 
principles and models.

CONCLUDING REMARKS
The emergence of collagen I drastically changed the compliance, 
porosity, stiffness, and organization of the ECM in vertebrate tissues. 
However, changing the biophysical properties of the extracellular 
environment alone is not sufficient for the evolution of new pro-
cesses unless the stiffer matrix is linked to the cell. This is achieved 
by the coemergence of collagen-binding integrins at the base of the 
vertebrate evolution ∼550 million years ago, resulting in a powerful 
change in the energy landscape in cells and in tissues. Ultimately, 
the dawn of vertebrate mechanobiology is realized by two rounds of 
whole genome duplications, providing new tools for regulation, am-
plification, and integration.

The decrease in tissue compliance allows the development of 
blood pressures to support pressurized renal filtration, a vertebrate 
invention that is superior in design for the management of electro-
lytes and metabolites (Schulte et al., 2015; Stephenson et al., 2017; 
Soslau, 2020). The increase in hydrostatic pressures in the closed 
circulatory system of the vertebrates necessitates the development 
of a vascular lining to prevent transmural leakage of vascular con-
tents. The emergence of endothelial cells that line the vascular wall 

FIGURE 4: The weakest-link-in-the-chain concept in force transmission (Burridge and Guilluy, 2016). (A) Example of a 
complex cellular experience involving two cells embedded in an extracellular environment composed of collagen IV, 
collagen I, and fibronectin. The two cells are expressing different combinations of fibronectin-binding and collagen-
binding integrins on their cell surfaces. A collagen fiber is interacting with both cells. In the cell on the left, two focal 
adhesions with collagen-binding integrins are interacting with two different matrixes; one focal adhesion is bound to a 
collagen IV meshwork (red dotted circle on the left cell), and the other focal adhesion is bound to a collagen I fiber. 
A hybrid minifilament composed of myosin IIA (red motor heads) and IIB (black motor heads) is attached to the stress 
fiber linking the two focal adhesions. In the cell on the right, the hybrid myosin IIA/IIB minifilament is attached to two 
focal adhesions consisting of different integrins; one focal adhesion is bound to the fibronectin meshwork via 
fibronectin-binding integrins (red dotted circle on the right cell), and the other focal adhesion is bound to a collagen 
I fiber via collagen-binding integrins. (B) Contraction force from the stress fibers can differentially regulate cell-matrix 
adhesions and extracellular force transmission in the matrix. In the cell on the left, myosin IIB pulls harder than myosin 
IIA and moves the minifilament toward the collagen I fiber, exerting force on the collagen IV meshwork and ultimately 
breaking the noncovalent bonds within the collagen IV matrix (red dotted oval on the left cell). In the cell on the right, 
myosin IIB wins the tug-of-war and the myosin IIA/IIB minifilament moves toward the collagen I fiber, pulling on the 
fibronectin-binding integrins and breaking their interaction with the fibronectin matrix (red dotted oval on the right cell).
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is another significant vertebrate innovation that coemerged with 
collagen I and collagen-binding integrins. Endothelial cells are 
equipped with specialized cell–cell junctions to act as permeability 
barriers and have strengthened cell–cell adhesions to resist hydrau-
lic mechanical stress. The plasticity of the endothelial cells allows 
functional specialization of the endothelium, including a system of 
low-pressure capillary beds for nutrient delivery and the formation 
of the blood–brain barrier (Bundgaard and Abbott, 2008; O’Brown 
et al., 2018). The morphogenesis and the development of the endo-
thelial vasculature, a process known as angiogenesis, is dependent 
on collagen-binding integrins on the endothelial cells and is sup-
ported by the collagen I ECM (Senger et al., 1997; Sweeney et al., 
2003; Whelan and Senger, 2003; San Antonio et al., 2009; Kick 
et al., 2016; Post et al., 2019; Turner et al., 2020).

The endothelium ushers the appearance of multiple vertebrate-
specific organs that are the footprints and signatures of vertebrate 
evolution (Shigei et al., 2001; Vize and Smith, 2004; Munoz-Chapuli 
et al., 2005; Monahan-Earley et al., 2013). Endothelial cells are es-
sential for the development of the vertebrate liver, pancreas, lungs, 
and kidneys during embryo morphogenesis. In adult animals, endo-
thelial cells play significant roles in the physiological functions of the 
kidneys to concentrate urine and the lungs to perform gaseous ex-
change (Lammert et al., 2003; Cleaver and Dor, 2012; Ramasamy 
et al., 2015; Rafii et al., 2016; Bastidas-Ponce et al., 2017; Daniel and 
Cleaver, 2019). The morphogenesis of these vertebrate-specific or-
gans is dependent on the proper deposition and organization of 
collagen I (Aycock and Seyer, 1989; Goldstein, 1991; Saelman et al., 
1995; Shimeld and Holland, 2000; Chen et al., 2004; Riopel and 
Wang, 2014; Buchtler et al., 2018; Stephens et al., 2018).

Endothelial cells also play a significant role in the development 
of neural crest derivatives including the vertebrate skull, the brachial 
skeleton, and the sensory ganglia. Endothelial cells interact with 
neural crest cells, another key innovation of the vertebrates, and in-
fluence the distribution, the migratory pathways, and the patterned 
formation of neural crest cell derivatives. Neural crest migration 
from their origin of formation between the neural plate and the sur-
face ectoderm is dependent on collagen I and requires interaction 
with the matrix via collagen-binding integrins (Duband and Thiery, 
1987; Perris et al., 1991; Nagy et al., 2009; Diogo et al., 2015; 
George et al., 2016).

Further along the evolutionary timeline, mammals continue to 
utilize fibrillar collagens and collagen-binding integrins to invent 
new mechanosensitive processes, structures, and physiology, in-
cluding the development of the mammalian placenta and invasion 
of the uterine wall by trophoblasts in a stiffness-dependent manner 
during embryo implantation (Damsky et al., 1994; Braasch et al., 
2009; Yoshida et al., 2014; Griffith and Wagner, 2017; Park et al., 
2017; Abbas et al., 2019; Zambuto et al., 2019). In conclusion, ver-
tebrate mechanobiology is created, in part, by three major evolu-
tionary forces including collagen I, collagen-binding integrins, and 
vertebrate-specific proteins to support the development of novel 
molecular mechanisms, adding to the repertoire of mechanisms that 
is already in place and shared by nonvertebrates and vertebrates 
(Rozario and DeSimone, 2010).
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