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Surgery, chemotherapy and radiation have been the mainstay of pediatric brain tumor
treatment over the past decades. Recently, new treatment modalities have emerged for
the management of pediatric brain tumors. These therapies range from novel radiotherapy
techniques and targeted immunotherapies to checkpoint inhibitors and T cell transfer
therapies. These treatments are currently investigated with the goal of improving survival
and decreasing morbidity. However, compared to traditional therapies, these novel
modalities are not as well elucidated and similarly has the potential to cause significant
short and long-term sequelae, impacting quality of life. Treatment complications are
commonly mediated through direct drug toxicity or vascular, infectious, or autoimmune
mechanisms, ranging from immune effector cell associated neurotoxicity syndrome with
CART-cells to neuropathy with checkpoint inhibitors. Addressing treatment-induced
complications is the focus of new trials, specifically improving neurocognitive outcomes.
The aim of this review is to explore the pathophysiology underlying treatment related
neurologic side effects, highlight associated complications, and describe the future
direction of brain tumor protocols. Increasing awareness of these neurologic
complications from novel therapies underscores the need for quality-of-life metrics and
considerations in clinical trials to decrease associated treatment-induced morbidity.

Keywords: neurological complications, brain, cancer, therapeutics, pediatrics
INTRODUCTION

Advances in therapeutic modalities, stemming from broader understanding of biologic pathways of
cancer, ranging from targeted molecular treatments to viral-based therapies, have demonstrated and
continue to show great potential for improving pediatric neuro-oncologic outcomes. As
survivorship for pediatric brain tumor patients continues to improve, the corresponding increase
in morbidity from treatment-associated complications are a growing and significant concern.
Patients who undergo craniospinal radiation are at a significant risk of secondary malignancies,
especially those with an underlying defect in tumor suppressor genes, such as neurofibromatosis
type 1 and 2 and Li Fraumeni syndrome. Compared to their healthy peers and survivors of non-
central nervous system (CNS) cancers, survivors of brain tumors experience the lowest physical,
psychological, and social health outcomes (1–3). With these developing concerns, ongoing trials aim
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to address the management of therapy-induced complications.
To further understand the landscape of brain tumor therapies,
we reviewed traditional and novel treatment modalities of CNS
tumors, explore their underlying molecular mechanism of action,
highlight associated complications, and outline the future
direction of brain tumor treatment protocols.
TRADITIONAL THERAPIES

Chemotherapy
Chemotherapy, in addition to surgery and radiation therapy have
been the mainstay of pediatric brain tumor treatment over the past
decades. In addition to profound pancytopenia, chemotherapies
can cause neurologic deficits, including encephalopathy, ataxia
and motor weakness (4). The most used chemotherapeutic agents
for brain tumors include vincristine, vinblastine, carboplatin,
cyclophosphamide, cisplatin, ifosfamide, and etoposide, of which
the latter two are most associated with encephalopathy (incidence
of 10-40%) (4–7). Vincristine and vinblastine can rarely cause
syndrome of inappropriate antidiuretic hormone secretion
(SIADH) which can subsequently lead to seizures. Neuropathy
from vinka alkaloids is a more common adverse effect (16-78%)
(5, 8). Cisplatin and carboplatin are ototoxic drugs, which can
cause permanent high-frequenting hearing loss (42-71%) and
consequently severe learning and developmental impairments in
young children (5, 9–14). Among patients, who received cisplatin
and carboplatin therapy for brain tumors, 4 patients with glioma
(57%), 15 with medulloblastoma (88%) and 3 with primitive
neuroectodermal tumor (50%) had ototoxicity. However,
sodium thiosulfate has demonstrated otoprotective effects with
lower rates of hearing loss for children with hepatoblastoma, who
underwent cisplatin treatment in a randomized phase III trial (15).
In this study of 109 children, patients who received sodium
thiosulfate had a 48% lower incidence of hearing loss (RR= 0.52;
95% CI, 0.33 to 0.81; P = 0.002) compared to those who did not
receive sodium thiosulfate, with no impact on overall survival (15).
A similar phase III trial (NCT00716976) investigating the use of
sodium thiosulfate for cisplatin-associated hearing loss in brain
tumors, specifically medulloblastoma, neuroblastoma and germ
cell tumors has recently been completed with results pending.

Chemotherapeutic agents, such as vincristine, cyclophosphamide,
ifosfamide, etoposide, gemcitabine, and cisplatin can result in blood
pressure elevations, which may cause posterior reversible
encephalopathy syndrome (1-10%), presenting with headaches,
seizures, vomiting visual changes, and altered mental status
(16, 17). Generally, management of these chemotherapy associated
complications is supportive care. Intolerable neurologic side effects
can often be managed by dose reduction or modifying the treatment
regimen (18). Table 1 summarizes neurologic side effects of
commonly used chemotherapeutic agents for the treatment of
brain tumors.

Radiation Therapy (RT)
Of the RT modalities, fractionated RT is commonly used in
pediatric brain tumors, because it delivers a lower dose per
fraction, while increasing the probability of interrupting tumor
Frontiers in Oncology | www.frontiersin.org 2
cells during times of cell division and radiosensitivity, sparing
normal tissue (19, 20). Radiation dose and volume correlate with
functional outcomes, especially in the pediatric population. The
extent of RT (focal vs. craniospinal) depends on the brain tumor
pathology with certain brain tumors, such as medulloblastoma,
receiving craniospinal RT due to the higher risk of
CNS metastasis.

RT can cause both short and long-term neurotoxicity. While
short-term neurotoxicity presents as pseudoprogression with
worsening of acute neurologic symptoms, somnolence
syndrome, radiation necrosis, long-term toxicity can include
neurocognitive impairment, vasculopathy, and secondary
malignancies like high grade gliomas and meningiomas (21).
Proton therapy, a newer radiotherapeutic modality has been
successful in improving cognitive outcomes but has not shown
benefit with any other RT-associated complications.

Cognitive Dysfunction
Decline in cognitive ability, including attention, memory, and
information processing have profound influences on pediatric
patients’ long-term health-related quality of life as it impairs job
and education prospects, as well as hinders social interactions (22,
23). Children are most vulnerable to RT-associated cognitive
complications with the greatest risk during infancy to early
childhood. Not surprisingly, radiation dose and field and photon
therapy have the most impact on neurocognitive outcomes with
pediatric patients treated with craniospinal irradiation associated
with the poorest cognitive outcomes compared to those receiving
focal radiation only (24). The prevalence of cognitive dysfunction
ranges from 40-100% for pediatric brain tumor survivors (25–27).
In respect to time course, cognitive complications may occur
shortly after RT but also persist years after treatment. Within
the first 3-12 weeks, post radiation somnolence syndrome can
occur, which presents with fatigue, nausea, vomiting fever,
dysphagia, and ataxia. Though post radiation somnolence
syndrome can last several weeks, they are typically self-limiting
(28). RT-cognitive dysfunction occurs frequently after treatment,
is associated with younger age and can be very challenging to
manage (29). Pediatric patients who are treated with RT should
undergo yearly neuropsychologic assessments to ensure normal
development and additional educational and school support
as needed.

Metformin has the potential to improve cognitive recovery in
pediatric patients post-RT (30). Metformin acts on the neural
stem cells in the subventricular zone and the dentate gyrus,
restoring neurogenesis after RT and in turn has been associated
with improvement in working memory performance in mice
models (30). In a randomized placebo controlled early phase
clinical trial with pediatric patients, metformin enhanced
auditory-verbal recall and working memory, both associated
with neurogenesis in the dentate gyrus of the hippocampus
(31, 32). Side effects from metformin were safe and tolerable,
including mild gastrointestinal distress, and diarrhea, consistent
with its known adverse effects. Overall, metformin shows
promise as a safe therapy for RT-induced cognitive
dysfunction, but larger clinical trials are required before
widespread adoption (30).
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Due to negative impacts of quality of life from neurocognitive
decline, several clinical trials have sought to proactively address
and improve neurocognitive outcomes in pediatric patients post-
RT through cognitive training or stimulant medications. The
Children’s Oncology Group (COG) ACCL10P1 (NCT01503086)
employs a computerized cognitive training program for children,
who recently completed cranial RT, in efforts to prevent memory
and attention dysfunction. In this study, pediatric patients engage
with interactive computerized educational modules, targeting
verbal working memory and visual-special skills 3-5 times a
week for several weeks. COG’s ACCL0922 (NCT01381718)
investigates modafinil’s role in improving attention, executive
function and fatigue compared to placebo in pediatric patients,
who previously underwent treatment for their primary
brain tumor. Most recently, COG is conducting a Phase 3
randomized, placebo-controlled trial evaluating memantine for
neurocognitive protection in children receiving cranial
radiation therapy for their primary CNS tumors, ACCL2031
(NCT04939597). Though the results of these studies are
Frontiers in Oncology | www.frontiersin.org 3
pending, these trials refocus efforts towards enhancing not only
survival, but also improving quality of life.

Vascular Complications
There are both short and long-term vascular complications that
arise following RT therapy. While cerebral microbleeds can be
detected as early as eight months after RT, cavernous
malformations and atherosclerosis can present decades later
(33, 34). Cerebral microbleeds are RT induced small vessel
vasculopathies that are associated with poorer executive
function, working memory and cognitive decline in pediatric
patients (35–37). Patients who are treated at a younger age, with
higher RT doses, and a larger treatment volume are at greater risk
of developing cerebral microbleeds (38–40).

Though the mechanism of these RT-associated vascular
complications remains unclear, it is thought that radiation
causes hyperplasia to the endothelium and fibrinoid necrosis of
the vascular walls, resulting in vessel stenosis (41–43). The
resulting impaired flow and increased venous pressure can lead
TABLE 1 | Common chemotherapy for brain tumors by mechanism of action and side effects.

Common
Chemotherapies

Neurological side effects Duration of side effects

Alkylating Agents
Cyclophosphamide
(Cytoxan)

Encephalopathy, seizures, vision changes, RCVS Within 24 hours of administration, symptoms are reversible

Ifosfamide Acute neurotoxicity with disorientation, lethargy, somnolence, hallucinations,
coma, and seizures.

Within 24 hours to 6 days after therapy, reversible but can have long
lasting neurologic impairment

Busulfan Dizziness, headaches, seizures Seizures may occur within 2 days of therapy
Temozolomide
(TMZ)

Headaches, Worsening of focal neurologic symptoms (increased intracranial
pressure), increased permeability of blood brain barrier.

Occurs at initiation of therapy, but self-limited

Nitrosureas:
Carmustine (BCNU)
> Lomustine
(CCNU)

Confusion, fatigue, ataxia, seizures, coma, focal neurologic weakness,
stroke, optic neuropathy. Rarely can cause necrotizing
leukoencephalopathy

Occurs at time of initiation up to 6 months

Platinum-based:
cisplatin >
carboplatin >
oxaliplatin

SIADH, ataxia, motor weakness, urinary retention, myopathy, ototoxicity,
ageusia, sensory neuropathy

Peripheral neuropathy: Occurs within 2-6 months of treatment. Dose
dependent toxicity and neuropathy may worsen after use. May
resolve 6-8 months after treatment though may still have residual
symptoms

Cisplatin: stroke, confusion, seizures, motor impairment
Oxaliplatin: allodynia with cold

Antimetabolites
Methotrexate Headache, meningitis, temporary neurologic deficits, seizures, learning

disorder, memory impairment, gait disturbance, bowel/urinary incontinence,
posterior reversible encephalopathy syndrome, transverse myelitis, cytotoxic
edema

Transverse myelitis: occurs 2 days- 2 weeks following intrathecal
administration, irreversible and contraindication to give intrathecal
methotrexate
Subacute neurotoxicity (stroke like events): occurs 2-6 days post-
infusion and usually self resolves afterwards
Leukoencephalopathy: occurs 2 weeks-months of first dose

Topoisomerase
Inhibitors
Camptothecans:
topotecan,
irinotecan

Sleep difficulties, vertigo Occurs at initiation of therapy, but self-resolves afterwards

Etoposide (VP-16) Seizures, altered mental status, headaches Occurs during and around drug infusion, but self resolves afterwards

Alkaloids
Vinca Alkaloids:
Vincristine,
Vinblastine

SIADH, seizures, peripheral sensorimotor neuropathy of the long nerves,
cranial and autonomic neuropathies, encephalopathy, ataxia, hallucinations,
parkinsonism, self-limited cortical blindness

Peripheral neuropathy: occurs within 2 months of therapy and can
worsen with continued infusions. In pediatric patients, neuropathy
can persist long-term and present later.

Others
Retinoids (all-trans
retinoic acid)

Elevated intracranial pressure, headaches, ataxia, changes in color vision,
oculogyric crisis (rare)

Self-resolves after administration
RCVS, reversible cerebral vasoconstriction syndrome; SIADH, Syndrome of inappropriate antidiuretic hormone secretion.
'>' refers to severity of side effects for specific agents in the same chemotherapy class.
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to migraines, Moyamoya syndrome (3%), cavernoma formation
(50%) and ischemic stroke (1-12%) (43–51). Post-radiation
arteriopathy increases the risk of strokes due to stenosis of the
distal internal carotid arteries and proximal cerebral arteries with
significant neurovascular risk in pediatric patients who receive
RT adjacent to the circle of Willis (4). The Childhood Cancer
Survivor Study (CCSS) revealed that pediatric brain tumor
survivors, who completed therapy 5 years or longer, had a
significantly elevated risk of late-occurring stroke (RR = 29;
95% CI, 13.8 to 60.6; P <.0001) compared to the sibling control
group (52). The cranial RT dose was directly correlated with late-
onset stroke with doses greater than 30 gray (Gy) associated with
an increased risk, and the highest risk of stroke noted in RT doses
above 50 Gy (52, 53). In the CCSS group, for patients who
received greater than 50 Gy, the risk of stroke continued to rise
throughout adulthood with the cumulative incidence of 1.1% at
10 years post diagnosis and increasing more than tenfold to 12%
at 30 years (53). This increased risk over time may be due to
accelerated intracranial atherosclerosis following RT as
atherosclerotic risk factors of hypertension and diabetes both
separately and in combination were significant predictors of
stroke in the CCSS cohort (53). Due to this progressive stroke
risk and modifiable risk factors, the Children’s Oncology Group
recommends serial monitoring for strokes at clinic visits, routine
screening for hypertension, blood glucose and lipid panel every
two years in children with an elevated BMI, and yearly imaging
with MRI and MRA as indicated for possible intervention, such
as aspirin and surgical revascularization.

Other vascular malformations, such as cerebral cavernous
malformations can occur on average 10 years post-RT and
present with seizures or hemorrhage. Although there is a
relatively low incidence of cavernomas 10 years post-RT, around
3-4%, patients with medulloblastoma are at a significantly higher
risk (34, 43, 54). Surgical intervention may be required if there are
concerns for rupture and hemorrhage (45).

Though not clearly a vascular complication, stroke-like
migraine attacks (SMART) syndrome is a late-onset sequalae
of radiation, which can occur 1-40 years post-RT (49). SMART
syndrome presents with symptoms of repetitive migraine
headaches, aphasia, persistent seizures, and other focal
neurologic deficits, spanning days to weeks (49). Symptoms
typically self-resolve for more than 80% of patients, but some
may experience permanent neurologic deficits (55). Though the
underlying etiology of SMART syndrome is not clearly defined, it
is postulated that hypoperfusion and cerebrovascular changes
observed on imaging may be contributing factors (56, 57).
Treatment involves symptom management.

Radiation Necrosis
RT is thought to induce radiation necrosis via two mechanisms:
(1) vascular injury from upregulation of pro-inflammatory
markers [Vascular endothelial growth factor (VEGF),
Intercellular Adhesion Molecule 1 (ICAM-1), and Tumor
Necrosis Factor alpha (TNF-alpha)] and activation of
sphingomyelinase and ceramide, which results in endothelial cell
death, (2) reactive astrogliosis, creating pro-inflammatory
environment and demyelination (58). Typically, radiation
Frontiers in Oncology | www.frontiersin.org 4
necrosis is observed within the first two years of RT but can
occur as early as 6 months. However, early tumor recurrence can
be often radiographically indistinguishable from radiation necrosis
in high grade tumors.

While asymptomatic radiation necrosis can be managed with
close observation, patients with symptomatic radiation necrosis
causing focal neurologic deficits, mass effect and elevated
intracranial pressure, should be initiated on corticosteroids as
first-line therapy (59, 60). For patients requiring longer term
treatment, bevacizumab (an anti-vascular endothelial growth
factor (VEGF) monoclonal antibody) has demonstrated robust
clinical and radiographic response in multicenter prospective
trials, avoiding steroid-treatment toxicity (61, 62). Bevacizumab
has also shown significant improvement in neurocognitive
outcomes, including attention, language, concentration,
memory, visuospatial orientation, and calculation at two
months compared to patients treated with corticosteroids only
(63). However, as an anti-angiogenesis agent, bevacizumab
decreases wound healing and predisposes patients to
hemorrhage and thrombosis. Aside from bevacizumab,
hyperbaric oxygen therapy has also been explored but the
benefit remains controversial (64). Despite proton therapy’s
ability to deliver radiation more precisely, it has not been
demonstrated to reduce the risk of radiation necrosis. For
patients with severe symptoms and/or treatment-refractory
radiation necrosis, including persistent neurologic deficits and
mass effect, surgical intervention could be considered (65).
NOVEL THERAPIES

The increasing need for targeted therapies is multifactorial and
includes the need to improve outcomes where chemotherapy and
radiation have failed. Concurrently, advances in molecular and
gene profiling of brain tumors have enhanced our ability to
diagnose, risk stratify and identify key aberrant genetic pathways,
paving the way for new tailored modalities (62). However,
breakthrough for novel therapies has been limited to low grade
glioma and a small number of specific high-grade gliomas,
namely mismatch repair-deficient glioblastoma (GBM). These
new therapies can be categorized into two main approaches: (1)
targeting gene mutations and dysregulated pathways involved in
cellular growth differentiation, and apoptosis, such as with
Mitogen-activated protein kinase kinase (MEK) and B-Raf
proto-oncogene (BRAF) inhibitors, and small molecule
inhibitors, and (2) upregulating immunosurveillance and
immune system activation, such as through checkpoint
inhibitors, chimeric antigen receptor T-cells (CAR T-cells),
vaccine therapy and virotherapies.

These new modalities face a myriad of extrinsic, intrinsic and
tumor-associated limitations (66, 67). Extrinsic factors consist of
physical and biological barriers preventing trafficking of therapies
into the intracranial space, such as the blood brain barrier and
tumor microenvironment (65). For immunotherapies like CAR T-
cell and virotherapies, intrinsic limitations such as limited
targetable tumor antigens, insufficient proliferation or expansion
and lack of durable response can also hinder clinical efficacy (63).
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Brain tumors, especially gliomas, can circumvent the binding and
targeting of these novel therapies by upregulating expression of
inhibitory ligands and cytokines, and downregulating targeted
tumor antigens, preventing recognition by CAR T-cells, viral
vectors, and avoiding check point inhibition (68, 69).

Targeted Therapy
Mitogen-Activated Protein Kinase Kinase (MEK)
Inhibitors
Aberrant mitogen-activated protein kinase (MAPK) pathway
signaling is the most prevalent genetic abnormality underlying
low grade gliomas in pediatric patients (70–72). In phase II
clinical trials of pediatric patients, MEK inhibitors have
demonstrated efficacy in pretreated, non- neurofibromatosis type
1 (NF1), recurrent optic pathway and hypothalamic low-grade
gliomas, as well as BRAF-mutated or NF1- associated low grade
gliomas (73, 74). MEK inhibitors can be considered as an alternative
treatment modality for children with multiple lesions or have
underlying mutations in BRAF and NF1 as they can avoid the
paradoxical MAPK pathway activation observed when low-grade
gliomas with aberrant BRAF-KIAA1549 mutations are treated with
BRAF inhibitors (75). Phase 3 COG trials are currently underway to
directly compare standard chemotherapy versus MEK inhibitors in
NF1 associated and sporadic low-grade gliomas in the upfront as
well as recurrent setting. From phase I/II trials of pediatric patients,
MEK inhibitors have tolerable neurotoxicity with the most
common neurologic symptom being headache (30%) and
myopathy (73, 74, 76). Cobimetinib was more frequently
associated with myopathy compared to other MEK inhibitors
(77). Dose reduction and/or discontinuation resolved all acute
and severe toxicities. These acute complications are similar to
what is observed in the adult population. However, the long-term
effects of continued MEK inhibition are not fully elucidated in the
pediatric population. In vivo models of juvenile rats have
demonstrated decreased bone length and delayed sexual
maturation with prolonged treatment with MEK inhibitors (78).
However, these changes were dose-dependent decreases in body
weight, food consumption and long bone growth and consequently,
the decrease of bone growth were likely related to overall growth
and not due to a bone specific effect of MEK inhibition.

B-Raf Proto-Oncogene (BRAF) Inhibitors
The BRAF protein is a serine/threonine kinase protein, which
modulates activity downstream of the Ras-Raf-MEK extracellular
signal-regulated kinase (ERK) and MAPK pathway (79). Both
signaling pathways play integral roles in regulating cellular
differentiation, growth, development, and apoptosis. The most
common mutation in the BRAF gene involves a missense
mutation in the activation segment on exon 15, codon 600,
resulting in a valine to glutamic acid substitution (V600E) (79,
80). This subsequent BRAF-V600E mutation is most commonly
observed in gangliogliomas, papillary craniopharyngiomas,
p leomorphic xanthoas t rocytomas , and epi the l io id
glioblastomas (81). In patients with pilocytic astrocytomas,
fusion of KIAA1549-BRAF gene is more often noted (81).

For brain tumors that harbor the BRAF V600E mutation,
direct inhibition of this oncogenic kinase and upstream MAPK
Frontiers in Oncology | www.frontiersin.org 5
proteins can provide targeted therapy as demonstrated in a phase
I/II study (82). BRAF V600E inhibitors are well tolerated with no
significant neurotoxicities (83). Non-CNS related complications
included pyrexia, fatigue, rash, arthralgias, arterial hypertension,
decrease in left ventricular ejection fracture, and QT
prolongation (83, 84). These side effects are directly correlated
to the drug dosage and improved with alternation/reduction of
medication. Like MEK inhibitors, the acute complications from
BRAF inhibition are similar between adult and pediatric
population. Long-term, the use of BRAF V600E inhibitors can
lead to squamous cell carcinoma and keratoacanthoma, which
may be attributed to paradoxical activation of MAP kinase in
cells lacking the BRAF mutation (83).

Though BRAF V600E monotherapy can be effective for a
period of time, tumors typically progress in a matter of months
(85). To prevent tumor progression, concurrent inhibition of
both BRAF and MEK has demonstrated efficacy in pre-clinical
models. A recent phase II trial for high- and low-grade gliomas
has illustrated a clinical response with combination dabrafenib, a
BRAF inhibitor, and trametinib, a MEK inhibitor (86, 87). In this
trial, common neurological complications included fatigue, and
headache, consistent with prior side effects seen with
monotherapy. However, there is an increased risk of
cardiovascular adverse events, including pulmonary embolisms,
arterial hypertension and left ventricular ejection fracture with
dual BRAF and MEK inhibitor therapy compared to BRAF
monotherapy (84). As with MEK inhibitors, cessation and dose
reduction of these drugs decreased toxicity, but also
decreased efficacy.

Small Molecule Inhibitors
Small molecule inhibitors target the tumor microenvironment, as
well as tumor-dependent pathways involved with cell growth,
invasion and angiogenesis. Because of their small size, they can
readily pass through the blood brain barrier to reach CNS
tumors. There are several small molecule inhibitors currently
studied in clinical trials, including inhibitors of vascular
endothelial growth factor (VEGF), cyclin dependent kinase
(CDK) 4/6, and histone deacetylase pathways, as well as Onc
201, a dopamine receptor D2 (DRD2) antagonist.

The class of VEGF inhibitors prevent angiogenesis (88). VEGF
modulates vasculature formation and permeability, crucial for
tumor infiltration, growth, and metastasis (89). Several VEGF
inhibitors can also block platelet derived growth factor receptors,
another angiogenesis pathway and c-kit signaling, involved with
driving CNS tumor growth (90–92). In phase I/II trials for
pediatric patients with brain tumors, who underwent VEGF
inhibitor therapy, the following neurologic side effects were
reported: intracranial hemorrhage (8-10%), lower extremity pain
(8%), dizziness (6%), headache (5-15%), muscle weakness (5%),
myalgia (4%), altered consciousness (4%), dysphagia (2-
11%), reversible posterior leukoencephalopathy syndrome (2%),
seizures (2%), hydrocephalus (2%), peripheral motor neuropathy
(2%), blurry vision (2%), leukoencephalopathy (2%), papilledema
(2%), and fecal incontinence (2%) (93–96). Of note, because
neovascularization is critical for physiologic skeletal develop,
these children also had notable growth plate abnormalities (9%),
April 2022 | Volume 12 | Article 853034
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which may severely impact growth, adult height, and skeletal
maturation (97). Overall, when compared to children with solid
tumors who underwent treatment with VEGF inhibitors, there
were significantly fewer neurologic side effects, with the most
common being pain (10%), suggesting that these neurologic
adverse events may be intrinsic to CNS tumors and related to
disease progression (90, 91, 98).

CDK are vital regulators of cell cycle progression with CDK4
and CDK6 as integral components (99). The overexpression of
CDK4 and 6 are linked to tumor invasion and tumorigenesis in
several cancer phenotypes (100). CDK 4/6 inhibitors prevent
downstream phosphorylation of retinoblastoma, arresting cell
division at the G1 check point. From phase I/II trials for pediatric
patients with progressive brain tumors, CDK 4/6 inhibitors were
well tolerated with neurotoxicities including: ataxia (24%),
dizziness (23%), seizure (21%), headache (19-31%), gait
disturbance (14%), and muscle weakness (14%) (101, 102). Of
note, seizures were only seen in the heavily pre-treated patients,
defined as those who underwent more than 4 prior interventions,
such as RT and/or myeloablative chemotherapy/biologics and/or
myeloablative chemotherapy with bone marrow stem cell
rescue (101).

Histone deacetylase inhibitors are epigenetic regulators that
block histone deacetyltransferase (HDAC) activity (103). HDAC
condense chromatin by removing acetyl groups from histones,
which can repress gene transcription and activity, enabling
overexpression of genes involved with proliferation, while
downregulating genes involved with differentiation and tumor
regulation. HDAC inhibitors regulate gene expression not only
through blockade of HDAC, but also by regulating aberrant
chromatin structures, which can alter cell migration,
differentiation, growth, and angiogenesis (104, 105). In phase I/
II trials with HDAC inhibitors for all tumors types, notable
neurologic side effects include: lower extremity myopathy (33%),
hydrocephalus (17%), pyramidal tract syndrome (17%), seizures
(17%), ataxia (17%), Bell’s palsy (17%), muscle weakness (17%),
nystagmus (17%), blurry vision (17%), dysgeusia (17-28%),
dizziness (15%), headache (6-33%) and neuropathy (6%) (106–
110). There were no improvements in either progression or
overall survival in these early phase trials.

Onc201 is a small molecule in the imipridone class, which can
bypass the BBB, and acts through several mechanisms for anti-
tumor effect. Originally, Onc201 was discovered as a
downstream regulator of the TNF-related apoptosis-inducing
ligand (TRAIL) gene transcription pathway (111). Because
immune cells express TRAIL receptors on their surface,
Onc201 can selectively induce apoptosis, activating the body’s
anti-tumor immunosurveillance without damaging normal cells.
Subsequent work has identified underlying molecular targets,
including selective competitive and non-competitive antagonism
of DRD2 and allosteric activation of caseinolytic protease P
(ClpP), both of which are overexpressed in multiple
malignancies and can serve as specific anti-tumor therapeutic
targets (112–115).

Phase I/II trials with Onc201 have demonstrated tolerable
neurotoxicity, with no patients requiring dose adjustment or
Frontiers in Oncology | www.frontiersin.org 6
drug discontinuation for adverse effects (116, 117). In a Phase II
recurrent glioblastoma trial, the most common side effect likely
attributable to weekly Onc201 was dizziness (5%) (116). While
other neurological adverse events were also reported in the trial,
including headache (50%), memory impairment (20%), seizure
(20%), and paresthesia (15%), these symptoms were attributed to
disease progression and not Onc201. Additional potential
neurologic complications reported include tinnitus, dysgeusia,
altered mental status and gait instability (116–118). Because of
the limited data of adverse side effects, and unique mechanism of
action, several open trials have explored the potential for
synergistic benefit of Onc201 in conjunction with RT,
chemotherapy, checkpoint inhibitors and targeted agents to
potentiate therapy response and target separate mechanisms of
resistance (118). Thus far, pre-clinical in vivo data has yielded
promising responses though clinical trial results have yet to be
reported (111, 119).

Immunotherapy
Check Point Inhibitors
Recently, check point inhibitors have gained traction in pediatric
trials given their efficacy across different cancers. However, they
have shown limited efficacy in brain tumors, except in hypermutant
glioblastoma with mismatch repair deficiency (120). Ordinarily, T-
cells interact with antigen presenting cell’s major histocompatibility
complex receptors through programmed death 1 (PD-1) and its
associated programed cell death ligand 1/2 (PD-L1, PDL-2), as well
as cytotoxic T lymphocyte antigen 4 (CTLA-4) receptors to
modulate self-immunity and immune tolerance. PD-1 inhibits T
cell activity through interaction with PD-L1 and PD-L2 (121).
Tumor cells can evade immunodetection by up-regulating
immune checkpoint expression of these negative regulators PD-1
and CTLA-4 and in effect desensitize and exhaust T-cells from
recognizing the tumor (122). By blocking the tumor’s PD-L1/PDL-2
binding sites to the T-cell, these checkpoint inhibitors allow for
persistent T-cell activation, immunosurveillance and recognition of
the tumor (123–125). However, these uninhibited T-cells also have
capacity to target normal tissue and result in adverse autoimmune-
associated complications (125).

The timing of checkpoint inhibitors may influence the anti-
tumor immune response for brain tumor patients. In a
randomized multi-institution clinical trial, patients who
received both neoadjuvant and adjuvant pembrolizumab (an
anti-PD-1 monoclonal antibody) after surgical resection
showed improved overall and progression free survival
compared to those who received adjuvant therapy alone (126).
This clinical response can be attributed to neoadjuvant inhibition
of PD-1, resulting in upregulation of interferon response
by tumor infi l t r a t ing l ymphocy t e s in the tumor
microenvironment (126). In turn, inhibition of tumor cell
proliferation and cell cycle function occurs. Patients who
received only adjuvant PD-1 blockade did not demonstrate
similar T-cell upregulation, interferon gene expression, or
inhibition of tumor cell proliferation (126).

Though the specific mechanism underlying autoimmune
complications from check point inhibitors are unclear, it is
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thought to be mediated through aberrant T-regulatory cell
function from up-regulation of Th-1 and Th-17 activity, and in
turn cytokine production, such as IL-6 and IL-17 (124, 125, 127).
In addition, enhanced autoantibody production following PD-1
and CTLA-4 inhibition can contribute to cross-reactivity of
antigens found on both tumors and normal nervous system
tissue, resulting in non-specific targeting (125). This enables
these antibodies to bind and impair muscles, nerves, and
neuromuscular junctions. Because of this molecular mimicry
and widespread involvement of the nervous system, checkpoint
inhibitor therapy can induce a significant autoimmune response,
which can include: fatigue, headache, inflammation of the
pituitary gland, CNS vasculitis, aseptic meningitis, myositis,
retinopathy, posterior reversible encephalopathy, auto-immune
mediated disorders (myasthenia gravis, cerebellar degeneration,
enteric neuropathy, polyradiculopathy, vascular neuropathy,
autoimmune encephalitis, progression of demyelinating
diseases) (4, 128).

Current management of neurologic complications from check
point inhibitors depends on the severity of neurologic deficits,
associated patient comorbidities, and risks/benefits of initiating
immunotherapy. Though there are no current guidelines,
corticosteroids, IVIG, and plasmapheresis are considered first
line management strategies. If these initial therapies are
unsuccessful, immunosuppressants, such as: rituximab,
mycophenolate, cyclophosphamide, and methotrexate can be
used (125, 129). For refractory cases, proteasome inhibitors
(bortezomib), IL-17 blockers and tacrolimus have also been
trialed (130). The decision to discontinuing check point
inhibitors in the setting of treatable auto-immune related
neurologic complications is controversial. Resumption of
checkpoint therapy is dependent on various factors including
life expectancy, cancer progression, severity of initial immune-
associated neurologic events, and the oncologist’s own comfort
with management (125).

Chimeric Antigen Receptor T-Cells (CAR T-Cell)
The initial success with CD19 targeted CAR T-cells for CNS
leukemia garnered attent ion for the potent ia l for
immunotherapy for CNS tumors (131). Recent trials have
targeted common antigens against epidermal growth factor
receptor variant III (EGFRvIII), GD2 and HER2 found in
pediatric CNS tumors (132, 133). However, one of the unique
difficulties with immunotherapy for CNS lesions, involves
managing the potential tumor inflammation associated
neurotoxicity, which can be fatal (134).

Three sequelae of CAR T cell treatment include: cytokine
release syndrome (CRS), immune effector cell-associated
neurotoxicity syndrome (ICANS) or CAR T cell neurotoxicity,
and recently tumor inflammation associated neurotoxicity
(TIAN), which is specifically observed in CNS tumors. CRS
typically occurs the first week of therapy and initially presents
with fever, but can develop with symptoms of tachycardia,
hypotension and multi-organ dysregulation, including liver
failure and disseminated intravascular coagulation (135).
Depending on the treatment approach, symptoms can resolve
within 2 weeks (136). CRS is mediated through macrophage
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activation and subsequent cytokine release by monocytes,
macrophages and CAR T-cells (137).

Compared to CRS, ICANS occurs 2-11 days after therapy,
presenting with tremor, lethargy, cognitive, motor and speech
disturbances and in severe cases focal neurologic deficits, such
as seizures, cerebral edema, increased intracranial pressure,
severe ataxia, and loss of consciousness. Unfortunately,
patients may experience chronic neurotoxicity, lasting over
several months (138). ICANS can occur independently of
CRS; however, more severe CRS symptoms, as well as higher
serum CAR T-cells, and elevated CSF protein, leukocytes,
interferon-gamma, IL-6 and IL-10, are correlated with the
presence of neurotoxicity (138, 139). Though the exact
mechanism of these neurologic complications is poorly
understood, in vivo models show pronounced meningeal
inflammation on histopathology in mice with ICANs
compared to those without neurotoxicity (140).

Uniquely observed in brain tumors, TIAN occurs due to
intratumoral inflammation (141). As a result of tumor
inflammation, patients can experience worsening neurologic
deficits and concerns for increased ICP, hydrocephalus and
herniation. There remains a paucity of literature and
experience with TIAN, but in one single case, management
was centered on CSF diversion for elevated intracranial
pressure (141).

Generally, the treatment for CRS involves supportive
measures as these adverse events are self-limited but can be
lethal. Initiation of treatment will depend on the grade/severity of
CRS. Since these complications are likely mediated through the
release of cytokines, including IL-6, IL-1, and GM-CSF,
tocilizumab, an IL-6 inhibitor can be used to treat severe CRS
without affecting the immune response (136, 142). Unlike for
CRS, tocilizumab has no effect on ICANS, due to difficulty
passing the BBB. In a similar mechanism, anakinra, an IL-1
receptor antagonist, has demonstrated efficacy in murine models
with reversing neurotoxicity, not observed with IL-6 blockade, as
well as, in a case series treating high grade ICANs, and achieving
clinical response in half of patients (143, 144). However, further
data is required before anakinra can be adopted for ICANS
therapy. Steroids can be used for ICANS though it can decrease
the efficacy of CAR T-cell therapy (145). In practice, steroids are
reserved for severe CRS refractory to tocilizumab treatment and
for patients presenting with ICANS.

Vaccine Therapies
Several phase I/II clinical trials have demonstrated increased
overall survival with active immunotherapy using autologous
dendritic cell (DC) vaccines to target glioblastoma and high-
grade gliomas (146–153). As antigen presenting cells, DC can
activate and maintain primary immune responses when paired
with tumor associated antigens. After exposure to tumor
antigens, DC phagocytize and express them as cell surface
receptors for CD4+ and CD8+ lymphocyte activation. Similar
to CAR T-cells, which require autologous T-cell collection, DC
are harvested from the patient, cultured and pulsed with tumor
associated antigens before being transfused back to the patient to
promote antigen-specific activation of T-cells (154).
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In addition to DC vaccines, RNA vaccines have emerged as a
promising therapy due to their lower cost, rapid development, and
high potency. RNA vaccines can activate both the humoral and
cell-mediated immune response as it can deliver different tumor
specific antigens and can encode entire tumor antigens, activating
a more robust T-cell response (155). Because nucleic acid vaccines
also lack viral or protein-derived products during manufacturing,
these RNA based therapies are well tolerated with lower cross
reactivity (156). One emerging trial from the Pacific Pediatric
Neuro-oncology Consortium trial 20 (PNOC020) utilizes an
RNA-lipid particle vaccine to treat high grade gliomas in
children and adults.

From recent trials, there have been limited neurotoxicities
following DC or RNA vaccine administration, with reports of
increased seizures and radiographic pseudoprogression in a small
subset. In adult patients, who underwent DC vaccine therapy for
their high-grade gliomas, a small cohort of patients had increased
seizure frequency (5-10%) (157–159). In pediatric patients with
recently diagnosed high grade glioma or diffuse midline glioma,
after administration of the peptide vaccine with glioma-associated
antigen epitopes, radiographic evidence of pseudoprogression
(19%) was noted, with corresponding symptoms of ataxia,
cranial neuropathies and hyperventilation (153). Dexamethasone
improved neurologic symptoms from pseudoprogression. The
most common complications were typical for routine vaccines,
including fatigue, myalgia, headaches, fevers and localized rashes
at the injection site (150, 160–162). The incidence of these
complications was not significantly different between the
treatment and control group. Lymphopenia was the most
serious adverse event for patients with high grade gliomas, who
received the vaccinations (149). In all trials, there were no deaths
were attributable to the DC or peptide vaccination.

Aside from the complications of the vaccine, the optimal
injection method has not been clearly delineated, as many
different routes have been described, including subcutaneous,
intraperitoneal, intranodal, and intrathecal (160). Overall,
vaccine therapies are an emerging class of therapeutics that
may be efficacious against gliomas with tolerable adverse effects.

Virotherapy
Like vaccine therapy, virotherapy elicits an inflammatory
response and induces tumoricidal effects to overcome glioma’s
immunosuppressive microenvironment, but through viral
vectors, such as herpes, coxsackie, parvovirus, poliovirus,
cytomegalovirus, and adenovirus (163–165). Currently two
classes of virotherapies have been used: (1) replication-
competent oncolytic viruses, and (2) gene therapy viral vectors,
both which require direct injection into the tumor or
resection cavity.

Oncolytic viruses are genetically modified to specifically
recognize and infect tumor cells, while avoiding normal cells.
Following replication within the cancer cell, these oncolytic
viruses can induce apoptosis, triggering the release of
additional viral progeny and tumor antigen, which activates a
robust innate and adaptive immune response (166, 167).
Conversely, gene therapy viral vectors induce immune
response by inserting desired genomic information into the
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tumor cell’s transcription and translation mechanism and in
turn manufacture new proteins, such as toxic byproducts or
cytokines to trigger an anti-tumor response (168). With new
advances in viral vectors, current virotherapies now encompass
components of both oncolytic and gene-therapy viral properties
to enhance therapeutic effects, such as with DNX-2440 and Toca
511. DNX-2440 was designed as an oncolytic virus, but can also
transduce X40L, a gene which activates immune response in
tumors to augment the anti-tumor response (14). Toca 511, a
gene therapy virus with the ability to replicate, can continue to
proliferate and infect tumor cells even after the initial
treatment (169).

From initial studies for the treatment of recurrent high-
grade gliomas, virotherapy has been well tolerated though this
in part depends on the specific viral vector (170). In one study
of 61 adult glioblastoma patients with non-pathogenic polio
virus-rhinovirus vaccine through intra-tumoral infusion, most
patients experienced at minimum one neurologic side effect
though over 66% were grade 1 (171). These adverse events
included: headache (52%), hemiparesis (50%), seizures (45%),
dysphagia (28%), cognitive changes (25%), visual field deficits
(19%), paresthesia (13%), gait abnormalities (10%), dystonia
(2%), and facial weakness (2%) (171). There were three severe
adverse events, which ranged from grade 4 cerebral edema (2%)
to grade 5 intracranial hemorrhage (2%) and grade 5
seizure (2%).

Toxicities from other early clinical trials have been primarily
associated with viral infection and replication, including fever,
lymphocyte depletion and malaise (168). These systemic
responses were mild and self-limited. The most serious
complications noted in those trials was also encephalopathy
and cerebral edema though again patient sample size is limited
(172). Although there are theoretical concerns of off-receptor
viral targeting or uncontrolled viral replication, studies have
failed to demonstrate any evidence of neurovirulence. For
virotherapy-induced neurotoxicity, bevacizumab was used
during these trials to manage tumor associated edema. Other
symptoms of viral malaise and fever were managed with
supportive care (171).
FUTURE OF CNS THERAPIES TO REDUCE
MORBIDITY AND MORTALITY

With the implementation of new treatment modalities for brain
tumors, therapy-associated morbidity should also be considered. To
address therapy complications, we need to transition to create
protocols that both enhance survival and decrease morbidity yet
maintain efficacy. The goals of reducing chemo- and radiation
neurotoxicity have been accomplished through de-escalation of
therapy and revision of protocols for brain tumors with good
prognosis, as well as targeted drug therapies. For example,
patients with medulloblastoma, WNT subtype, have a more
favorable prognosis and are therefore being treated, in the setting
of clinical trials, with de-escalation of therapy, including reduction
of the radiation and chemotherapy doses. In similar efforts,
protocols for germinomas, which are generally radio-sensitive and
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with low mortality, have been modified to incorporate neoadjuvant
chemotherapy followed by a reduced RT dose to alleviate long-term
radiation-associated neurotoxicity (173). In children with low grade
gliomas, treatment with targeted therapies have higher response
rates than chemotherapy. However, there are concerns for
significant toxicity. Phase III clinical trials are underway comparing
chemotherapy versus targeted therapy, which should provide
additional information on response and toxicity (NCT04166409).

In addition to de-escalation of therapy or using targeted therapy,
other trials are investigating neuroprotective medications. For
example, COG clinical trials are exploring sodium thiosulfate for
otoprotection in patients with medulloblastoma and memantine for
preventing cognitive dysfunction in children receiving cranial
radiation. Ultimately, the goal of brain tumor treatment is
transitioning towards increasing long term survivorship without
impacting patients’ quality of life.
Frontiers in Oncology | www.frontiersin.org 9
CONCLUSION

As new promising therapies emerge for pediatric patients with
brain tumors, long-term morbidity must also be considered
and factored into clinical trial design. The ultimate goal for
future treatment should be to provide targeted, effective, and
safe therapy to improve the lives of all children with
brain tumors.
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