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Breast cancer is a major disease with high morbidity and mortality in women worldwide.

Increased use of imaging biomarkers has been shown to add more information with

clinical utility in the detection and evaluation of breast cancer. To date, numerous

studies related to PET-based imaging in breast cancer have been published. Here,

we review available studies on the clinical utility of different PET-based molecular

imaging methods in breast cancer diagnosis, staging, distant-metastasis detection,

therapeutic and prognostic prediction, and evaluation of therapeutic responses. For

primary breast cancer, PET/MRI performed similarly to MRI but better than PET/CT.

PET/CT and PET/MRI both have higher sensitivity than MRI in the detection of axillary and

extra-axillary nodal metastases. For distant metastases, PET/CT has better performance

in the detection of lung metastasis, while PET/MRI performs better in the liver and

bone. Additionally, PET/CT is superior in terms of monitoring local recurrence. The

progress in novel radiotracers and PET radiomics presents opportunities to reclassify

tumors by combining their fine anatomical features with molecular characteristics and

develop a beneficial pathway from bench to bedside to predict the treatment response

and prognosis of breast cancer. However, further investigation is still needed before

application of these modalities in clinical practice. In conclusion, PET-based imaging is

not suitable for early-stage breast cancer, but it adds value in identifying regional nodal

disease and distant metastases as an adjuvant to standard diagnostic imaging. Recent

advances in imaging techniques would further widen the comprehensive and convergent

applications of PET approaches in the clinical management of breast cancer.
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INTRODUCTION

Breast cancer is the most common cancer and has the second
highest cancer-related morbidity in women worldwide (1).
Early diagnosis followed by timely treatment can significantly
improve the survival of breast cancer patients. Modern clinical
guidelines and standard treatments for breast cancer are
based on accurate pathological diagnosis, clinical staging,
and molecular subtyping (2). Mammography, ultrasound,
and breast magnetic resonance imaging (MRI) are the
primary methods of evaluating the local disease extent
and stage. Computed tomography (CT) of the chest and
abdomen, bone scans, and MRI are used to screen and
stage distant metastases. However, the efficacy of clinical
methods, including serum antigen protein markers and
radiological imaging, is insufficient for breast cancer
diagnosis and staging (3, 4). As a useful tool for the in
vivo assaying of the metabolic characteristics of breast
cancer (5, 6), positron-emission tomography (PET) using
radioactive tracer 18F-fluorodeoxyglucose (18F-FDG) has
been introduced as an additional imaging modality for these
patients, facilitating breast cancer staging, distant-metastasis
detection, prognostic prediction, and especially evaluation of
the pathological response to treatment (7, 8). Combining PET
with traditional radiological methodologies, including CT, MRI,
and mammography, has shown a range of clinical utility for
appropriate breast cancer patients. Several clinical trials and
technical advances were achieved between 1988 and 2018 in
testing the clinical utility of PET-based techniques in breast
cancer (Figure 1). The application of PET in breast cancer
has increased dramatically over the past years, benefiting from
the development of commercial equipment and breast-specific
imaging approaches.

In this review, we first revealed the biological basis of the
fluorodeoxyglucose PET imaging in illustrating breast cancer.
Then, multiple PET-based imaging techniques, including the
breast-specific PET imaging, PET/CT, and PET/MRI, and their
clinical applications were described in detail. The clinical
applications started with the role in diagnosis and staging,
including primary tumor, lymph node, and distant metastases,
then local recurrence and therapeutic response evaluation.
Furthermore, the clinical applicability of using PET-based
imaging in cancer screening in asymptomatic women who are
at high risk for breast cancer was also discussed. At last, recent
advances in novel PET tracers and PET-based radiomics were
demonstrated with the potential prospect in the future.

FLUORODEOXYGLUCOSE PET AND
TUMOR BIOLOGY

The increased 18F-FDG avidity of malignant cells forms the basis
of breast cancer imaging with 18F-FDG-PET (7, 9). However, the
uptake of 18F-FDG is also affected by the density of breast tissue.
Dense breast tissue highly uptakes 18F-FDG but at amounts
still lower than in breast cancer (10, 11). The intensity and
pattern of 18F-FDG uptake in breast lesions are directly related

to the biological characteristics of the tumor, such as pathological
type, aggressiveness, and molecular subtype. Invasive ductal
carcinomas (IDCs) exhibit higher avidity for 18F-FDG than
noninvasive ductal carcinomas (5, 8, 12, 13), and triple-negative
breast cancers display greater 18F-FDG uptake levels than other
molecular subtypes (14). In some breast cancer subtypes (luminal
A), FDG uptake is physiologically influenced by both the features
of the tumor and hormonal fluctuations during the menstrual
cycle (15). In addition to the FDG uptake value, advanced
imaging features such as histogram of FDG-PET can be used
to separate molecular and histological subtypes (16, 17). It has
also been reported that FDG-PET radiomics are associated with
various tumor aspects (namely, Ki67, pCR after NAC and risk
of recurrence) and may potentially become unique pretreatment
biomarkers of diagnosis and prognosis (18).

The breast tumor detection rate via 18F-FDG-PET is
determined by the tumor size and pathology grade. Although the
highest sensitivity of breast cancer detection using 18F-FDG-PET
is reported as 96% among all tumor sizes, the sensitivity for small
tumors (<1 cm) is reported to be below 60% (12). Because of its
low sensitivity, 18F-FDG-PET is not routinely used for early-stage
breast cancer patients, but it serves as a powerful complement to
other imaging methods for accurate clinical staging in patients
with stage III and IV disease. It has been reported that the
application of 18F-FDG-PET would cause changes in the planned
treatment in one-third of patients with advanced breast cancer
by identifying distant-metastasis sites missed by conventional
imaging methods (19).

PET-BASED IMAGING TECHNIQUES

Breast-Specific PET Imaging
Since whole-body PET imaging is suboptimal for the detection
of breast lesions, it is recommended that a prone position be
used to assist in breast-specific PET imaging scans (20). Thus,
dedicated PET scanning modalities for the breast, including
positron emission mammography and breast PET, have been
developed to further improve the spatial resolution (21–23).
The PEM system comprises two planar or curved detectors
that scan the breasts with mild compression. MacDonald et al.
(22) showed that the reconstructed spatial resolution in the
PEM system can reach 2.4mm. The limitation of PEM lies in
its acquisition geometry, which may affect the clear imaging
of lesions at the edge of the camera (for example, in the
chest wall) and introduce structural superimposition (22). The
PEM can help reclassify suspicious calcifications detected on
standard mammography with largely improved accuracy (95%)
(24). Additionally, a PEM-CT system has been introduced to
further improve the detection power of the PEM system. The
PEM-CT system is able to scan the breast in an uncompressed
manner and image suspected lesions in 3 dimensions (25). The
other existing prototype, the breast PET system, which has been
developed relatively recently (Figure 1), acquires high-resolution
breast imaging using multiple rotating planar detectors. We
deem that the breast PET approach might help overcome the
limitations of PEM.
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FIGURE 1 | The developing utility of PET-based techniques in breast cancer. The graph represents a timeline of important technological developments in PET-based

techniques. The solid line represents the change in the number of PubMed clinical trial publications for PET and breast cancer per year between 1988 and 2018. The

earliest models of PET/MR and PET/CT date back to 1987 and 1988, respectively. As shown in the figure, the use of PET in breast cancer has increased dramatically

over the past years, benefiting from the development of commercial equipment and breast-specific imaging approaches.

PET/CT
In most clinical applications, PET is combined with a CT
system (PET/CT) to replace PET alone for providing anatomical
information useful for accurately interpreting PET signals. The
earliest models of PET/CT and PET/MR systems date back
to 1987 (Figure 1). Similar to PET, PET/CT is not routinely
performed without a previous diagnosis because of its lack of
sensitivity, which is considerably low for lobular carcinomas (26)
and tumors <1 cm in length (27). According to the guidelines of
the National Comprehensive Cancer Network, PET/CT should
not be applied for early-stage breast cancer in the absence
of symptoms and is not indicated in the staging of clinical
stage I or II or operable stage III breast cancer. However,
PET/CT is recommended alongside diagnostic CT for identifying
unsuspected regional nodal disease and/or distant metastases
and in situations where standard staging studies are equivocal
or suspicious, especially in the setting of locally advanced or
metastatic disease (28). The clinical application of the PET/CT
system is described in detail later in the manuscript.

PET/MRI
Dynamic contrast-enhanced magnetic resonance imaging (DCE-
MRI) is both a morphological and functional imaging tool and is
the most sensitive technique to date for breast cancer screening
(29). DCE-MRI is frequently used in breast cancer staging and
treatment monitoring (30). Integrated PET/MRI, which can
acquire both metabolic data and high-contrast morphological
images in a single exam, has recently been used more often
in breast cancer patients. PET/MRI has been suggested as

a means to improve diagnostic accuracy and decrease false-
positive rates over those obtained with MR (31, 32). It has
also demonstrated increased axillary nodal metastasis sensitivity
(33, 34). Bitencourt et al. (35) reported that 100% sensitivity and
55% specificity could be achieved in breast cancer diagnosis using
multiparametric PET/MRI evaluation (including DCE, diffusion-
weighted imaging [DWI], and 3D 1H-MRSI). Pinker et al. (36)
also reported that in their study of 78 indeterminate or suspicious
lesions, half of the unnecessary biopsies would be performed with
PET/MRI compared with conducting MRI alone. Furthermore,
Jena et al. (37) indicated that by adding acquisition time into the
pharmacokinetic parameters of PET/MRI, an accuracy of 94.50%
can be achieved. The pharmacokinetic DCE-MRI parameters can
be further correlated with metastatic status, Ki67 expression (38),
and prognosis (39, 40). Catalano et al. demonstrated that 18F-
FDG PET/MRI could distinguish between molecular subtypes in
13/21 breast cancer patients (41).

CLINICAL APPLICATION OF PET-BASED
IMAGING TECHNIQUES

Imaging the Primary Breast Cancer
Breast cancer detection, including assessment of tumor size and
multifocality, is mainly based on mammography, ultrasound,
and MRI. Several studies have reported that FDG-PET displays
low sensitivity and relatively high specificity and accuracy in the
detection of primary breast cancer (7, 12, 42, 43). Figure 2 shows
multiple images of PET/CT, MRI, andmammography in a female
patient with right breast cancer. Compared with MRI, PET/CT
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FIGURE 2 | A 50-year-old woman with carcinoma of the right breast. (A) Molybdenum target mammography shows a mass in the upper quadrant of the right breast

with an irregular shape, fuzzy boundary, speculation, linear calcification, and a retracted nipple. (B) Enhanced MRI shows that the right breast mass was significantly

enhanced during the arterial phase, with a high signal on (C) T2WI/FS and (D) DWI. Axial (E) CT, (F) fused image, (G) FDG-PET, and (H) MIP (maximal intensity

projection) image show irregular nodules with intense uptake on the upper outer quadrant of the right breast. R, right; L, left; RCC, right craniocaudal; RMLO, right

mediolateral oblique.

has been shown to be less sensitive but more specific in breast
cancer detection (44). Jung et al. (26) compared the accuracy of
PET/CT and MRI among 105 patients with biopsy-proven breast
cancers, illustrating that MRI identified all 105 (100%) primary
tumors, whereas PET/CT correctly detected 85 (81.0%) primary
tumors. In the detection of multifocal breast cancers, Ergul et al.
(45) reported that the sensitivity of PET/CT and MRI was 67 vs.
78%, while the specificity was 100 vs. 53%, respectively.

In addition, PET/MRI performs better in primary breast
cancer detection than PET/CT does, but compared with
the detection with MRI, the improvement is limited. In a
study comparing MRI, PET/CT, and PET/MRI in 50 breast
cancer patients, PET/MRI and MRI showed higher accuracy
in identifying the tumor size than PET/CT [41/50 (82%) by
using PET/MRI, 41/50 (82%) by using MRI, and 34/50 (68%)
by using PET/CT; P < 0.05] (34). Additionally, PET/MRI and
MRI also showed higher accuracy in identifying multifocal or
multicentric breast cancer than PET/CT [8/9 (89%) by using
both PET/MRI and MRI vs. 5/9 (56%) by using PET/CT; P <

0.05] (34). Thus, FDG-PET is not recommended in breast cancer
screening and is utilized in primary tumor detection only when
standard procedures deliver a suspicious result.

Imaging the Lymph-Node Metastases
Although sentinel lymph node (SLN) mapping and biopsy are
routinely applied to evaluate lymph-node metastases of breast
cancer, imaging techniques are utilized as additional modalities
in nodal assessment. Most studies have indicated that PET-based
imaging is more sensitive in detecting axillary metastases than
MRI (30). Figure 3 shows an example of the imaging lymph-node
metastasis in a 66-year-old female patient with right breast cancer
by PET/CT andMRI. Ergul et al. (45) reported that the sensitivity
of PET/CT in detecting axillary metastasis was 67%, while that

obtained fromMRI was 47% (N = 15). The specificity of PET/CT
for detecting axillary nodal involvement was also higher than that
ofMRI (89% by PET/CT vs. 78% byMRI, respectively). In a study
of 128 patients with IDC, the c-statistic of predictive axillary
lymph node (ALN) metastasis achieved a score of 0.791 when
using a PET/CT-based model (46). It is worth noting that the
CT portion of PET/CT appears to be critical for the sensitivity of
axillary state detection. It has been reported that the sensitivity of
PET alone for axillary metastases is 60%, while that of MRI alone
is 93.3%, and the specificity for axillary metastases is 91% for both
PET alone and MRI alone (47). In a study of 49 breast cancer
patients (18 with axillary metastases), the sensitivity for axillary
lymph-node status was 78% for PET/CT, 78% for PET/MR, and
67% for MRI, while PET/CT also demonstrate a slightly superior
specificity of 94% for axillary metastases, compared with 90%
from PET/MRI and 87% fromMRI (34). In a feasibility study, van
Nijnatten et al. (48) reported a dedicated axillary FDG PET/MRI
that improved sensitivity to 100% (N = 12) in axillary nodal
staging for clinically positive patients. Thus, compared withMRI,
PET/CT and PET/MRI both show largely advanced accuracy in
ALN detection.

Generally, 18F-FDG PET/CT is not recommended for axillary
staging, especially in patients with small tumors, as PET/CT
entails the delivery of a relatively high radiation dose (49). 18F-
FDG-PET displays moderate sensitivity for axillary metastases
that is insufficient for eliminating the necessity for sentinel
lymph-node biopsy (50). The high positive predictive value
of PET-based techniques allows surgeons to submit axillary
node-positive patients directly to axillary lymph-node dissection
(ALND) (51). In a study conducted in the Netherlands,
159 patients underwent combined FDG-PET/CT and MARI
(marking axillary lymph nodes with radioactive iodine seeds)
procedures for axillary staging. According to the results, most
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FIGURE 3 | A 66-year-old woman with lymph-node metastasis of the left breast. Axial (A) CT, (B) FDG-PET, (C) fused image, and (D) MIP image show enlarged

lymph nodes with intense uptake in the left axilla. The SUVmax was 3.4. R, right; L, left.

of the patients received direct locoregional radiotherapy without
ALND. Subsequently, the authors reported an 82% reduction of
ALND for node-positive breast cancer patients (52).

On the other hand, FDG-PET is helpful in identifying
unsuspected lymph nodes in addition to ALNs that cannot be
effectively assessed during SLN biopsy. Studies have consistently
shown that 18F-FDG-PET is superior to CT in detecting
internal mammary (IM) and mediastinal lymph-node metastases
(53). A study of 58 breast cancer patients compared the
performance of PET/MRI and MRI alone in the detection of
axillary, internal mammary, and supraclavicular lymph nodes.
For IM and supraclavicular lymph-node detection, the difference
between PET/MRI and MRI was not statistically significant (31).
Jochelson et al. (54) also found a similar detection rate of IM
adenopathy by MRI and PET/CT (14/90 [16%] for MRI, 13/90
[14%] for PET/CT, P = 0.317). In general, PET/CT, MRI, and
PET/MRI hitherto appear equivalent in the detection lymph-
node metastases located in less common sites.

In brief, emerging studies have reported the fine detection
power of PET-based techniques in lymph-node staging, but
improvement and further studies are still necessary with regard
to clinical utility. We deem that PET/MRImight become favored,
especially in identifying unsuspected lymph nodes, due to its low
radiation dose.

Imaging Distant Metastases
Although PET-based imaging is not a standard procedure in
staging early-stage breast cancer, it plays an important role
in systemic staging. Groheux et al. (55) showed that PET/CT

detected unsuspected metastases in up to 47.1% of patients
with untreated stage III breast cancer. The upstaging rates
reported for each stage were similar among subtypes of estrogen
receptor [ER]+/HER2– and HER2+ breast cancer (56). The
bone, liver, and lung are the most common sites of the distant
metastasis of breast cancer (57). Generally, PET/MRI exhibits
higher sensitivity than PET/CT in detecting metastatic lesions,
especially in the liver and bones, but it is unable to detect lung
metastasis (58–60). Moreover, PET/CT is thought to have low
sensitivity for brain (61, 62) and liver (63) metastases.

Compared with whole-body CT and bone scintigraphy, 18F-
FDG-PET can detect early bone marrow metastases before the
signs of bone abnormalities appear on CT or bone scintigraphy
(64). CT and bone scintigraphy cannot separate active or therapy-
burnout lesions, so the prognosis from these techniques can be
ambiguous. For example, bone metastases initially presenting
as osteolytic lesions on CT could appear as osteosclerosis as
a result of the repair process and become morphologically
abnormal after successful chemotherapy or the introduction of
bisphosphonates. On the other hand, increased 18F-FDG uptake
indicates active bone metastasis regardless of the morphological
appearance of the bone and can be accurately detected with PET-
based imaging (65, 66). Furthermore, PET/CT can be helpful in
predicting subsequent pathological fracture in metastatic breast
cancer patients (67). Using F-FDG/F-NaF cocktail tracers, Roop
et al. (68) reported significant advancement in bone metastasis
detection by PET/CT. Despite the advantages of PET/CT in
bone metastasis detection, PET/MRI demonstrated an improved
performance (69). Catalano et al. (70) reported that PET/MRI

Frontiers in Oncology | www.frontiersin.org 5 August 2020 | Volume 10 | Article 1301

https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
https://www.frontiersin.org/journals/oncology#articles


Ming et al. Breast Cancer PET-Based Imaging

could identify significantly more bone metastases than PET/CT
in breast cancers (N = 25, P < 0.001).

In the liver, PET/MRI imaging depicted increased sensitivity
compared with PET/CT (80–100% by PET/MRI vs. 70–75% by
PET/CT, P < 0.001), which might be due to the application of
DWI. Regarding pulmonary metastases, in contrast to bone and
liver metastasis, PET/CT was reported to be slightly superior
to PET/MRI in a study of 242 distant-metastatic lesions (59).
Nevertheless, most of the lung lesions omitted by PET/MRI were
small (<1 cm) or determined on follow-up, and thus, the clinical
importance is unclear (71).

Imaging Local Recurrence
PET-based imaging is of great use in the detection of tumor
recurrence and unexpected remote metastasis in patients with
local recurrence (72). In a study of 23 female patients with
suspected breast cancer recurrence undergoing both PET/CT
and whole-body MRI, PET/CT demonstrated higher specificity
and sensitivity in the assessment of nodal and distant lesions
than MR/DWI but lower sensitivity in the detection of local
breast lesions (73). The overall sensitivity, specificity, and
accuracy of PET/CT were 84.8, 86.3, and 85.4%, respectively,
vs. 82.1, 78.0, and 80.5% for MRI (73). Additionally, PET/CT
appeared to show an advantage over CT and PET alone in the
diagnosis of breast cancer recurrence (74). Impressively, dual
time-point PET/CT yielded an area under the ROC curve of
0.99 for recurrence detection (n = 100) (75). Imaging features
of lymph nodes, rather than those of primary tumors, were
shown to be even better predictors of recurrence (76). When
combined with percutaneous FDG-avid target biopsies, PET/CT
achieved a sensitivity of 99% for local recurrence surveillance
(77). Compared with standard practice, PET/CT may offer
improved diagnostic accuracy in breast cancer recurrence. It is
also recommended to perform FDG-PET/CT at the same time as
diagnostic CT in the prediction of breast cancer recurrence.

Whole-body PET/MRI is comparatively unfavored for
detecting local recurrence. In a study of 94 primary breast
cancer patients, all primary breast tumors were identified by
prone breast/MRI, while whole-body PET-MRI missed primary
breast cancers in 7/94 (7.4%) patients (78). Regarding small
tumors, Kong et al. (27) demonstrated that only 4/10 (40%)
breast cancer tumors <1 cm in length were seen on whole-body
PET/MRI. Additionally, the contrast-enhanced MRI at 3T
was demonstrated more sensitive in detecting small lesions
(<10mm) (79). Thus, PET/MRI is considerably sensitive to
lesions in other parts of the body, and breast MRI or prone breast
PET/MRI might be superior to supine whole-body PET/MRI in
detecting local recurrences.

Imaging the Therapeutic Response
Predicting the therapeutic response to chemotherapy in breast
cancer is another important application of PET-based techniques.
High-dimensional features in PET, CT, and MR images can be
extracted with radiomics (80). Serial PET imaging after treatment
is helpful for therapy response monitoring (81, 82). Changes in
18F-FDG uptake induced by different therapies might be valuable
signs in the separation of responsive and non-responsive patients

TABLE 1 | Diagnostic performance of PET/CT and PET/MRI in breast cancer.

Lesion PET/CT PET/MRI

Primary breast cancer Low Moderate

Lymph node

Axillary High* High*

Extra-axillary High High (favored)

Metastasis

Liver Moderate High

Bone High High (favored)

Lung High Low

Local recurrence High Moderate

*Lower than SLN biopsy.

in an early phase (83). The therapeutic response is also deemed a
powerful prognostic stratification indicator (for both disease-free
survival and overall survival) in either locally advanced breast
cancer or metastatic breast cancer (84, 85).

NAC has been proven to be substantially effective in primary
tumor pre-surgery downstaging and is now increasingly utilized
in stage II and III breast cancer (86). Abundant studies have
confirmed the efficacy of PET/CT in the early assessment of
the response to NAC. However, this method of assessment has
not been introduced in routine clinical practice. In a study of
23 patients with locally advanced breast cancer, Kumar et al.
(87) reviewed that the sensitivity, specificity, and accuracy of
PET/CT in response detection were 93, 75, and 87%, respectively.
Tian et al. (88) conducted a meta-analysis encompassing a total
of 22 studies including 1,119 patients, and the pooled data
showed that the sensitivity and specificity were 81.9 and 79.3%,
respectively, for PET/CT in predicting the pathological response
to NAC in breast cancer patients. In another meta-analysis of
19 studies involving 920 pathologically confirmed patients (89),
the pooled sensitivity and specificity of PET in the prediction of
the histopathological response in primary breast lesions were 84
and 66%, respectively. Additionally, in regional lymph nodes, the
sensitivity of PET was 92% (89). Based on PET/CT parameters,
the concept of complete metabolic response (CMR) has been
introduced as a promising outcome predictor during the mid-
course of NACs (90).

The treatment response in metastatic breast cancer could
also be predicted by a quantitative assay based on changes in
tracer uptake throughout the treatment. Groheux et al. reported
that changes in 18F-FDG uptake (defined as 1SUVmax) are
highly associated with the pathological complete response (pCR)
after NAC (P = 0.0001) (91). Reported by two studies, a high
SUV decrease after the first cycle of chemotherapy was able to
predict the clinical response at the end of the treatment (92, 93).
Couturier et al. (94) also reported that the changes in SUVmax
after three cycles of chemotherapy could predict not only the
clinical response but also the overall survival.

In a comparison of the performance of PET and MR imaging
in predicting the pathological complete response (pCR), PET
appears more sensitive, and MR imaging is more specific
(88). Integrated PET/MRI metric data and clinical features can
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TABLE 2 | Novel radiotracers being studied in breast cancer.

Tracer Target mechanism Applications References

18F-fluorothymidine Thymidine analog Tumor proliferation imaging (101, 102)

18F-FMISO Hypoxic cells Tumor hypoxia imaging (6)

68Ga-NOTA-RM26 Targeting GRPR ER+ tumor detection of proliferation phase patient (103)

68Ga-BBN-RGD Targeting GRPR and integrin αvβ3 Primary tumor and metastases detection, especially ER+ tumor (104)

68Ga-NOTA-RGD Targeting integrin αvβ3 Angiogenesis imaging, recurrence prediction and prognosis prediction (105)

18F-Fluciclovine Leucine analog Primary tumor and metastases detection, NAC response prediction (106–109)

68Ga-PSMA Targeting tumor-specific antigen TNBC and ASRC detection (110–112)

18F-Fluorocholine Cell membrane component Primary tumor and metastases detection (113, 114)

68Ga-NO2AP-BP Macrocyclic chelator Skeletal metastases detection (115)

89Zr-trastuzumab Targeting HER2 HER2+ tumor detection (116)

64Cu-DOTA-trastuzumab Targeting HER2 HER2+ primary tumor and metastases detection (117, 118)

89Zr-Pertuzumab Targeting HER2 HER2+ primary tumor and metastases detection (119)

68Ga-ABY-025 Targeting HER2 HER2+ tumor detection (120)

18F-FES Targeting ER ER+ tumor, endocrine therapy monitoring and prognosis prediction (121–123)

68Ga-DOTATATE Targeting somatostatin receptor Exclusion of fibroadenoma (124)

TNBC, triple-negative breast cancer; ASRC, signet ring cell breast adenocarcinoma; GRPR, gastrin-releasing peptide receptor; FES, 16α-17β-fluoroestradiol; FMISO, fluoromisonidazole;

NO2AP-BP, triazacyclononane bisphosphonate.

help improve accuracy. PET/MRI imaging characteristics can
include changes in SUVmax, total lesion glycolysis (TLG), signal
enhancement ratio (SER), and peak enhancement ratio (PER)
in pilot studies. Clinical data, namely, patient age, and breast
cancer subtype, have also been taken into consideration (95–
97). Additionally, MRI-derived anatomical data such as DWI
and DCE sequences can also improve the specificity and negative
predictive value of PET in response prediction (98).

The diagnostic performance and favorable factors of PET/CT
and PET/MRI in breast cancer are compared in Table 1.
For primary breast cancer, PET/MRI performed similarly to
MRI but better than PET/CT. PET/CT and PET/MRI have
higher sensitivity than MRI in the detection of axillary
lymph-node metastases. However, in the detection of sentinel
lymph nodes (SLNs), the sensitivity of the PET-based imaging
methods was lower. PET-based imaging has shown its value
in detecting unsuspected extra-axillary nodal metastases. For
distant metastasis, PET/CT performs better in the detection
of lung metastasis, while PET/MRI performs better in the
liver and bone. Additionally, PET/CT is superior in terms of
monitoring local recurrence. However, only a few cancer centers
are equipped with a PET/MRI device, which severely limits the
clinical application of the technique.

RECENT ADVANCES IN PET-BASED
STRATEGIES

Special Populations
Despite the medical concern for women who are at high risk
for breast cancer, PET-based techniques have scarcely been used
in cancer screening in this population due to the lack of solid
evidence (99). Although genetic high-risk features can also be
investigated using PET imaging as a result of the various changes
in normal tissues (8), it is relatively difficult to assess the true

utility of the technique. BRCA1 mutation carriers have a higher
risk of developing triple-negative breast cancer (100), which
might appear with significantly increased 18F-FDG avidity (14).
Therefore, compared to standard screening techniques, PET
breast cancer screening might show improved sensitivity and a
better chance of clinical utility in patients with BRCA1mutations,
but further investigations are needed.

Novel Radiotracers
Various new radiotracers are being developed and applied
for the in vivo measurement of different aspects of breast
cancer, such as proliferation, metastasis, hypoxia, receptor status,
tumor antigen levels, and therapeutic response. Herein, we
summarized some of the newly developed radiotracers (Table 2).
As a cellular proliferation marker, 18F-fluorothymidine (18F-
FLT) allows the in vivo investigation and quantification of
tumor growth and metastases and is also utilized in identifying
the treatment response (101, 102). 18F-Fluoromisonidazole
(FMISO), which is a hypoxia biomarker, has also been used in
breast cancer imaging since the degree of hypoxia in a tumor is
associated with its biological features, such as aggressiveness and
therapeutic resistance (6). Integrin αvβ3 overexpression appears
in endothelial cells activated by tumor-induced angiogenesis
and has been reported to be a marker of local advancement
and metastasis of breast cancer (6, 125, 126). The 18F-galacto-
arginine-glycine-aspartic acid tripeptide, which can bind to
integrin αvβ3, has been used as a PET tracer to measure αvβ3
expression in both primary tumors and metastatic lesions (125).
68Ga-PSMA, which is a tumor-specific antigen that was first
used in prostate cancer staging, has been repeatedly utilized
and is rapidly becoming a complementary tracer for breast
cancers with low FDG avidities. High PSMA uptake has been
exhibited in invasive ductal carcinoma, triple-negative breast
cancer, and rare pathological subtypes such as Signet-ring cell
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breast adenocarcinoma (110–112, 127). Like 18F-FDG, tracers
based on cellularmetabolism are continuously being studied. 18F-
Fluciclovine, which is a leucine analog, has been shown to be
strongly correlated with the tumor response after NAC therapy
(106). 18F-Choline PET/CT has been reported to be efficacious in
leptomeningeal metastasis detection (113).

Radiotracers targeting hormone receptors and HER2 are also
being investigated and may eventually help in the development
of new drugs and in the evaluation of their efficacy (128–
132). 18F-16α-Fluoroestradiol (FES) is a substrate of estrogen
receptors. It has been used as a tracer for specific receptors in
breast cancer and has been proven to be significantly associated
with ER expression (133). Studies have indicated that FES
avidity can be a pharmacodynamic biomarker for ER-directed
therapy (121, 122). Another novel tracer, 68Ga-NOTA-RM26,
was found to be correlated with both ER expression and
menstrual status and to improve the sensitivity and specificity
of breast cancer diagnosis to 100 and 90.9%, respectively, in
proliferating phase patients (103). HER2 expression status plays
an important role in prognosis and chemotherapy in breast
cancer; trastuzumab and pertuzumab are two HER2 antagonists
currently in use. In clinical practice, HER2 status is determined
by immunohistochemical or fluorescence in situ hybridization
testing of biopsy samples. Nevertheless, the test results might
be affected by tumor heterogeneity and expression discordance
between the primary tumor and metastasis sites (134). Therefore,
new PET tracers such as 89Zr-trastuzumab and 89Zr-pertuzumab
were developed for measuring the HER2 expression of the
primary tumor and metastases simultaneously in a non-invasive
manner and have shown promising results in clinical studies;
nevertheless, false-positive foci still remain a challenge to their
effective utility (116, 135, 136). In addition, 68Ga-labeled affibody
molecules were shown to accurately measure HER2 expression in
a phase I/II clinical trial of advanced breast cancers (137).

PET Radiomics
Radiomics has the potential to uncover disease characteristics
by extracting numerous parameters/features from tomographic
images within a region of interest using mathematical algorithms
(80). Non-invasive image-derived biomarkers can also be
generated from PET radiomics according to the intensity of the
pixels, their associated parameters, and their positions (138).
Based on the clinical application of PET-based techniques, several
studies have focused on the clinical and technical feasibility
of applying PET radiomics to diagnosis (139, 140), staging
(141–143), pathological characterization (17, 18), NAC response
(18, 144–146), and outcome prediction (147, 148) in breast
cancer. However, the difficulty in detecting the edges of breast
lesions using CT limits the PET/CT in identifying the breast
tumor and the alignment of the imaging modalities (141). As
MRI has shown high sensitivity in breast cancer detection,
combining PET- and MRI-derived radiomics features would
further widen the spectrum of features and enable the building
of more powerful predictive models (138, 142). However, most
radiomics-based predictive models or classifiers have been found
to be of insufficient quality because of the lack of complete
information for model development (149), and they should be

further validated with independent cohorts from external sources
before application in clinical practice.

SUMMARY

To date, the development and clinical application of PET/CT
and PET/MRI have shown their individual usefulness in breast
cancer. This progress also presents opportunities to reclassify
tumors by combining their fine anatomical features with
metabolic characteristics and develop a beneficial pathway
from bench to bedside to better understand the biological
and pathophysiological bases of breast cancer. According to
current clinical guidelines, PET-based imaging is not suitable
for early-stage breast cancer in the absence of symptoms
and is not indicated in the staging of clinical stage I or II
or operable stage III breast cancer. However, PET/CT and
PET/MRI add value in identifying regional nodal disease
and distant metastases as an adjuvant to standard diagnostic
imaging techniques. Nevertheless, further investigations are
still necessary to optimize the detection power, efficiency, and
predictability of PET/CT and PET/MRI. Although some studies
have investigated the utility of PET-based strategies in high-
risk women, current evidence does not support the use of PET
as a screening technology. Moreover, novel radiotracers based
on tumor biological behavior, hormone receptors, and HER2
status have emerged and will hopefully promote the precise
detection of breast cancer. Recent advances in PET radiomics
could further widen the spectrum of features, especially
when combined with MRI-derived radiomics. Similar to other
radiomics-based predictive models, independent validation of
PET-based radiomics models in multiple centers are still
needed before application in clinical practice. We conclude that
comprehensive and convergent applications of PET approaches
will become a future trend in the clinical management of
breast cancer. With the expansion of tumor information
provided by advanced examination techniques, the treatment of
breast cancer can further develop via greater individualization
and precision.
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