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Abstract

Background: DNA methylation is an important regulator of gene expression and chromatin structure. Methylated
DNA immunoprecipitation sequencing (MeDIP-Seq) is commonly used to identify regions of DNA methylation in
eukaryotic genomes. Within MeDIP-Seq libraries, methylated cytosines can be found in both double-stranded
(symmetric) and single-stranded (asymmetric) genomic contexts. While symmetric CG methylation has been
relatively well-studied, asymmetric methylation in any dinucleotide context has received less attention. Importantly,
no currently available software for processing MeDIP-Seq reads is able to resolve these strand-specific DNA methylation
signals. Here we introduce DISMISS, a new software package that detects strand-associated DNA methylation from
existing MeDIP-Seq analyses.

Results: Using MeDIP-Seq datasets derived from Apis mellifera (honeybee), an invertebrate species that contains
more asymmetric- than symmetric- DNA methylation, we demonstrate that DISMISS can identify strand-specific
DNA methylation signals with similar accuracy as bisulfite sequencing (BS-Seq; single nucleotide resolution methodology).
Specifically, DISMISS is able to confidently predict where DNA methylation predominates (plus or minus DNA strands –
asymmetric DNA methylation; plus and minus DNA stands – symmetric DNA methylation) in MeDIP-Seq datasets derived
from A. mellifera samples. When compared to DNA methylation data derived from BS-Seq analysis of A. mellifera worker
larva, DISMISS-mediated identification of strand-specific methylated cytosines is 80 % accurate. Furthermore, DISMISS can
correctly (p <0.0001) detect the origin (sense vs antisense DNA strands) of DNA methylation at splice site junctions in
A. mellifera MeDIP-Seq datasets with a precision close to BS-Seq analysis. Finally, DISMISS-mediated identification of
DNA methylation signals associated with upstream, exonic, intronic and downstream genomic loci from A. mellifera
MeDIP-Seq datasets outperforms MACS2 (Model-based Analysis of ChIP-Seq2; a commonly used MeDIP-Seq analysis
software) and closely approaches the results achieved by BS-Seq.

Conclusions: While asymmetric DNA methylation is increasingly being found in growing numbers of eukaryotic
species and is the predominant pattern observed in some invertebrate genomes, it has been difficult to detect
in MeDIP-Seq datasets using existing software. DISMISS now enables more sensitive examinations of MeDIP-Seq
datasets and will be especially useful for the study of genomes containing either low levels of DNA methylation
or for genomes containing relatively high amounts of asymmetric methylation.
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Background
Methylated DNA immunoprecipitation sequencing, or
MeDIP-Seq, is a common methodology used to study
DNA methylation profiles within plant and animal ge-
nomes [1]. DNA methylation is increasingly being recog-
nised as playing a central role in the regulation of gene
expression and chromatin structure. Cytosine methylation
is a particular type of DNA methylation that most often
refers to the reversible addition of a methyl group to the
carbon-5 position of the cytosine pyrimidine ring, result-
ing in the formation of 5-methylcytosine (5mC) modifica-
tions within double stranded DNA [2]. These epigenetic
DNA modifications can be further classified based on the
nucleobase context in which 5mC is observed. Double
stranded DNA methylation primarily occurs if the methyl-
ated cytosine occurs within cytosine-guanosine dinucle-
otide sequences i.e. CG context (also known as CpG
methylation where the phosphate bond between the nu-
cleotides is explicitly represented as a ‘p’). This is due to
nucleobase symmetry between sense (CG) and antisense
(GC) DNA strands. However, methylation in a CG context
is not always double-stranded; it can also occur on just a
single strand. Single stranded (also known as asymmetric,
strand-biased or hemimethylation) DNA methylation
can additionally be detected if the 5mC is in a non-CG
methylation context, i.e. a CH dinucleotide context
where H = A, T or C [3–5].
Asymmetric DNA methylation is a common pheno-

menon of plant genomes [6]. For example it has been as-
sociated with methylation changes on retrotransposons
during the development of pollen cells [7]. However, for
many years it was thought to be absent in mammals where
much of the initial focus was on the detection of symmet-
ric CG methylation. Nevertheless, the presence of non-CG
methylation in mammalian embryonic stem and induced
pluripotent stem cells [8, 9], as well as somatic tissues, e.g.
adult brain [9–11] is becoming more commonly observed.
Although asymmetric DNA methylation might not have
the same function as symmetric double-stranded methyla-
tion (i.e. in gene silencing), there is preliminary evidence
implying a link between non-CG methylation and tran-
scriptional regulation [11]. In contrast to symmetric CG
methylation, cytosine methylation in a non-CG context is
prevalent within gene bodies, particularly exons, rather
than surrounding the transcriptional start site [3, 12].
There is substantial evidence suggesting that non-CG
methylation serves a distinct function depending on the
cell type. For instance, non-CG methylated regions are
prevalent in undifferentiated cells such as embryonic stem
cells [3, 8], as well as differentiated cells such as brain and
skeletal muscle [9, 10]. Additionally, non-CG methylation
is generally associated with a positive correlation to gene
expression: this modification is thought to act as a repres-
sive mark in the adult mammalian brain and appears to be

crucial for neural function [11, 13]. DNA methylation
studies of other animals (e.g. invertebrates) initially were
hampered by assumptions translated from mammalian
systems, such as the predomination of methylation oc-
curring at CG dinucleotide sequences [14]. Recently,
however, this view is being challenged with the honey
bee, Apis mellifera, becoming an increasingly important
invertebrate model for studying how DNA methylation
(in diverse dinucleotide contexts) affects metazoan de-
velopment, behaviour and gene splicing [15–17]. For ex-
ample, Cingolani et al. [17] have described how biases in
both software and experimental design towards studying
CG methylation have led to DNA methylation in other
dinucleotide contexts being poorly identified and func-
tionally underappreciated. After correcting for such biases,
they were surprised to discover 5-fold more CHH methy-
lation than CG methylation in A. mellifera. They report
that of all the cytosines present in CG, CHG, and CHH
contexts in the genome, 2.5 % were methylated; of these,
only 21 % of CG cytosines were symmetrically methylated
with 0 % of CHH and 0.53 % of CHG cytosines symmet-
rically methylated. In total, symmetric methylation oc-
curred in only 3.4 % of the methylated cytosine positions.
Thus, asymmetric methylation predominates in this inver-
tebrate species. Cingolani et al. further suggest that non-
CG modifications might have a significant influence on
the regulation of alternative splicing, and this highlights
the need to detect and quantify strand-specific methyla-
tion in other metazoan organisms [17].
The current MeDIP-Seq library preparation procedure

preserves strand identity, meaning that MeDIP-Seq reads
contain both symmetric and asymmetric strand methyla-
tion signals that are detectable [18]. However, this informa-
tion is not exploited by any of the currently available
software packages (e.g. MEDIPS [19] or MACS2 [20]). It
therefore follows that the current downstream analysis
methodology for MeDIP-Seq data is not optimal as asym-
metric DNA methylation is not detectable. The ability to
study strand-specific DNA methylation signals would
significantly increase the utility of MeDIP-Seq and lead to
further insight into the function of asymmetric DNA
methylation. We, therefore, have developed a new software
(DISMISS; Detection of Stranded Methylation in MeDIP-
Seq Data) to decompose MeDIP-Seq derived DNA methy-
lation information into individual, strand-specific signals
(i.e. identifying 5mC on plus, minus or both DNA strands).
We have used DISMISS to confidently assign strand-

associated DNA methylation signals in MeDIP-Seq data-
sets derived from A. mellifera. We have also quantified
how well DISMISS predicts strand-associated DNA methy-
lation in A. mellifera when compared to data obtained
from a technology that is able to resolve methylation sig-
nals at the nucleotide-level, namely BS-Seq (the sodium
bisulfite conversion of DNA followed by sequencing [4]).
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By demonstrating how DISMISS can increase the reso-
lution and sensitivity of MeDIP-Seq analysis of gDNA (e.g.
allowing DNA methylation to be assigned to a specific
DNA strand), we present an enabling methodology that
can be used to more accurately study DNA methylomes.

Implementation
Strand conservation in MeDIP-Seq libraries
The retrieval of strand identity during MeDIP-Seq ana-
lyses of genomes is possible due to sequencing adapter
directionality [18]. The methodological step-by-step
process of retrieving strand-specific information is illus-
trated in Fig. 1a. In part (I) (of Fig. 1 (a)), genomic 5mC
can be represented by three possible scenarios: firstly,
the cytosine on both DNA strands is methylated (sym-
metric), secondly the 5mC is found only on the plus
DNA strand (asymmetric), and lastly when the 5mC oc-
curs only on the minus DNA strand (asymmetric). During
the first phase of library preparation (II), gDNA is frag-
mented, end-repaired and the forked adapters are ligated
directionally. Subsequently, the gDNA is denatured (III)
prior to the MeDIP 5mC immuno-capture step (IV),
which leads to the selection of single stranded 5mC con-
taining DNA fragments with the 5′ adaptor shown as a
bold solid black line – the presence of this adaptor is im-
portant for resolving the strand specific methylation sig-
nal. Following the 5mC immuno-capture step, library
preparation continues by performing a PCR amplification
step (V), resulting in double stranded DNA fragments. No
matter which of the three scenarios the original 5mC is
found in, the sequencing of first mate reads is initiated
from the 5′ adaptor (VI) – and due to the previous selec-
tion of asymmetrically methylated fragments (plus or
minus strands only) in step (IV) this creates a disparity be-
tween the numbers of C nucleobases and G nucleobases
in the first FASTQ file. The strand origin of the original
fragments may be recovered by aligning the sequenced
reads to the genome sequence: reads containing 5mC from
the minus strand will align in reverse-compliment mode.
The disparity in the G to C ratio of the MeDIP reads can

be readily observed using quality control software for high-
throughput sequencing data (Fig. 1b). For instance, soft-
ware packages such as FastQC (http://www.bioinformatics.
babraham.ac.uk/projects/fastqc/) are commonly used to
assess a number of read metrics, including the ‘Base fre-
quency per cycle’. In a typical random gDNA library, the
ratio between the counts of A and T nucleobases should be
approximately equal, as should the G to C ratio. In a
MeDIP-enriched gDNA library, however, the plot will
clearly show different counts for C and G, as shown in the
‘Base frequency per cycle plot’ of Fig. 1b. This QC abnor-
mality is more pronounced in cases where DNA methyla-
tion is primarily found in an asymmetric context.

MeDIP-Seq strand separation (DISMISS)
If the MeDIP-Seq library has been prepared following
the methodological outline described in Fig. 1 (i.e. strand
information is conserved), then this information can be
exploited by DISMISS to assign 5mC strand specificity
to each peak called by a peak caller (e.g. MACS2). Thus,
each DNA methylation peak can be classified into one of
the three classes: 1) Minus Stranded, 2) Plus Stranded or
3) Peaks on Both Strands. The methods required to per-
form this classification are implemented in the DISMISS
software and are described in the following paragraphs.
The count of MeDIP reads mapping to a genomic lo-

cation can be modelled as a Poisson distribution [21].
Let Y be the number of independent reads mapping to a
genomic location that has previously been identified as a
peak region by MACS2. The distribution of Y is as-
sumed to be Poisson with the parameter lambda (λ):

Y
e

Poi λð Þ
The reads mapped to the MACS2 peak region are di-

vided into two sub events representing the number of
independent reads mapping to each of the two strands,
Yplus and Yminus. These sub events are also distributed
according to a Binomial distribution:

Yplus
e

Poi λθð Þ andYminus
e

Poi λ 1−θð Þð Þ;
where θ is a fraction given by Yplus/Y.
The goal of the analysis is to find out if there are inte-

ger values of λ that are plausible for both Y1 and Y2. The
likelihood function gives the probability of seeing a Pois-
son distributed value Y, given a rate λ:

l λð Þ ¼ Pr Yjλ½ � ð1Þ
For all the plausible values of λ there is a unique value

of λ that maximises the probability given by Eq. 1, called
the maximum likelihood estimate of λ:

Λ ¼ argmaxλl λð Þ ð2Þ
In addition to finding the maximum likelihood esti-

mate, we also want to know what other values of λ have
a reasonably high likelihood in order to capture the ran-
domness of the biological process. A likelihood set is a
set of λ values that explain the data in a statistically sig-
nificant manner:

LSα≡ λ : l λð Þ=l Λð½ �≥αf g ð3Þ
Where α ∈ (0,1) is the cut-off value and we frequently

use α ≈ 0.1 for convenience and custom. Further details
of the Poisson distribution and the comparison of distri-
butions using likelihood ratios are thoroughly explained
elsewhere [22].
For each peak region with Y reads, the decision to as-

sign a class is performed in the following manner. Given
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a

b

Fig. 1 (See legend on next page.)
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that Yplus are the number of first mate reads aligned to
the plus strand and Yminus the number of first mate
reads aligned to the minus strand, then a set of integer
values from and including Yplus to Yminus that are plaus-
ible values of λ to explain the data are chosen. Using this
set of λ values and Eq. 3, two likelihood sets are gener-
ated. If the intersection of these two sets is not empty,
then there are values of λ that are plausible for both
Yplus and Yminus and the peak is assigned to class ‘Peaks
on Both Strands’. Otherwise the intersection of the sets
is empty and the peak will be assigned as single-
stranded: if Yplus is greater than Yminus then the peak is
assigned to class ‘Plus Stranded’, else the peak is assigned
to class ‘Minus Stranded’.
For example, if the number of reads mapping to the peak

identified by MACS2 is given by Y = 100, with the number
of reads mapping to the two strands comprising this peak
given by Yplus = 60 and Yminus = 40, then the set of plausible
values for λ (from and including Yplus to Yminus) is given by
{40, 41,…, 59, 60} and θ will be 60/100 = 0.6. Using the
Poisson distributions for Yplus and Yminus and Eq. 1, the
likelihood for each value of λ in this set is calculated and
Eq. 2 is used to select two values of λ that maximise the
likelihood for each plus and minus strand. Furthermore,
using Eq. 3, two likelihood sets (LS) containing plausible
values of λ (i.e. α > = 0.1) are generated: LSplus = {45, 46, …,
59, 60} and LSminus = {40, 41, …, 54, 55}. The intersection
of these two sets is not empty, hence there are common
values of λ with a high likelihood for the observed number
of reads Yplus and Yminus and the peak is assigned to both
strands.

Data sets used and analysis procedures
MeDIP-Seq data derived from A. mellifera [23] consisted
of adult worker nurse with Sequence Read Archive (SRA)
number SRR850130 (used in Fig. 2a), adult worker forager
with SRA number SRR850131 (used in Fig. 3a) and adult
worker reverted-nurse with SRA number SRR850132
(used in Figs. 1b, 2a, b, 3a, b, 4 and 5). The BS-Seq data

originated from A. mellifera worker larvae with SRA num-
ber SRX101302 [24] (used in Figs. 3a, b, and 5). All data
sets used in this study were retrieved using the SRA soft-
ware toolkit provided by the NCBI (National Center for
Biotechnology Information).

MeDIP-Seq and BS-Seq data analysis
The MeDIP-Seq FASTQ files were aligned to the A. melli-
fera genome [25] using Bowtie2 [26]. SAMtools [27] was
subsequently used to remove aligned reads with a map-
ping quality below 10 as well as to eliminate PCR and op-
tical duplicates, following the protocol suggested by Taiwo
et al. [5]. The peak calling to identify peak regions (DNA
methylation windows) was performed using MACS2 (with
no control and options –m 5 50 –g 2.3 × 108 –q 0.01 for
the ‘callpeaks’ module) [20]. The A. mellifera BS-Seq data
set used in Fig. 3 was processed by Bismark [28] using
default options and bowtie (version 1) to identify 5mCs;
only 5mCs covered by at least three methylated reads were
included in the analysis.
Additionally, to enable the A. mellifera datasets to be

viewed in the Integrative Genomics Viewer (IGV) [29] vari-
ous BedGraph files were generated (and converted to the
TDF format required by IGV). These files include stranded
output for the BS-Seq 5mC calls in all methylation con-
texts, the coverage of the MeDIP reads including a separate
track for the first mates and the stranded calls made by
DISMISS for each of the three A. mellifera developmental
stages analysed. All of these files are available (along with
the DISMISS software) at http://uhkniazi.github.io/dismiss.

Annotation
The genome and annotation information for A. mellifera
(version 4.5) [25, 30] were obtained from the NCBI.

Counting overlaps of genomic features
A location in the genome can be represented as a set of
start and end coordinates, a strand (plus, minus or both)
and sequence name (chromosome or scaffold name).

(See figure on previous page.)
Fig. 1 DISMISS utilises strand biases generated during MeDIP-Seq library preparation to detect strand-specific DNA methylation. a Outline of
MeDIP-Seq library preparation. (I) Genomic 5mC can be present in three possible scenarios: (left) with 5mC found on both DNA strands, (middle)
with 5mC found only on the plus DNA strand (black coloured strand) and (right) with 5mC found only on the minus DNA strand (grey coloured
strand). (II) DNA is fragmented, end-repaired and the forked adapters ligated directionally to the DNA fragments – solid black (5′ adapter) and dashed
black (3′ adapter); (III) DNA is denatured. (A-IV) MeDIP enrichment (grey spheres) selects single-stranded 5mC containing fragments; a sampling bias
arises due to the selection of strands originating from DNA fragments containing 5mC on only a single strand (middle and right) – note the black
adaptor is retained, identifying the strand origin of the selected fragment. (V) PCR library enrichment is performed (5mC lost during PCR amplification
and replaced with C). (VI) Black arrows show sequencing of first mate reads (containing the MeDIP selected 5mC) occurring from the black adaptor.
DNA fragments from all three scenarios are sequenced from both ends, with those originating from black and grey adaptors deposited in a single pair
of first and second FASTQ files, respectively. Reads from the minus strand will tend to align to the genome sequence in reverse-compliment mode.
b C to G ratio bias detected in a MeDIP-Seq FASTQ file. Base count per cycle plot for the first FASTQ file. The x-axis shows the base position in the read,
while the y-axis shows the count of each nucleotide at that position. The A to T ratios do not show a bias, as is expected for a random library
not selecting for either of these nucleobases. However, the C to G ratio demonstrates a clear bias due to the selection of 5mC containing
fragments (in step A-IV)
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Two locations or features are overlapping if they have the
same sequence name, compatible strand pairing and over-
lapping coordinates. The Bioconductor package Genomi-
cRanges provides this data structure to handle genomic
features along with various utility functions to perform

operations on these features. In our analysis, the counting
of overlapping features was performed using the Biocon-
ductor countOverlaps function:

C ¼ CountOverlaps Q; Sð Þ ð4Þ

Where Q is the query parameter (features of interest);
S is the subject parameter (features over which counting
is performed); C is a set of integer values of length equal
to Q, giving counts of overlaps of Q and S.

Results
Here, for the first time, we describe a tool to improve
the resolution of 5mC analysis using MeDIP-Seq, which
allows for the accurate determination of symmetric vs
asymmetric DNA methylation. Previously, the accuracy
of MeDIP-Seq has been investigated via comparison with
BS-Seq and a good concordance in CG methylation be-
tween these technologies for symmetric methylation has
been demonstrated [4]. Following this strategy, we dem-
onstrate the accuracy of DISMISS by performing a com-
parison of 5mC strand-specific predictions made on an
existing MeDIP-Seq data set to 5mC sites verified in an
approximately equivalent BS-Seq data set, both derived
from an invertebrate genome with a relatively high level
of asymmetric methylation, the honeybee (A. mellifera).

Asymmetric methylation prediction: investigating
potential sources of bias
DISMISS was used to identify strand specific methylated
DNA regions in existing MeDIP datasets derived from
three adult worker life stages: nurse, forager, and reverted
nurse (note that for the worker caste, bees first develop
from larva to nurse, then from nurse to forager, and finally
a forager may revert back to the nurse stage). Depending
on the life stage, MACS2 identified approximately 34,000
to 37,000 methylated regions within the whole honey bee
genome; DISMISS identified 80 to 85 % of those as being
single-stranded regions with the remaining 15 to 20 % be-
ing double-strand regions. Plots showing the distribution of
strand read depth from MACS2 peaks are given in Fig. 2a.
In order to demonstrate that strand decomposition of the
MACS2 peaks by DISMISS is not influenced in a negative
way by read depth, the distributions of read depths for plus,
minus and double stranded peaks are shown in Fig. 2b. The
figure shows a clear demarcation of the stranded categories.
To investigate the possibility of bias arising in peak regions
that are wide enough to include both single and double
stranded methylation we performed the following tests.
Based on the quantiles of the peak widths, we split the peak
regions into three groups with the following widths: group
1: from 26 to 439 bp; group 2: from 440 to 770 bp; and
group 3: from 771 to 2500 bp. Groups 1, 2 and 3 contain
50, 45 and 5 % of the peaks, respectively. Group 3 has the

Minus

Double
Plus

N
u

m
b

er
 o

f 
o

cc
u

rr
en

ce
s

R
ea

d
 d

ep
th

: 
m

in
u

s 
st

ra
n

d

0

500

1000

1500

Read depth : both strands

Minus

Plus

0

20

40

60

80

100

0 20 40 60 80 100
Read depth: plus strand

0 50 100 150 200

MACS2 peaks

DISMISS peaks

a

b

Fig. 2 DISMISS predictions of the DNA strand on which the 5mC
occurs are not influenced by read depth. a MACS2 peaks. The
frequency of occurrence of peaks, with a certain depth of first mate
reads, on the plus and minus strands. The minimum read depth is
12 first mate reads. b DISMISS peaks. The depth of first mate reads
on the plus strand is plotted against the depth of first mate reads
on the minus strand. The predictions made by DISMISS are indicated
in grey scale and marked on the graph; they show well defined
linear boundaries. The minimum read depth is 12 first mate reads

Niazi et al. BMC Bioinformatics  (2016) 17:295 Page 6 of 12



Percentage of 5mCs detected by BS-Seq of worker larva
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widest peaks and would therefore be most likely to contain
a mix of double and single-stranded peaks. In each of these
groups we counted the numbers of plus stranded, minus
stranded and double stranded peaks. These counts were
used in a contingency table to test the null hypothesis that
the distribution of plus, minus and double stranded peaks
is independent of peak width: a Chi-squared test gave a

p-value of 0.17. Thus, there is a slight bias in the widest
peak regions, but the trend is not statistically significant.

Asymmetric methylation prediction: concordance
between DISMISS and BS-Seq
Using BS-Seq data from an additional life stage (worker
larvae), Bismark ascertained that 6, 14 and 42 % of the

(See figure on previous page.)
Fig. 3 DISMISS interrogation of MeDIP-Seq datasets can accurately predict the DNA strand where 5mC occurs. A comparative analysis of 5mC
detected by DISMISS interrogation of MeDIP-Seq data with 5mC detected by BS-Seq is illustrated (see the Implementation subsection on data sets
for SRA identifiers) a Despite originating from different developmental forms, 5mC detected by DISMISS analysis of MeDIP-Seq datasets and BS-Seq
datasets are concordant. Each horizontal bar represents a DISMISS quantified peak class (plus stranded or minus stranded) of MeDIP-Seq data. From all
of the DISMISS predicted peak regions in a class, the percentage of 5mCs on the Plus and Minus strands was calculated from the BS-Seq dataset.
Each bar shows the percentage of 5mC identified by BS-seq on either plus strands (+, Black) or minus strands (−, Grey). The DISMISS predicted
‘Minus Stranded’ and ‘Plus Stranded’ peaks predominantly contain BS-Seq identified 5mCs on either Minus or Plus strands, respectively. b Loci-specific
examples of 5mC detected by DISMISS analysis of MeDIP-Seq datasets, with the corresponding BS-Seq predictions, over three genomic regions. Three
randomly selected regions from the A. mellifera genome (assembly NC_007070.3), corresponding to DISMISS predicted peak classes (i, Minus stranded
5mC; ii, Plus stranded 5mC; and iii, 5mC peaks found on both strands) are indicated. The x-axis shows the NC_007070.3 base pair coordinates of each
selected region. The first mate read coverage for each base using DISMISS-assessed MeDIP-Seq alignment data is shown along the y-axis. The y-axis is
divided into two parts by a central line where the dark-grey coverage above the line represents reads predicted to map to the Plus strand and the
light-grey coverage shows reads predicted to map to the Minus strand (see key). The black dots above the line indicate BS-Seq identified 5mCs found
on the Plus strand, while those below the line show BS-Seq identified 5mCs found on the Minus strand
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test) with p values less than 0.0001 (see the Implementation subsection on data sets for SRA identifiers)
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5mCs in CG, CHG, and CHH contexts were methylated,
respectively. Thereafter, only regions identified by DIS-
MISS were considered in this analysis. These regions
were centred on the peaks identified by MACS2 from
the MeDIP data and ranged from about 260 to 2500 bp
in length with an average size of about 430 bp. The
5mCs identified within these regions by Bismark (from
the BS-Seq) were separated into the fractions (percent-
ages) present on each of the plus and minus strands
(Fig. 3), and counted using Eq. 4. To independently val-
idate the DISMISS predictions, a p-value was calculated
using a paired two-tailed t-test and was performed three
times: one for each peak class from the DISMISS predic-
tion (plus or minus stranded, or on both i.e. double-
stranded) to test the null hypothesis that the number of
5mCs on the plus and minus strands are equal. Figure 3a
summarises the concordance between the two approaches
within the strand-associated DNA methylation regions
identified by DISMISS, across the whole honeybee gen-
ome. Within the DISMISS predicted ‘Minus Stranded’
DNA methylation regions, more BS-Seq identified 5mCs
were classified on the minus strand (p-value <0.0001).
Similarly, in the DISMISS predicted ‘Plus Stranded’ DNA
methylation regions, more BS-Seq identified 5mCs were
detected on the plus strand (p-value <0.0001). Within the
regions predicted by DISMISS to contain methylation on
both strands (‘Double Stranded’), there were approxi-
mately equal numbers of BS-Seq identified 5mCs detected

on both plus and minus strands (no statistically significant
strand bias; p-value >0.05). Exemplar genomic regions se-
lected to show instances of good concordance between
BS-Seq and MeDIP for each of the three cases of strand-
associated DNA methylation are illustrated in Fig. 3b. The
y-axis depicts the first mate read coverage from the
MeDIP-Seq alignment data and the x-axis represents the
5mCs observed in BS-Seq data as black dots (on either
plus and/or minus strands along with base pair coordi-
nates). For a more detailed overview of the concordance
between BS-Seq, MeDIP, and DISMISS at specific loci
we have prepared the appropriate files (in BedGraph
and GFF format) as tracks for viewing in a genome
viewer such as IGV (Integrative Genomics Viewer) [29]
(see the “Availability of data and materials” section).

Single stranded DNA methylation is asymmetrically
distributed on sense and antisense strands
Using honeybee BS-Seq data, Cingolani, P. et al. have re-
ported asymmetrical distribution of non-CG methylation
at gene splice sites and have speculated about the role that
this type of DNA methylation plays in alternative mRNA
splicing [17]. Although we cannot match the nucleotide-
level resolution of BS-Seq, here we test the functionality of
DISMISS in identifying the presence of 5mC signals in ei-
ther splice donor or splice acceptor sites in A. mellifera
MeDIP-Seq data. A genomic feature such as a splice donor
site can be present on either strand of the DNA duplex:
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Fig. 5 DISMISS detection of DNA methylation in MeDIP-Seq datasets approaches the resolution obtained by BS-Seq analysis. A MeDIP-Seq dataset
was analysed by MACS2 and DISMISS. The proportion of DNA methylation found in four different genomic regions (2 KB upstream of the gene’s
5′ end, exons, introns and regions 2 KB downstream of the gene’s 3′ end) was deduced and compared to the proportion of DNA methylation
signal (in these same regions) detected in a BS-Seq dataset (see the Implementation subsection on data sets for SRA identifiers)
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the sense side is the strand on which the feature is present,
which can be either the plus or minus strand and the anti-
sense side is always the opposite strand. The number of
single stranded DNA methylation signals (predicted by
DISMISS) on the sense and antisense sides of each splice
site were counted using Eq. 4. To independently validate
the DISMISS predictions, a p-value was calculated using a
two tailed proportion test [31] (prop.test in R), to test the
null hypothesis that the proportion of single stranded DNA
methylation on the sense and antisense sides of the feature
are equal. In Fig. 4, we show that DISMISS-mediated DNA
methylation predictions derived from MeDIP-Seq datasets
indicate significantly greater (p-value <<0.0001) levels of
DNA methylation are found on the antisense strand com-
pared to the sense strand at genomic splice junctions in
adult worker reverted-nurse samples. This observation is
consistent with those made by Cingolani, P. et al. using
BS-Seq [17]. Importantly, this is the first time that splice
junction DNA methylation signals have been resolved
from MeDIP-Seq datasets and demonstrates that DIS-
MISS can play an important role in understanding the
function of these genomic modifications during mRNA
splicing.

Comparison of DNA methylation in gene regions
The detection of DNA methylation over four distinct gen-
omic features in the honeybee genome was subsequently
compared using three different analysis strategies: MeDIP-
Seq data processed by MACS2; MeDIP-Seq data processed
by MACS2 and strands assigned by DISMISS; and BS-Seq
data identified 5mCs using Bismark. The four genomic
features analysed were upstream loci (defined as 2 KB up-
stream of the gene’s 5′ end), exons, introns, and down-
stream loci (defined as 2 KB downstream of the gene’s 3′
end). Genomic features occur in the genome with different
degrees of abundance, for instance there is about three
times more intronic sequence than exonic sequence in the
A. mellifera genome [30]. In order to adjust for this vari-
ation we used Eq. 4 to count, per 1000 instances of a par-
ticular genomic feature, the number of overlaps between
the methylation signal and that feature: the posterior distri-
bution of DNA methylation signal over the four genomic
features was modelled as four gamma-distributed variables
using a conjugate Poisson sampling model. In Fig. 5 the
counts per 1000 instances have been converted to percent-
ages, and error bars show 95 % confidence intervals that
were calculated using simulation [32]. Fig. 5 shows that the
distribution of detectable MeDIP-Seq signal converges to-
wards the BS-Seq signal after assigning strands to the meth-
ylated regions using DISMISS. These results demonstrate
that DISMISS analysis of MeDIP-Seq datasets improves the
resolution of detecting stand-associated DNA methylation
signals (a stepwise improvement over just using MACS2)

and offers a competitive alternative to BS-Seq for global
methylome studies.

Discussion
While a variety of sequencing-based methods for genome-
wide DNA methylation profiling have been developed
[4, 33, 34], bisulfite sequencing (BS-Seq) and methyl-
ated DNA immunoprecipitation sequencing (MeDIP-Seq)
strategies are the most commonly used. BS-Seq results in
single nucleobase classification of symmetric (cytosine
methylation on both strands, CG) or asymmetric (cytosine
methylation on plus or minus strand, CH) DNA methyla-
tion [33]. Nevertheless, it suffers from limitations that
include incomplete bisulphite conversion of cytosines
into uracils leading to false positives, possible PCR bias
due to preferential amplification of methylated (C-rich)
or unmethylated (T-rich) versions of the template, bi-
sulfite conversion of methylated cytosines to uracils (over-
treatment) leading to false negatives and, finally, the
inability of sodium bisulfite to convert cytosines into ura-
cils within repeat sequences forming snap-back structures
[17, 33, 35, 36]. Furthermore, the sensitivity in detecting
DNA methylation when using BS-Seq is generally a func-
tion of sequencing depth, which makes it relatively expen-
sive to achieve sufficient resolution for detecting 5mC in
poorly methylated genomes [33]. All of these reasons
could explain why previously BS-Seq experiments failed to
detect DNA methylation in Drosophila melanogaster [37]
when liquid chromatography-tandem mass spectrometry
(LC-MS) clearly demonstrated its presence – estimating
that 0.034 % of cytosines were methylated [38].
In contrast, MeDIP-Seq has several advantages over BS-

Seq in characterising DNA methylomes. As MeDIP-Seq is
an enrichment-based technique, methylated DNA frag-
ments are preferentially sequenced, resulting in greater se-
quencing depth of regions containing 5mC at an over-all
lower total cost per genome [39]. Additionally, MeDIP-
Seq can accurately detect 5mC in repeat regions and does
not require the same amount of input gDNA for sample
analysis in comparison to BS-Seq [5, 34, 39]. Therefore, if
single-base 5mC resolution is not required, or the organ-
ism under study contains low DNA methylation levels,
then MeDIP-Seq provides an excellent choice for global
DNA methylome studies [38].
In terms of detecting methylation signals in genomes,

MeDIP-Seq and BS-Seq generally show good concord-
ance. Harris et al. compared two bisulphite-based tech-
niques: MethylC-Seq and reduced representation bisulphite
sequencing, RRBS (that reduces the proportion of the gen-
ome analysed to regions with high CG content) to two
enrichment-based techniques (including MeDIP-Seq). They
demonstrated that the assessment of DNA methylation
in human embryonic stem cells by all four methods was
97 % concordant, using binary DNA methylation calls
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[4]. However, these techniques produced divergent results
in terms of CG coverage, resolution, and quantitative
accuracy. In particular, enrichment based techniques such
as MeDIP-Seq lacked precision when quantifying DNA
methylation levels due to the need to analyse genomic re-
gions by averaging the number of CGs covered by variable
numbers of reads in windows hundreds of base-pairs long.
Whilst exploring the greater resolution afforded to

MeDIP-Seq studies by DISMISS, we had to focus on loci
of methylation rather than the nucleotide-level reso-
lution that is possible with BS-Seq. Additionally, we were
unable to find any whole genome data sets that directly
compare BS-Seq with MeDIP-Seq. Therefore, potentially
confounding factors to our comparison between BS-Seq
and MeDIP-Seq include the fact that the datasets used
were derived from different laboratories, populations, and
honey-bee life stages (for instance BS-Seq from larvae ver-
sus MeDIP-Seq from three different types of adult workers
in Fig. 3). Nonetheless, despite originating from different
developmental forms, overall analysis across the whole
genome shows that the stranded predictions of 5mC made
by DISMISS on MeDIP-Seq datasets are highly correlated
with 5mCs detected within the BS-Seq datasets.
Our results demonstrate that by utilising the strand in-

formation present in MeDIP-Seq data sets, DISMISS can
improve the resolution of the DNA methylation signal re-
trieved by other software packages (e.g. MACS2). Specific-
ally, MeDIP-Seq data analysed by MACS2 and DISMISS
achieves better concordance with BS-Seq than data
analysed by MACS2 alone (Figs. 3 and 5). Furthermore,
by applying DISMISS to MeDIP-Seq datasets, improved
resolution of strand-associated DNA methylation sig-
nals can be achieved revealing biological features hid-
den in previous analyses (Fig. 4). Finally, as DISMISS
takes advantage of a standard laboratory protocol for
generating MeDIP-Seq libraries and acquiring data –
there is no need to modify these for implementation.

Conclusions
The standard laboratory protocol for MeDIP-Seq, together
with DISMISS, offer a unique way to explore DNA methy-
lation in either lowly methylated genomes where BS-Seq
may fail to detect methylation, or in genomes that contain
relatively high amounts of asymmetric methylation. We
believe DISMISS is a significant contribution to the field
of epigenetic data analysis and to facilitate its use by the
community, we have provided both the software, and
complete Galaxy [40–42] workflows for both DISMISS as
a stand-alone application and for DISMISS embedded
within a complete MeDIP-Seq data analysis.
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BS-Seq, sodium bisulfite conversion of DNA followed by sequencing; MeDIP-Seq,
methylated DNA immunoprecipitation sequencing
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