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Abstract: Tartary buckwheat (Fagopyrum tataricum (L.) Gaertn.) and common buckwheat (Fagopyrum
esculentum Moench) are important sources of proteins with balanced amino-acid compositions, and
thus of high nutritional value. The polyphenols naturally present in Tartary buckwheat and common
buckwheat lower the true digestibility of the proteins. Digestion-resistant peptides are a vehicle
for fecal excretion of steroids, and in this way, for bile acid elimination and reduction of cholesterol
concentrations in serum. Buckwheat proteins are more effective compared to soy proteins for the
prevention of gallstone formation. Tartary and common buckwheat grain that contains appropriate
amounts of selenium-containing amino acids can be produced as functional food products. The
protein-rich by-products of buckwheat are a good source of bioactive substances that can suppress
colon carcinogenesis by reducing cell proliferation. The grain embryo is a rich source of proteins, so
breeding buckwheat with larger embryos is a possible strategy to increase protein levels in Tartary
and common buckwheat grain. However, chemical analysis of the grain is the most relevant criterion
for assessing grain protein levels and quality.
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1. Introduction

Tartary buckwheat (Fagopyrum tataricum (L.) Gaertn.) and common buckwheat (Fagopy-
rum esculentum Moench) are traditionally grown in the Himalayas, south-east Asia, and
central and eastern Europe. Buckwheat is a low input plant and is suitable for cultivation in
mountainous regions. In some parts of the world, buckwheat is an important component of
the diet, and thus an important source of carbohydrate, protein, and secondary metabolites
in the human diet [1–5]. Buckwheat noodles are a popular dish in Japan, and traditionally
in some rural areas of China, Korea, and Bhutan, and in regions on the southern slopes of
the European Alps, including Slovenia, Italy, Switzerland, and France.

In Slovenia, bread made with Tartary and common buckwheat is used traditionally,
and its consumption is again becoming popular [5]. Buckwheat groats (i.e., husked buck-
wheat grain) are traditionally produced and consumed in central and eastern Europe (i.e.,
Slovenia, Croatia, Poland, Ukraine, Russia), and can be used in a similar way to rice [5,6].

While breeding of common buckwheat has been widespread in all buckwheat growing
areas, Tartary buckwheat is a specialty crop that is appreciated in less favorable environ-
mental conditions. Until recently, Tartary and common buckwheat breeding were designed
to achieve high yields and resistance to less favorable environmental conditions. More
recently, special attention has been paid towards the optimization of the nutritional qual-
ity parameters of Tartary buckwheat and common buckwheat, which has included high
protein content and optimal amino-acid composition of the proteins. Here, we review
the possibilities to develop Tartary and common buckwheat for grain with higher protein
levels with improved amino-acid composition.
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2. Protein Levels in Buckwheat Grain and Milling Fractions

Protein levels in buckwheat grain are relatively low (~12%) compared to leguminous
plants (soybean meal, ~51%), although they are higher compared to most cereals [7]. It
is possible to concentrate proteins by milling and separation of the fractions of common
buckwheat. The milling fractions with the highest protein levels is the bran, with ~30%
protein in terms of dry matter [8]. The highest levels of the flavonoid rutin were also
detected in the same milling fraction. The lowest protein levels are seen for the flour
fraction, with only 4.4% [8].

By milling Tartary buckwheat, bran with 25% protein can be obtained, with the flour
with 10% protein [9,10]. Thus, by adapting the milling methods, it is possible to obtain
products for diverse uses and nutritional values.

3. Quality of Buckwheat Protein Compared to Soybean and Cereals

According to Eggum [7], common buckwheat contains 5.1% lysine in its protein
fraction (i.e., 5.1 g/16 g N). For comparison, lysine levels in the protein fractions measured
by the same method were 2.6% for wheat, 2.8% for maize, and 3.7% for barley (Table 1).
Lysine levels for the protein in soybean meal are 6.0% and the same in fava bean. Due
to the high levels of lysine, and the well-balanced levels of the other amino acids, the
biological value of buckwheat proteins is 93%. From the same type of experiments with
rats, soybean meal proteins have a biological value of 68%, compared to that of pork
protein, at ~84%. Despite the higher lysine levels in soybean and fava bean, the buckwheat
protein is superior, with the lower biological value of the soybean and fava bean proteins
due to their lower levels of sulfur-containing amino acids (Table 1) [7].

Table 1. Contents of essential amino acids and biological value of various protein sources (adapted
from Eggum [7]).

Protein Source Amino Acid (g/16 g N) Biological

Lysine Methionine Cysteine Value (%)

Buckwheat 5.09 1.89 2.02 93.1
Wheat 2.55 1.81 1.79 62.5

Soybean 5.99 1.61 1.59 68.4
Fava bean 6.04 0.94 1.44 51.1

Egg 6.79 3.09 2.38 99.3
Pork 7.99 2.85 1.14 84.3

These low levels of sulfur-containing amino acids in beans means that quality is
compensated for by quantity. However, according to Eggum [7], high quantities of protein
are not an advisable solution to the problem of this less balanced amino acid composition
in beans. These bean proteins that contain amino acids with lower nutritional quality is
the superficial amount of nonessential amino acids. This superficial amount is used by an
organism only as a source of energy. However, this represents a relative waste of energy, as
proteins are not a good energy source [7].

The distribution of sulfur in grain can be used as a marker of protein distribution
among different grains and within the different parts of the grain [11,12]. Recently, the
use of microparticle-induced X-ray emission (micro-PIXE) has improved the detection of
sulfur content and its allocation to the different structures of buckwheat grain, which might
serve for estimation of the relative levels of proteins containing sulfur amino acids in the
cotyledons and the aleurone [13–15].

Seed storage proteins in buckwheat are mainly water and saline soluble, in contrast
to gluten-containing cereals [16–18]. Buckwheat grain proteins consist of up to 50 to 60%
albumins and glutelins [19]. Buckwheat samples also have high concentrations of lysine,
although threonine and sulfur-containing amino acids are the first limiting amino acids in
regard to the need for amino acids in human nutrition [20–24].



Plants 2021, 10, 14 3 of 12

The amino acids serine, proline, glycine, histidine, and arginine, obtained after in-vitro
digestion of buckwheat bran appears to have high cytotoxic effects on cultured colon cancer
cells. The final cytotoxic effects arise from not only the levels of bioactive substances, but
also as a function of the synergistic actions among these. Thus, buckwheat protein-rich
by-products are a good source of bioactive substances [25–29]. However, in-vitro antiprolif-
erative effects on cancer cells do not always predict health-promoting effects, as the impacts
must also be studied and confirmed in vivo. Some literature data [26] have stressed the
need for a complex evaluation of the biological activities of buckwheat metabolites on
intestinal health. Consumption of buckwheat protein extracts has been shown to slow
mammary carcinogenesis in rats, which was connected with muscle hypertrophy and
reduced hepatic triglyceride concentrations [30–33].

In selenium-enriched buckwheat plants, the resulting proteins are interesting in terms
of their selenium content [34]. It is feasible to increase the selenium concentration in Tartary
and common buckwheat grain by fertilizing them with selenium compounds so that they
become a good source of seleno amino acids [35,36]. In selenium-enriched buckwheat
grain, 39% of the selenium is present as water-soluble selenium, such as in peptides,
proteins, and other selenium compounds; also, 93% of this water-soluble selenium is
selenomethionine [37], which is one of the most bioavailable forms of selenium for animals
and humans.

The selenium content in Tartary buckwheat under ambient UV-B radiation is higher
compared to common buckwheat. Tartary buckwheat can grow at higher altitudes than
common buckwheat. In mountain areas, the UV-B radiation is more intense, and selenium
might protect the plants from strong UV-B radiation. Enhanced UV-B radiation increases
the selenium content in the vegetative parts of common buckwheat without selenium
treatment [37]. In addition, higher selenium levels have been shown for selenium-treated
Tartary buckwheat compared to selenium-treated common buckwheat [38]. The grain of
selenium-treated hybrid buckwheat also shows increased accumulation of selenium when
exposed to reduced UV radiation, compared to plants exposed to ambient UV radiation
levels [39].

With regards to selenium and flavonoids, there are similar effects of UV-B radiation
on flavonoid content in buckwheat. Tartary buckwheat contains more flavonoids than
common buckwheat [40]. Kreft et al. [41] studied the impact of UV-B radiation on rutin
content and reported that this was higher in plants exposed to ambient levels of UV-B
radiation, compared to plants grown under reduced UV-B radiation.

4. Buckwheat Protein Digestibility

Proteins from Tartary buckwheat and common buckwheat have low digestibility [42,43].
The polyphenols that are naturally present in Tartary buckwheat and common buckwheat,
including rutin and quercetin, lower the true digestibility of the proteins [43–46]. Ikeda
et al. [47] reported that phenolic substances have significant inhibitory effects on in-vitro
peptic and pancreatic digestion of globulin, and thus Tartary buckwheat and common
buckwheat secondary metabolites might have an impact on protein digestibility [48]. Con-
siderable interactions between polyphenols and proteins are observed after hydrothermal
treatment [45]. In buckwheat, the situation is similar to millet, where the protein digestibil-
ity is slower compared to other cereals, potentially because of the binding of polyphenolics
to proteins [49].

The interactions between proteins and phenolic substances slow down the digestion of
proteins in the small and large intestine. However, microbial fermentation in the colon can
enhance the digestibility of proteins blocked by polyphenols in hydrothermally processed
buckwheat [44,45]. Digestion-resistant peptides are important for the fecal excretion of
steroids. Buckwheat proteins prevent gallstone formation more strongly in comparison to
soy proteins. They might also slow mammary carcinogenesis by lowering serum estradiol
and suppress colon carcinogenesis by reducing cell proliferation [50–56].
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It would be expected that breeding Tartary buckwheat and common buckwheat
for lower grain polyphenols content will enhance the nutritional value of the proteins;
however, this might instead be unfavorable for the beneficial impact of polyphenol-protein
complexes for preventing diseases [45,51].

5. Bioactivity of Buckwheat Peptides

Buckwheat peptides can be obtained by the fermentation of buckwheat grain or
sprouts.

The buckwheat grain is the source of biofunctional peptides [28,57–61], which are
fermented in the process of malting [62] and during the preparation of buckwheat beer or
distillation products [63,64].

Sprouts from Tartary and common buckwheat grain are prepared to produce buckwheat
vegetable, which is rich in flavonoids and mineral elements [65–67]. Sprouts can be further
processed by fermentation, and valuable products with reported blood-pressure-lowering
effects can be obtained [68–70]. Purified buckwheat proteins and peptides can be used due to
their beneficial effect in atherosclerosis [71,72] and hypercholesterolemia [73–76].

There are possibilities to develop novel buckwheat products based on the functional
and technological values of buckwheat proteins and peptides [74,75,77–80]. The properties
of buckwheat proteins and isolates can be altered by thermal and ultrasound treatment.
Maillard reaction can change the proteins to modify their allergenicity [81–83]. Another
method to obtain novel buckwheat protein-rich food products is to fractionate buckwheat
grain by milling [84]. However, none of these methods appears to be satisfactory for
sufficient removal or inactivation of allergenic buckwheat proteins in the products. This
is a pity because some buckwheat products are used for gluten-free products, and some
customers might have multiple food intolerance syndromes [85–87]. Tartary and common
buckwheat, alone or in combination with rice or corn, are used in the development of
gluten-free food products [88].

Buckwheat leaf flour and grain can be used to produce protein isolates [89–93]. How-
ever, the process should include the removal of polyphenolic substances [94]. On the other
hand, tannin-protein complexes can be used in buckwheat products due to their radical
scavenging effects; these complexes can provide effective radical sinks and modify protein
digestibility [17,45,95,96].

6. Buckwheat Breeding for High Protein Levels: Prospects for the Future

Buckwheat grain is rich in high-quality proteins and contains well-balanced amounts
of essential amino acids (i.e., lysine, methionine, cysteine, tryptophan). In addition, com-
mon buckwheat is important as a nectariferous plant, and both Tartary and common
buckwheat are pharmaceutical plants [97–100]. In recent buckwheat breeding programs,
particular properties have been investigated, such as high grain yield, frost resistance,
increased protein content, reduced allergenic protein content [97]. People with multiple
allergies can also develop an allergy when eating buckwheat [85], which can be caused
by low-molecular-weight proteins in the grain embryo (i.e., 18–29 kD) [84,100–105]. How-
ever, there have not been any reports on the allergenicity of endosperm proteins and of
proteins with diverse molecular weights in the aleurone. Besides the embryo, the aleurone
is the main grain tissue with a high protein content (Figure 1). In the preparation of buck-
wheat food products, it is important to understand how endosperm and embryo cells are
damaged under the technological processes to make the content of the cells available for
intestinal digestion [106,107]. Temperature treatments and intestinal microbial activity are
other factors of importance in the production of buckwheat foods with health promoting
effects [68,108–111]. It would be expected that breeding Tartary buckwheat and common
buckwheat for larger embryo and thicker aleurone will enhance the amount of the grain
proteins. Genetic variability of embryo size has been reported to have an impact on the
chemical composition of grains, as reported for barley and genus Avena [112,113]. Micro-
scopic analyses of buckwheat grain might represent a method for screening for buckwheat



Plants 2021, 10, 14 5 of 12

breeding, in terms of a larger embryo and aleurone, and thus also for higher protein levels
in the grain [15] (Figure 1).

Plants 2021, 10, x FOR PEER REVIEW 5 of 12 
 

 

effects [68,108–111]. It would be expected that breeding Tartary buckwheat and common 
buckwheat for larger embryo and thicker aleurone will enhance the amount of the grain 
proteins. Genetic variability of embryo size has been reported to have an impact on the 
chemical composition of grains, as reported for barley and genus Avena [112,113]. Micro-
scopic analyses of buckwheat grain might represent a method for screening for buckwheat 
breeding, in terms of a larger embryo and aleurone, and thus also for higher protein levels 
in the grain [15] (Figure 1). 

 
Figure 1. Cross-section of a common buckwheat grain. 

At the same time, there is greater protein polymorphism within varieties of common 
buckwheat than between varieties [114]. This high polymorphism can be exploited in 
breeding, although like globulin, most of the proteins show single Mendelian gene inher-
itance, with a codominant expression of multiple alleles, which complicates plant breed-
ing [115]. Cross-fertilization of common buckwheat has an impact on the breeding ap-
proach. The suggested procedure for common buckwheat breeding, according to Kreft 
[116], is presented in Figure 2. Common buckwheat is a cross-pollinating plant. In the field 
breeding experiments, diploid common buckwheat must be in physical isolation (in tents 
or glasshouses), so uncontrolled pollination is prevented in common buckwheat breeding 
(Figure 2). Such isolation is not needed in the breeding of self-compatible Tartary buck-
wheat varieties. 

Under Slovenian and similar climatic conditions, it is possible to grow two genera-
tions of buckwheat in 1 year. Under these Slovenian conditions, the first generation of the 
year is sown at the beginning of May and harvested in mid-July. The second generation 
is thus sown about a week after the harvest of the first generation and is harvested in early 
October. The second-generation (Figure 2, II) can theoretically be uniform if the parent 
plants are homozygous. However, in common buckwheat populations or varieties the 
plants are never homozygous, because the populations or varieties are obligatory cross-
pollinated. Therefore a certain selection is already feasible and reasonable in the second 
generation (Figure 2, II). Isolation is possible by means of greenhouse compartments or 
tents, which prevents insects from visiting from outside, while bumblebees in each com-
partment can pollinate the plants. Another method of isolation is to use a tetraploid buck-
wheat area between the diploid breeding material lots. It has been shown [116] that 12 m 
to 20 m of such isolation is sufficient to prevent undesirable plant crossings [116–118]. The 
pollination of diploid plants with pollen grains from tetraploid plants or vice versa, results 
in aborted or sterile seeds. 

Figure 1. Cross-section of a common buckwheat grain.

At the same time, there is greater protein polymorphism within varieties of com-
mon buckwheat than between varieties [114]. This high polymorphism can be exploited
in breeding, although like globulin, most of the proteins show single Mendelian gene
inheritance, with a codominant expression of multiple alleles, which complicates plant
breeding [115]. Cross-fertilization of common buckwheat has an impact on the breed-
ing approach. The suggested procedure for common buckwheat breeding, according to
Kreft [116], is presented in Figure 2. Common buckwheat is a cross-pollinating plant. In
the field breeding experiments, diploid common buckwheat must be in physical isolation
(in tents or glasshouses), so uncontrolled pollination is prevented in common buckwheat
breeding (Figure 2). Such isolation is not needed in the breeding of self-compatible Tartary
buckwheat varieties.

Under Slovenian and similar climatic conditions, it is possible to grow two generations
of buckwheat in 1 year. Under these Slovenian conditions, the first generation of the year is
sown at the beginning of May and harvested in mid-July. The second generation is thus
sown about a week after the harvest of the first generation and is harvested in early October.
The second-generation (Figure 2, II) can theoretically be uniform if the parent plants are
homozygous. However, in common buckwheat populations or varieties the plants are
never homozygous, because the populations or varieties are obligatory cross-pollinated.
Therefore a certain selection is already feasible and reasonable in the second generation
(Figure 2, II). Isolation is possible by means of greenhouse compartments or tents, which
prevents insects from visiting from outside, while bumblebees in each compartment can
pollinate the plants. Another method of isolation is to use a tetraploid buckwheat area
between the diploid breeding material lots. It has been shown [116] that 12 m to 20 m of
such isolation is sufficient to prevent undesirable plant crossings [116–118]. The pollination
of diploid plants with pollen grains from tetraploid plants or vice versa, results in aborted
or sterile seeds.
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Figure 2. Stages of buckwheat breeding over time. The Roman numerals (I–VII) indicate the
years (generations) of the breeding. The starting material in the first year is two-parent varieties
or populations, indicated as A and B. Both parents are sown in parallel rows. For one parent, after
opening the first flower on each plant, the plants with thrum flowers are removed. In the other
parent, the plants with pin flowers are removed. So in generation (I), only fertilization between A
and B flowers is possible, and not fertilization among the plants within each parent. Each square
symbolizes a plant, and the plants marked with “x” are removed from breeding, while the plants
marked with “o” are selected for further propagation and breeding. Groups of plants with empty
squares are those that are used for testing according to the phenotype in the field trial, but not for
further propagation or breeding. The best-selected plant material is isolated and taken forward for
further propagation or breeding or for submission to official variety testing. In generation (VI), the
plants are sown in isolation, for evaluation of yield and for propagation. The plant groups C, D, and
E are taken on to the first field tests on larger isolated plots.

The number of proteins per seed can be estimated by screening the embryo size in
cross-sections of grain [112,113]. However, the more accurate methods are by chemical
analyses. The problem is that for chemical analysis, some of the seeds are milled, and hence,
they are lost from further seed propagation of the respective sample. It is thus necessary to
use as small a sample for protein analyses as possible or to cut off the upper third of the
seed only, which covers part of the cotyledons and aleurone. The remaining part of the
seed can then be sown for the next generation.

Breeding programs include the development of adapted high-yield varieties that
have other good agronomic characteristics, such as high levels of rutin, the very high
biological value of the proteins, or reduced levels of antinutritional factors and zero
allergenic protein [19,119,120]. In the future, it would make sense for buckwheat breeding
programs to include genotypes with larger endosperm and smaller embryo as an option to
reduce allergenic proteins to produce specific low allergenicity buckwheat varieties.
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A recently published draft sequence of genes of the common buckwheat [121,122]
has allowed the use of genomic selection for quantitative traits based on DNA mark-
ers, as well as other methods related to the quality of proteins [123]. Furthermore, the
availability of such information facilitates the identification of markers for the identifica-
tion of qualitatively useful genes [121,124]. A major advantage of genomic selection is
that, in contrast to the conventional marker-assisted selection, it is suitable for improving
quantitative properties managed by multiple quantitative trait loci. Genomic selection
and use of DNA markers in breeding buckwheat protein quality are feasible only at the
initial stages [125–127]. Rapid advances in genomic technology will certainly improve
genomics-based breeding for buckwheat quality in the near future [128].

7. Conclusions

Buckwheat is a low-input plant that is suitable for cultivation in mountainous regions.
Recently, special attention has been paid to optimizing the nutritional quality parameters
of Tartary buckwheat and common buckwheat, including its high protein content and
optimal amino acid composition. The distribution of sulfur in the grain can be used as a
marker of protein distribution among the different grains and within the different parts of
the grain. The use of micro-PIXE has improved the detection of sulfur and its distribution
in the grain, which can be used to estimate the relative content of proteins with sulfur
amino acids in the cotyledons and aleurone.

It is possible to increase the selenium concentration in buckwheat grain by fertil-
izing plants with selenium compounds, making them a good source of selenoamino
acids. In selenium-enriched buckwheat grain, 39% of selenium is present as water-soluble
selenium—e.g., in peptides, proteins, and other selenium compounds. In addition, 93%
of this water-soluble selenium is selenomethionine, which is one of the most bioavailable
forms of selenium for human nutrition.

Rutin, quercetin, and other polyphenols, that are naturally present in buckwheat,
reduce the digestibility of the proteins. Phenolic substances have significant inhibitory
effects on the in vitro digestion of globulin in the intestine, so secondary metabolites of
buckwheat can have an influence on the digestibility of proteins. Significant interactions
between polyphenols and proteins are observed after hydrothermal treatment. In buck-
wheat, protein digestibility is slower compared to other cereals, possibly due to the binding
of the polyphenols to the proteins. The interactions between proteins and phenolic sub-
stances slow down proteins’ digestion in the small and large intestine. However, microbial
fermentation in the large intestine can improve the digestibility of proteins blocked by
polyphenols in hydrothermally treated buckwheat. Digestion-resistant peptides are impor-
tant for the fecal excretion of steroids. The excretion of bile acids reduces the cholesterol
concentration in serum. Buckwheat proteins are more effective at preventing the formation
of gallstones than soya proteins. There are opportunities to improve protein content and
quality through buckwheat breeding and to develop novel buckwheat products based on
buckwheat proteins and peptides’ functional and technological value.
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26. Fotschki, B.; Juśkiewicz, J.; Jurgoński, A.; Amarowicz, R.; Opyd, P.; Bez, J.; Muranyi, I.; Petersen, I.L.; Laparra, J.M. Protein-Rich
Flours from Quinoa and Buckwheat Favourably Affect the Growth Parameters, Intestinal Microbial Activity and Plasma Lipid
Profile of Rats. Nutrients 2020, 12, 2781. [CrossRef]

27. Wang, C.; Yuan, S.; Zhang, W.; Ng, T.B.; Ye, X. Buckwheat Antifungal Protein with Biocontrol Potential To Inhibit Fungal
(Botrytis cinerea) Infection of Cherry Tomato. J. Agric. Food Chem. 2019, 67, 6748–6756. [CrossRef] [PubMed]

http://dx.doi.org/10.1016/S0963-9969(01)00185-5
http://dx.doi.org/10.1017/S0954422415000190
http://www.ncbi.nlm.nih.gov/pubmed/27046048
http://dx.doi.org/10.1016/C2016-0-00602-2
http://dx.doi.org/10.1080/87559129.2020.1734610
http://dx.doi.org/10.1016/j.jcs.2020.103118
http://dx.doi.org/10.1021/jf970756q
http://dx.doi.org/10.1094/CCHEM.2004.81.2.172
http://dx.doi.org/10.1016/S0308-8146(02)00228-5
http://dx.doi.org/10.3986/fbg0047
http://dx.doi.org/10.1016/0029-554X(77)90829-1
http://dx.doi.org/10.1016/j.nimb.2009.06.104
http://dx.doi.org/10.1098/rsif.2009.0157.focus
http://dx.doi.org/10.1021/jf103150d
http://www.ncbi.nlm.nih.gov/pubmed/21226516
http://dx.doi.org/10.3986/fag0012
http://dx.doi.org/10.1021/jf950655x
http://dx.doi.org/10.1016/j.biotechadv.2019.107479
http://www.ncbi.nlm.nih.gov/pubmed/31707074
http://dx.doi.org/10.2174/1389202917666160202215425
http://dx.doi.org/10.1016/j.jcs.2018.07.020
http://dx.doi.org/10.3390/nu12092781
http://dx.doi.org/10.1021/acs.jafc.9b01144
http://www.ncbi.nlm.nih.gov/pubmed/31136167


Plants 2021, 10, 14 9 of 12

28. Chen, X.; Chen, Y.; Li, J.; Wang, Y.; Yang, X. Enzyme-assisted development of biofunctional polyphenol-enriched buckwheat
protein: Physicochemical properties, in vitro digestibility, and antioxidant activity. J. Sci. Food Agric. 2019, 99, 3176–3185.
[CrossRef] [PubMed]

29. Zhang, C.; Zhang, R.; Li, Y.M.; Liang, N.; Zhao, Y.; Zhu, H.; He, Z.; Liu, J.; Hao, W.; Jiao, R.; et al. Cholesterol-Lowering Activity
of Tartary Buckwheat Protein. J. Agric. Food Chem. 2017, 65, 1900–1906. [CrossRef]

30. Kayashita, J.; Shimaoka, I.; Yamazaki, M.; Kato, N. Buckwheat protein extract ameliorates atropine-induced constipation in rats.
Curr. Adv. Buckwheat Res. 1995, 5, 941–946.

31. Kayashita, J.; Shimaoka, I.; Nakajoh, M.; Kato, N. Feeding of buckwheat protein extract reduces hepatic triglyceride concentration,
adipose tissue weight, and hepatic lipogenesis in rats. J. Nutr. Biochem. 1996, 7, 555–559. [CrossRef]

32. Kayashita, J.; Shimaoka, I.; Nakajoh, M.; Kishida, N.; Kato, N. Consumption of a Buckwheat Protein Extract Retards 7,12-
Dimethylbenz[α] anthracene-Induced Mammary Carcinogenesis in Rats. Biosci. Biotechnol. Biochem. 1999, 63, 1837–1839. [CrossRef]

33. Kayashita, J.; Shimaoka, I.; Nakajoh, M.; Kondoh, M.; Hayashi, K.; Kato, N. Muscle Hypertrophy in Rats Fed on a Buckwheat
Protein Extract. Biosci. Biotechnol. Biochem. 1999, 63, 1242–1245. [CrossRef]

34. Stibilj, V.; Kreft, I.; Smrkolj, P.; Osvald, J. Enhanced selenium content in buckwheat (Fagopyrum esculentum Moench) and pumpkin
(Cucurbita pepo L.) seeds by foliar fertilisation. Eur. Food Res. Technol. 2004, 219, 142–144. [CrossRef]

35. Breznik, B.; Germ, M.; Gaberscik, A.; Kreft, I. Combined effects of elevated UV-B radiation and the addition of selenium on
common (Fagopyrum esculentum Moench) and tartary [Fagopyrum tataricum (L.) Gaertn.] buckwheat. Photosyntetica 2005, 43,
583–589. [CrossRef]

36. Tadina, N.; Germ, M.; Kreft, I.; Breznik, B.; Gaberscik, A. Effects of water deficit and selenium on common buckwheat (Fagopyrum
esculentum Moench.) plants. Photosyntetica 2007, 45, 472–476. [CrossRef]

37. Smrkolj, P.; Germ, M.; Kreft, I.; Stibilj, V. Respiratory potential and Se compounds in pea (Pisum sativum L.) plants grown from
Se-enriched seeds. J. Exp. Bot. 2006, 57, 3595–3600. [CrossRef] [PubMed]
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116. Kreft, I. Ajda; Kmečki Glas: Ljubljana, Slovenia, 1995; 112p.
117. Adhikari, K.N.; Campbell, C. Natural outcrossing in common buckwheat. Euphytica 1998, 102, 233–237. [CrossRef]
118. Luthar, Z. Genska banka ajde: Buckwheat genebank—A source of Slovenian genetic variability. Acta Agric. Slov. 2012, 99,

307–316. [CrossRef]
119. Fang, X.; Zhang, Y.; Zhang, Y.; Huang, K.; Yang, W.; Li, X.; Zhang, Z.; Wu, K.; Xu, X.; Ruan, R.; et al. De novo transcriptome

assembly and identification of genes related to seed size in common buckwheat (Fagopyrum esculentum M.). Breed. Sci. 2019, 69,
487–497. [CrossRef]

120. Chen, P.; Guo, Y.F.; Yan, Q.; Li, Y.H. Molecular cloning and characterization of Fag t 2: A 16-kDa major allergen from Tartary
buckwheat seeds. Allergy 2011, 66, 1393–1395. [CrossRef]

121. Yasui, Y.; Hirakawa, H.; Ueno, M.; Matsui, K.; Katsube-Tanaka, T.; Yang, S.J.; Aii, J.; Sato, S.; Mori, M. Assembly of the draft genome
of buckwheat and its applications in identifying agronomically useful genes. DNA Res. 2016, 23, 215–224. [CrossRef] [PubMed]

122. Yabe, S.; Hara, T.; Ueno, M.; Enoki, H.; Kimura, T.; Nishimura, S.; Yasui, Y.; Ohsawa, R.; Iwata, H. Potential of Genomic Selection
in Mass Selection Breeding of an Allogamous Crop: An Empirical Study to Increase Yield of Common Buckwheat. Front. Plant
Sci. 2018, 9, 1–12. [CrossRef] [PubMed]

123. Ohsawa, R. Current status and prospects of common buckwheat breeding in Japan. Breed. Sci. 2020, 70, 3–12. [CrossRef] [PubMed]
124. Matsui, K.; Tomatsu, T.; Kinouchi, S.; Suzuki, T.; Sato, T. Identification of a gene encoding glutathione S-transferase that is related

to anthocyanin accumulation in buckwheat (Fagopyrum esculentum). J. Plant Physiol. 2018, 231, 291–296. [CrossRef]
125. Wang, J.; Xiao, J.; Liu, X.; Geng, F.; Huang, Q.; Zhao, J.; Xiang, D.; Zhao, G. Analysis of tartary buckwheat (Fagopyrum tataricum)

seed proteome using offline two-dimensional liquid chromatography and tandem mass spectrometry. J. Food Biochem. 2019, 43,
e12863. [CrossRef]

126. Yasui, Y. History of the progressive development of genetic marker systems for common buckwheat. Breed. Sci. 2020, 70,
13–18. [CrossRef]

127. Suzuki, T.; Noda, T.; Morishita, T.; Ishiguro, K.; Otsuka, S.; Brunori, A. Present status and future perspectives of breeding for
buckwheat quality. Breed. Sci. 2020, 70, 48–66. [CrossRef]

128. Zhang, K.; He, M.; Fan, Y.; Zhao, H.; Gao, B.; Yang, K.; Li, F.; Tang, Y.; Gao, Q.; Lin, T.; et al. Resequencing of global
Tartary buckwheat accessions reveals multiple domestication events and key loci associated with agronomic traits. Genome Biol.
2020. [CrossRef]

http://dx.doi.org/10.1080/10942912.2020.1713151
http://dx.doi.org/10.1016/j.ijbiomac.2019.01.043
http://dx.doi.org/10.1016/j.lwt.2012.12.003
http://dx.doi.org/10.1111/pbi.12245
http://dx.doi.org/10.1111/j.1439-0523.2007.01466.x
http://dx.doi.org/10.1023/A:1018365210463
http://dx.doi.org/10.2478/v10014-012-0019-y
http://dx.doi.org/10.1270/jsbbs.18194
http://dx.doi.org/10.1111/j.1398-9995.2011.02657.x
http://dx.doi.org/10.1093/dnares/dsw012
http://www.ncbi.nlm.nih.gov/pubmed/27037832
http://dx.doi.org/10.3389/fpls.2018.00276
http://www.ncbi.nlm.nih.gov/pubmed/29619035
http://dx.doi.org/10.1270/jsbbs.19108
http://www.ncbi.nlm.nih.gov/pubmed/32351299
http://dx.doi.org/10.1016/j.jplph.2018.10.004
http://dx.doi.org/10.1111/jfbc.12863
http://dx.doi.org/10.1270/jsbbs.19075
http://dx.doi.org/10.1270/jsbbs.19018
http://dx.doi.org/10.1186/s13059-020-02217-7

	Introduction 
	Protein Levels in Buckwheat Grain and Milling Fractions 
	Quality of Buckwheat Protein Compared to Soybean and Cereals 
	Buckwheat Protein Digestibility 
	Bioactivity of Buckwheat Peptides 
	Buckwheat Breeding for High Protein Levels: Prospects for the Future 
	Conclusions 
	References

