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Abstract: One of the main reasons for fatal accidents on the road is distracted driving. The continuous
attention of an individual driver is a necessity for the task of driving. While driving, certain levels of
distraction can cause drivers to lose their attention, which might lead to an accident. Thus, the number
of accidents can be reduced by early detection of distraction. Many studies have been conducted to
automatically detect driver distraction. Although camera-based techniques have been successfully
employed to characterize driver distraction, the risk of privacy violation is high. On the other
hand, physiological signals have shown to be a privacy preserving and reliable indicator of driver
state, while the acquisition technology might be intrusive to drivers in practical implementation.
In this study, we investigate a continuous measure of phasic Galvanic Skin Responses (GSR) using
a wristband wearable to identify distraction of drivers during a driving experiment on-the-road.
We first decompose the raw GSR signal into its phasic and tonic components using Continuous
Decomposition Analysis (CDA), and then the continuous phasic component containing relevant
characteristics of the skin conductance signals is investigated for further analysis. We generated a
high resolution spectro-temporal transformation of the GSR signals for non-distracted and distracted
(calling and texting) scenarios to visualize the associated behavior of the decomposed phasic GSR
signal in correlation with distracted scenarios. According to the spectrogram observations, we extract
relevant spectral and temporal features to capture the patterns associated with the distracted scenarios
at the physiological level. We then performed feature selection using support vector machine recursive
feature elimination (SVM-RFE) in order to: (1) generate a rank of the distinguishing features among
the subject population, and (2) create a reduced feature subset toward more efficient distraction
identification on the edge at the generalization phase. We employed support vector machine (SVM) to
generate the 10-fold cross validation (10-CV) identification performance measures. Our experimental
results demonstrated cross-validation accuracy of 94.81% using all the features and the accuracy of
93.01% using reduced feature space. The SVM-RFE selected set of features generated a marginal
decrease in accuracy while reducing the redundancy in the input feature space toward shorter
response time necessary for early notification of distracted state of the driver.

Keywords: driver distraction; galvanic skin response; skin conductance; continuous decomposition
analysis; spectro-temporal characterization; SVM-RFE feature selection

1. Introduction

The fatalities on the road have increased in 2016 by 5.6% percent from calendar year 2015 (37,461
lives were lost on U.S. roads in 2016) according to National Highway Traffic Safety Administration

Sensors 2018, 18, 503; doi:10.3390/s18020503 www.mdpi.com/journal/sensors

http://www.mdpi.com/journal/sensors
http://www.mdpi.com
https://orcid.org/0000-0003-0612-7208
https://orcid.org/0000-0001-5534-5776
http://dx.doi.org/10.3390/s18020503
http://www.mdpi.com/journal/sensors


Sensors 2018, 18, 503 2 of 16

(NHTSA). The major contributing factor in the fatal accidents on the roadway is distracted driving.
Continuous focus of the driver is a necessity for driving. Various research studies have shown that the
driver’s attention decreases during multitasking, such as slower reaction time, decreased situational
awareness, impairing judgments and narrowed visual scanning [1]. Distraction occurs when drivers
divert their attention from the task of driving to a secondary activity instead such as having a phone
conversation, texting, using the infotainment system [2], etc. The most common distracting secondary
tasks during driving is when the driver uses his/her personal cell phone for either calling or texting.
It is crucial to detect and notify driver distraction at its early stages in order to minimize the risk
of road accidents. Many research investigations have been conducted to develop reliable feedback
systems to alert distraction scenarios to the drivers. Many of the previous works employed techniques
based on eye lid closure and movement tracking [3], lane tracking [4], and video cameras as an image
processing technique by periodically taking video images of the driver [5] to identify inattention
state of the drivers. Even though successful performances were achieved through above methods,
they suffer from issues such as privacy violation risks and delayed detection and responses when
the effect of distraction is visually noticeable. Those limitations can be overcome via continuous
monitoring of physiological signals such as Electroencephalogram (EEG) rather than cameras. EEG
based systems that generate state-of-the-art results are comprehensive and reliable [6] . However,
the complexity of setup for collecting and analyzing the data is one of the major limitations of EEG,
which makes the system expensive and intrusive to implement [7,8]. Galvanic Skin Response (GSR),
on the other hand, is a minimally intrusive modality that can be sensed on the wrist and fingers and
can be recorded easily [9,10]. GSR also known as skin conductance (SC) is one of the most sensitive
markers for emotional arousal [11]. Unconscious response of our body to different stimuli through skin
conductance is measured using GSR. Changes in skin conductance in the hands and foot region triggers
emotional stimulation [11,12]. Higher skin conductance is demonstrated for intense level of arousal.
Sympathetic activity, driving human behavior, cognitive, and emotional state on a subconscious level
is controlled autonomously by the skin conductance.

Several investigations on synchronously recorded GSR signals have been conducted to inspect
the impacts of cognitive state change. In study [12], the authors used GSR as an index of cognitive load
to evaluate users’ stress due to workload while performing reading and arithmetic task. Temporal
and spectral features were explored and concluded that spectral features showed to be promising
in measuring the cognitive workload compared to the temporal features. In the previous work [13],
a novel method for analyzing skin conductance (SC) using Short Time Fourier Transform (STFT) was
employed to extract estimation of mental work load with high enough temporal bandwidth to be
useful for augmented cognition application. Graphical data analysis of the STFT showed notable
increase in the power spectrum across a range of frequencies directly following fault events. GSR was
used in [14] for emotion recognition by extracting time domain and wavelet based features. Features
were extracted using various window lengths. Random forest machine learning algorithm was
used to characterize valence and arousal satisfactorily. In previous work [15], a system for human
emotion recognition that automatically selects GSR features was proposed. Thirty features were
extracted and a covariance based feature selection was implemented to extract an optimized feature
set to better characterize the human emotions. Support vector machine (SVM) has been used for
human emotion recognition with an accuracy of more than 66.67%. The above-mentioned previous
works provided enough support to consider GSR as a reliable measure to identify and characterize
mental workload. However, very few investigations were performed to detect cognitive workload
or distraction while naturalistic driving using GSR. The authors in Ref. [16] used physiological
signals like electrocardiogram, galvanic skin response and respiration to develop a novel system
for stress detection during naturalistic driving. Features were extracted mainly from time, spectral
and wavelet multi-domains. Features were generated for 10-s intervals of data. Detection of stress
was accomplished using kernel-based classifiers. This study provided satisfactory results to employ
physiological signal measures to in-vehicle intelligent systems to assist drivers on the road for early
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detection of stress. In that study, raw GSR signal in combination with other physiological measures
was used to detect stress and solely time domain features of raw GSR were explored. In our previous
work [10], we considered raw GSR signals for a preliminary analysis of driver distraction during a
naturalistic driving experiment. We solely focused on two scenarios: (i) normal driving (non-distracted
state) and (ii) driving while having an engaging phone conversation (distracted state). We then
extracted some standard statistical measures and used binary SVM for distraction detection. Our aim
was to analyze the discriminative power in the raw GSR space between normal and distracted driver
state. We evaluated the detection model on six subjects and achieved the average detection accuracy
of 91%.

Our aim in this paper is to design a system to identify the impact of secondary tasks of calling
and texting on drivers using a continuous measure of phasic GSR signal during a naturalistic
driving experiment. In our experiments, we use a wrist band wearable GSR on a population of
10 driver subjects that participated in this study during real driving experiments. Three scenarios were
investigated in our experiments: (1) normal driving focusing attention on the primary task of driving;
(2) phone distracted driving while having an engaging phone conversation; and (3) text distracted
driving while writing and sending texts when driving. We hypothesize calling to be a cognitive
distraction element in comparison to texting, which represent cognitive and visual distraction at the
same time. We aim to evaluate GSR towards identification of distraction on the edge using short-term
segments of GSR. The collected GSR data was decomposed into phasic and tonic components using
continuous decomposition analysis (CDA) [17]. We then conducted a high resolution spectro-temporal
analysis of the decomposed signals and continuous phasic components of GSR containing the most
discriminative information was considered for subsequent analysis. We then extracted several spectral
and temporal measures that characterize the phasic GSR signal in correlation with distracted scenarios.
We employed linear and kernel-based Support Vector Machine (SVM) and 10 fold cross validation
(10-CV) to generate identification results. Upon evaluating the result, phasic GSR showed promise as a
reliable indicator of driver distraction by achieving an overall average accuracy of 94.81% to identify
distraction elements under a naturalistic driving condition. Since input feature space is constructed
in a manual process, the redundancy and computational complexity of the space might decrease
the accuracy and response time of distraction identification in the generalization phase. Therefore,
we employed support vector machine – recursive feature elimination (SVM-RFE) [18] to remove
the redundancies for more efficient processing on the edge. We employed SVM-RFE in order for
the following: (1) generate a rank of the discriminative features for the subject population, and (2)
create a reduced feature subset with the highest distraction identification accuracy. Our experimental
results using SVM-RFE demonstrated marginal decrease in accuracy while reducing the computational
complexity and the redundancy in the input space towards early notification of distraction state to
the driver.

2. Materials and Methods

Figure 1 depicts a flowchart of the proposed driver monitoring and intervention system on
the edge. After preprocessing, the recorded raw GSR signal was decomposed into phasic and
tonic component using continuous decomposition analysis (CDA) and based on spectro-temporal
analysis and characterization of the phasic GSR, we designed and developed segmentation and feature
extraction modules. The extracted features were then used for identification tasks. Furthermore,
feature selection was implemented using SVM-RFE to reduce the dimension of the feature space to
alleviate the curse of dimensionality and improve the response time. In this section, we discuss the
implementation of each step in detail.
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Figure 1. Flowchart of the proposed driver monitoring and intervention system on the edge. Galvanic
Skin Responses (GSR); Continuous Decomposition Analysis (CDA); 10-fold Cross Validation (10-CV);
Support Vector Machine Recursive Feature Elimination (SVM-RFE).

2.1. Data Acquisition and Preprocessing

We have developed a custom designed wearable data acquisition platform comprising a
synchronized multi-modal solution to acquire the physiological signals using a comprehensive
wearable sensor network, which is used to collect data [19]. Our platform is capable of collecting
large amount of heterogeneous drivers’ physiological including Galvanic Skin Response (GSR) during
naturalistic driving.

Experiments conducted in this study were approved by the Institutional Review Board (IRB) of
the University of Michigan with the Submission ID: HUM00102869. The driver participants were
given a consent form to sign before the experiments, in which the nature of the data collection were
described. The experiments were conducted under constant supervision of two research investigators
for a reliable data acquisition process.

The total of 10 subjects between the age group of 20–40 years that participated in our experiment
were legally permitted to drive. Healthy male subjects were considered for our experiment to
rule out the inconsistency. These subjects were told to stay away from any alcoholic beverages
or pharmaceuticals that would trade off their sharpness amid the investigation. Figure 2a depicts
a driver subject while conducting our naturalistic driving experiment. Three scenarios of driving
was considered in our experiments, each of which were performed by the subjects for ≈2 min and
their corresponding GSR signals were collected. The three driving scenarios were (i) driving under
normal condition, (ii) driving while engaging in a phone conversation and (iii) driving while using
the phone for texting. Normal driving (non-distracted) is represented by Scenario (i) while distracted
driving is represented by scenarios (ii) and (iii). Figure 3 illustrates data collection order during our
driving experiment. We employed a 10th order Butterworth low-pass filter <20 Hz on the recorded
raw GSR to cope with and remove artifacts such as high frequency-noise, motion artifacts and also
electromyography (EMG) artifacts that might interfere due to the movement of hand and finger during
phone and texting experiment sessions.
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(a) a driver subject during our naturalistic
driving experiment.

(b) wireless galvanic skin
response (GSR) wearable
device on the right-hand
wrist.

Figure 2. Experimental setup.

Normal 

Driving

Distracted driving 

with phone

Normal 

Driving

Distracted driving 

while texting

Cognitive Distraction
Cognitive with Visual 

Distraction

Figure 3. Illustrates data collection order during our naturalistic driving experiment.

2.2. Continuous Decomposition Analysis (CDA)

Skin conductance data is described by the superposition of subsequent skin conductance responses
(SCRs). Due to this characteristic of the SCRs, the process of calculating the actual responses to a
sympathetic activity in response to an external stimulus becomes tedious. This limitation is overcome
by the deconvolution technique that separates the skin conductance (SC) data into phasic and tonic
continuous activities. The tonic activity might include noise and shows subject dependencies. The tonic
activity can be observed as a trend in the original SC signal in the top subplot of Figure 4. On the other
hand, the phasic activity of the SC signal is considered for further investigation as this component of
SC signal contains the actual response to any event-related sympathetic activity predominantly in the
form of distinct burst of peaks with a zero baseline. The phasic component of SC also demonstrated
trends in spectro-temporal space in correlation with the distracted scenarios.

Extracting the phasic component is done in three steps: deconvolution of galvanic skin response
(GSR) data, computation of tonic activity and computation of phasic activity. A particular change
in skin conductivity is triggered by secretion of sweat due to activity of the sudomotor nerve.
In mathematical terms, the sudomotor nerve activity can be treated as a driver, containing distinct
sequence impulse/bursts, which triggers a particular impulse response (i.e., SCRs). The outcome of
this procedure can be described by convolution of the driver with impulse response function (IRF).
IRF characterizes the shape of impulse response over time [17]:

SCphasic = Driverphasic ∗ IRF. (1)
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Figure 4. Continuous decomposition analysis (CDA) for normal scenario. (top): original skin
conductance (SC) signal; (middle): decomposed Tonic and Phasic driver and (bottom): Phasic driver.

The phasic activity is believed to bestride a gradually changing tonic activity. Hence, SC activity
can be considered to be composed as follows:

SC = SCtonic + SCphasic = SCtonic + Driverphasic ∗ IRF. (2)

Tonic activity can also be considered as convolution of a driver function with same IRF. SC data
can then be written as:

SC = (Driverphasic + Drivertonic) ∗ IRF. (3)

Deconvolution is the reverse process of convolution. Skin conductance data’s deconvolution
incorporates a phasic and tonic fraction. By estimating one of them, the other can be determined easily:

SC
IRF

= DriverSC = (Driverphasic + Drivertonic). (4)

Tonic electro-dermal activity can be observed in the absence of any phasic activity. However,
SCRs (representing phasic SC activity) have a slowly recovering trail that may obscure any tonic SC
activity. For the driver, the time constant of phasic responses is markedly reduced and so is their
overlap. Time intervals between distinct phasic impulses can then be used to estimate tonic activity.
Convolution can be conceived as a smoothing operation. Deconvolution has the reverse effect and
amplifies error noise. Therefore, the resulting driver is smoothed by convolution with a Gaussian
window. According to Equation (4), the phasic driver can now be computed by subtracting the tonic
driver from the total driver signal. This subtraction results in a signal, which shows a virtually zero
baseline and positive deflections reflecting the time-constrained nature of the phasic activity underlying
the original SC data. The above methodology was driven from previous work [17]. Figures 4 and 5
represents the deconvolution/decomposition of skin conductance signal for two scenarios, normal
and distracted. The top most subplot in both the figures represents the original SC signal, the middle
subplot represents deconvolution of tonic driver and the bottom subplot represents the phasic driver
of the SC signal that contains the most discriminating component to characterize distraction. It can
be observed from Figure 4 that, for a normal scenario, the phasic driver does not show impulse burst
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(bursts of consecutive peaks) as the subject is not under heavy workload. However, when we observe
Figure 5 for the distracted scenario, more impulse bursts are observed as the subject is in a distracted
state undergoing cognitive and visual distraction.
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Figure 5. Continuous decomposition analysis (CDA) for distracted scenario, (top): original skin
conductance (SC) signal; (middle): decomposed Tonic and Phasic driver and (bottom): Phasic driver.

2.3. Spectral Analysis of Phasic Skin Conductance

Phasic SC as a non-stationary and multi-component signal varies in time and components over
the time, and it needs to be analyzed in both temporal and spectral space to have a comprehensive
evaluation on its characteristics. In order to investigate the spectro-temporal characteristics of the
phasic SC signals related to different states of the driver, we conducted a Time-Frequency (TF) analysis
and designed a high resolution TF representation. TF analysis could be considered as non-stationary
signals analysis with frequency content varying with time. TF is a suitable representation for
non-stationary and multi-component signals, which is able to describe the energy distribution of
the given signal over time and frequency space simultaneously. The TF presents the beginning and
end times of the different components of the signal as well as their frequency scope. To achieve
the TF representation of the phasic SC signal, we use the Wigner–Ville Distribution (WVD) [20]
approach attempting to attenuate the unwanted cross-terms in the TF space relative to the signal
components. Figure 6 depicts TF representation of three scenarios, including phone, text, and normal
states. Figure 6a–c represent normal, phone, and text scenarios, respectively, where the top panel
in all of the sub-figures represents a raw phasic SC signal. The left panel depicts energy spectral
density of a subject. The spectrograph represent time on the x-axis and normalized frequency on the
y-axis, and the color is used to indicate the power of the TF sample. Based on the Nyquist frequency
equation, with the sampling frequency of 50, the frequency range is 0–25 Hz, which was normalized to
0–1 Hz. The spectrograms were generated with normalized frequency observing the spectrograms
in Figure 6, and we could identify considerably higher frequency components and peaks during
distracted scenarios versus normal scenarios.
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(a) TF of phasic GSR for normal scenario (non-distracted).
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(b) TF of phasic GSR for phone scenario (distracted).

-200

0

200

400

R
ea

l p
ar

t

Signal in time

E
ne

rg
y 

sp
ec

tr
al

 d
en

si
ty

-30-20-100

Log. scale [dB] SPWV, Lg=313, Lh=782, Nf=6260, log. scale, imagesc, Threshold=0.1%

20 40 60 80 100 120

Time [s]

0

0.25

0.5

0.75

1

N
or

m
al

iz
ed

 F
re

qu
en

cy

(c) TF of phasic GSR for text scenario (distracted).

Figure 6. High-resolution time-frequency (TF) representation of the phasic component of GSR signal
(for each sub-plot): (top): Phasic GSR Signal; (left): Energy Spectral Density and (Spectrograph):
Time on the x-axis and frequency on the y-axis, and the color is used to indicate the power of the
time-frequency sample.

Based on our observations in the TF space, we designed a signal processing recipe for
driver distraction identification on the edge for proactive monitoring and intervention. In the
following sections, we will describe implementation of segmentation, feature extraction from
spectral and temporal domain, feature selection using SVM-RFE and identification using linear and
kernel-based SVM.

2.4. Segmentation and Window Analysis

To meet the requirement of short-response time for the proposed driver monitoring and
intervention system on the edge, we implemented and employed a segmentation method to extract 5 s
windows with 4 s overlap.

2.5. Feature Extraction

Several spectral and temporal features were extracted based on the analysis of the generated
spectrograms from every window. The results of the calculated features were labeled accordingly and
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our feature space was generated using these sample data points. Extracted features shown in Table 1
are explained below:

Table 1. List of all the extracted spectral and spacial/temporal features.

Feature Domain Feature Names

Spacial/temporal Mean, Variance, Accumulated galvanic skin response (GSR), Average GSR, Maximum Value,
Number of peaks and Sum of Amplitude of peaks,

Fractal Dimensions, Auto Regressive
Spectral Short Term Fourier Transforms (4 features)

* Mean (1): Sum of all the data points over total number of data points present in each window.
* Variance (2): Average of squared distance from mean.
* Accumulated GSR (3): Summation of GSR values in a window over total task time [11,12].
* Maximum GSR value (4): Maximum phasic GSR value in a window.
* Power (5): The sum of the absolute squares of a signals time-domain samples divided by the

signal length, or, equivalently, the square of its root mean square (RMS) level.
* Number of peaks based on second derivative (6): The phasic GSR, P(i) signal’s first and second

derivatives, Q0(i) and Q1(i) are calculated as in [21], as follows:

Q0(i) = |P(i + 1)− P(i− 1)|, (5)

Q1(i) = |P(i + 2)− 2P(i) + P(i− 2)|. (6)

These two arrays are scaled and then summed:

Q2(i) = 1.3 ∗Q0(i) + 1.1 ∗Q1(i). (7)

This array is scanned until a threshold is met or exceeded:

Q2(j) ≥ 1.0. (8)

* Summation of amplitude of peaks (7): The amplitude of number of peaks detected in a window
previously is calculated and the amplitude is summed.

* Short Time Fourier Transform (STFT) (8–11): A technique quite often used to analyze
physiological signal is STFT. Analysis of signals both in frequency and time domain can be
performed using STFT. Fourier Transform is applied independently to each segment after dividing
the original signal into equal segments. In [13], STFT analysis on SC data showed effective results
in detecting work load. Based on our observation via spectro-temporal analysis of the phasic skin
response, we found that most of the activity changes occur in the range of 0 to 50 Hz; therefore, we
extracted four STFT coefficients each representing a sub-band with 12.5 Hz bandwidth between 0
and 50 Hz.

* Fractal Dimensions (FD) (12–13): A physiological signals chaotic or fractal nature is estimated
using fractal dimension [22]. It is an impressive mathematical tool to model various complex
physiological signals and an index to quantify the complexity of a fractal pattern. To characterize
the time-series data, the fractal dimension technique is used generally. Fractal dimension was
extracted using Higuchi and Katz methods.

* Auto-Regressive (AR) (14–18): The present output by an AR model of order p is calculated based
on linear combination of past p output values along with some noise terms. By computing the
weights on the previous p outputs of an auto-regression model, the mean squared error prediction
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can be minimized. The model with current output value y(n) and zero mean white space noise
input x(n) is:

y(n) =
p

∑
k=1

a(k)y(n− k) = x(n). (9)

In this study, the parameters of order p were selected as the features for each window. The order
of p was set to 5, which generated five AR features.

2.6. Feature Selection Using Support Vector Machine—Recursive Feature Elimination (SVM-RFE)

SVM-RFE feature selection methodology based on support vector machine (SVM) was introduced
by [23] and the authors used this methodology to select an important subset of features. It reduces
the computational time for classification along with improvement of classification accuracy. The basis
of SVM-RFE is backward removal of features iteratively. The main steps for feature selection is as
follows [18]:

• Input the dataset to be classified,
• Weight of each feature is calculated,
• Removal of features having the smallest weight to obtain ranking of features.

Initially, entire features in the dataset is considered to compute ranking weights for all features.
The linear SVM classifier is used to compute the rank weight of each feature. Then, iteratively, features
with the lowest rank weight are discarded until only one feature remains in the dataset. Finally, the
features will be listed in descending order of generated ranked weights. Algorithm 1 illustrates an
iteration of SVM-RFE for ranking features in which the weight of each feature ωi is given by

ωi = ∑
i
(αiyixi), (10)

where α is a linear SVM classifier used to train the given feature set F and is given by

α = SVMTrain(X, y), (11)

and X is the input sample dataset and y is the corresponding class labels.

Algorithm 1 : SVM-RFE for Ranking features

begin
Given set of features, F ⊂ X
where X is the sample training dataset
Ranked set of features, R← ∅

repeat
Train linear SVM with feature set F
Calculate the weight of each feature ωi

For each feature f ∈ F do
Compute sorting standard: ci = (ωi)

2

EndFor
Find the feature with minimum weight, fmin = argmin{c}
Update R = R ∪ { fmin}; F = F \ { fmin};

until all features are ranked
end : output R
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2.7. Identification Task

To classify the original and transformed feature space, we employed linear and kernel-based
support vector machine (SVM) with 10-fold cross validation. The SVM is a cutting edge discriminative
learning model that aims to maximize the generalization capability of the predictor. SVM is a linear
learner in nature, which can be boosted with nonlinearity using the kernel trick presented in [24]. SVM
casts the input vector x into a scalar value g(x) as the output score,

g(x) =
N

∑
j=1

αjyjK(xj, x) + c, (12)

where the vectors {xj|j = 1, ...., N} are the support vectors, N is the number of support vectors, αj > 0
are adjustable weights, yj = {−1,+1}, c is the bias term, and the function K(xj, x) is the kernel function.
For the 2-class classification, the class decision is made based on the sign of g(x). As it can be seen, the
classifier is constructed from sums of the kernel function expressed as,

K(xj, x) = ω(xj)
tω(x), (13)

where ω(x) is a mapping from the input space to a possibly infinite dimensional space. To model the
nonlinear characteristics of the input data, kernel SVM functions such as Radial Basis function (RBF)
and Polynomial function with two degrees of freedom (Poly d = 2) also known as quadratic kernel
were employed. In order to extend the SVM to the multi-class task in hand, we employed one-vs.-one
framework [24].

3. Results and Discussion

In this section, we provide the experimental analysis and results of the proposed methodology.
In order to meet the short response time to identify distraction, the decomposed phasic GSR signal
was segmented into 5 s windows with 4 s overlap and then extracted 18 different spectral and
temporal features from each window based on our spectrogram observations. We employed linear
and kernel-based SVM on the data corresponding to each subject separately for training and then
evaluation of the predictive model using 10-fold cross validation (10-CV). In 10-CV, the original
dataset is partitioned into 10 equal size subsets. Of the 10 subsets, a single subset is retained as the
validation data for testing the model, and the remaining nine subsamples are used as training data.
The cross-validation process is then repeated 10 times (the folds), with each of the 10 subsets used
exactly once as the validation data. The 10 results from the folds can then be averaged to produce
a single estimation. The advantage of this method is that all observations are used for validation in
exactly one out of the 10 iterations without being participated in the training process whatsoever for
that iteration.

3.1. Identification Results Using All the Features

Initially, the original 18D feature space was evaluated for identification generalization accuracy
estimates. Table 2 reports the predictive model performance using all 18 features. Table 2 demonstrates
that using all the 18 features the nonlinear polynomial d = 2 kernel SVM classifier achieved the highest
average prediction accuracy of 94.81%, which shows that some critical discriminative information
underlies in the nonlinear feature subspaces. It generated the results with an average prediction speed
of 6620 observations per second and average training time of 0.86 s. From analyzing Table 3, the
polynomial kernel classifier also demonstrated an average precision of 92.44% implying low false
positive rate, recall of 96.38% implying even lower false negative rate, and f-score of 94.35%, the
harmonic mean of the precision and recall, which are consistent with the accuracy results. It can be
observed that linear SVM with an average accuracy of 91.94% was the fastest classifier achieving an
average prediction speed of 7240 observations per second and an average training time of 0.75 s with a
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marginal decrease in average accuracy of 2.87%. This shows promising evidence that the generated
feature space was effective in identifying the inattention state of the driver subjects even in the case of
linear prediction.

Table 2. Identification results using linear and kernel-based (polynomial d = 2 and radial basis
function) support vector machine (SVM) including accuracy, prediction speed, and training time with
18D feature space.

Subjects

Classifier Performance

Support Vector Machine

Linear SVM Poly d = 2 Radial Basis Function (RBF)

Accuracy Prediction Speed Training Accuracy Prediction Speed Training Accuracy Prediction Speed Training
in % in obs/sec Time in sec in % in obs/sec Time in sec in % in obs/sec Time in sec

Subject 1 82.90 6600.00 0.70 87.00 5700.00 0.74 85.40 5100.00 0.78
Subject 2 97.30 7700.00 0.75 97.30 7100.00 0.79 96.70 6800.00 0.81
Subject 3 92.30 6100.00 0.68 94.40 4900.00 0.77 90.60 4700.00 0.79
Subject 4 99.50 6100.00 0.74 99.20 5400.00 0.73 96.80 5300.00 0.79
Subject 5 87.10 6200.00 0.79 96.40 6400.00 1.37 87.40 6200.00 0.76
Subject 6 88.60 8000.00 0.74 93.60 7100.00 0.77 92.80 7300.00 0.89
Subject 7 98.00 6300.00 0.75 97.00 6300.00 0.73 97.50 6200.00 0.78
Subject 8 96.20 10000.00 0.75 97.40 8900.00 0.80 95.90 8500.00 0.90
Subject 9 84.00 8500.00 0.86 90.60 8000.00 1.08 87.40 7600.00 0.86

Subject 10 93.50 6900.00 0.75 95.20 6400.00 0.81 89.20 6300.00 0.81

Average 91.94 7240.00 0.75 94.81 6620.00 0.86 91.97 6400.00 0.82

Table 3. 10-fold cross validation (10-CV) identification results using linear and kernel-based
(polynomial d = 2 and radial basis function) support vector machine (SVM) including accuracy,
precision, recall and F-Score generated with 18D feature space.

Subjects

Performance Measures in %

Support Vector Machine

Linear SVM Poly d = 2 Radial Basis Function (RBF)

Accuracy Precision Recall F-Score Accuracy Precision Recall F-Score Accuracy Precision Recall F-Score

Subject 1 82.90 75.57 80.85 83.44 87.00 84.42 84.49 84.69 85.40 76.47 93.46 84.12
Subject 2 97.30 95.70 99.63 97.62 97.30 96.36 98.88 97.61 96.70 95.99 98.13 97.05
Subject 3 92.30 84.71 100.00 91.72 94.40 88.82 99.31 93.77 90.60 81.82 100.00 90.00
Subject 4 99.50 99.33 99.33 99.33 99.20 98.04 100.00 99.01 96.80 97.26 94.67 95.95
Subject 5 87.10 84.42 88.42 86.38 96.40 95.34 96.84 96.08 87.40 84.16 89.47 86.73
Subject 6 88.60 75.15 90.71 82.20 93.60 85.16 94.29 89.49 92.80 85.23 90.71 87.89
Subject 7 98.00 98.31 97.22 97.77 97.00 96.15 97.22 96.69 97.50 98.85 95.56 97.18
Subject 8 96.20 96.67 98.51 97.58 97.40 96.91 99.79 98.33 95.90 95.33 99.58 97.40
Subject 9 84.00 79.78 96.00 87.14 90.60 86.98 98.00 92.16 87.40 84.78 94.67 89.45

Subject 10 93.50 93.47 95.02 94.24 95.20 96.22 95.02 95.62 89.20 90.50 90.87 90.68

Average 91.94 88.31 94.57 91.74 94.81 92.44 96.38 94.35 91.97 89.04 94.71 91.65

3.2. Identification Results Using SVM-RFE Selected Feature Subset

To overcome the redundancy in the feature space, and computational complexity of the predictive
learner due to the high dimensionality of the feature space, we employed SVM-RFE feature selection
method. SVM-RFE also ranks the original feature space based on the feature correlation to the class
label. It iterates through all the features calculating the correlation between the feature and class label
and assigns a weight based on the level of correlation to the class label as described in Section 2.6.

Since the feature selection performed by SVM-RFE is a binary class technique, we considered
two scenarios, namely (1) normal vs. phone and (2) normal vs. text. Scenario (1) was considered
as cognitive distraction and scenario (2) was considered as cognitive and visual distraction. Table 4
shows the SVM-RFE ranking for normal vs. phone scenario and Table 5 shows the ranking for scenario
normal vs. text. We observed a slight variance in the feature ranks between Tables 4 and 5. However,
considering subsets of features with various sizes, consistently similar set of features were selected for
both distracted scenarios. In addition, by inspecting subject by subject responses in Tables 4 and 5,
a high level of similarity in the feature ranks across all subjects is observed. These observations helped
us pick a unified set of features that are highly relevant for the task of distraction identification and
are consistent between different scenarios and subjects. The best subset of features were selected by
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calculating the most frequently occurring features across all subjects. We then selected the first seven
frequently occurring features as they demonstrated higher 10-CV identification accuracies compared
to other feature subset sizes. We observed that, despite the fact that the order of first seven features
is different for both scenarios, the set of the best seven features were the same for both distraction
scenarios. The selected seven best features are listed below with their corresponding feature number
as shown in subsection 2.5: (i) number of peaks in a window (6); (ii) STFT’s 2nd feature (9); (iii) Katz
fractal dimension (13); and (iv–vii) Auto-regressive features (14, 15, 17 and 18).

Table 4. Support vector machine-recursive feature elimination (SVM-RFE) feature ranking for normal
vs. phone.

Subjects

Normal vs. Phone

RANK

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

Subject 1 6 13 15 17 14 18 16 9 5 1 12 7 8 3 11 4 2 10
Subject 2 16 15 6 17 14 9 18 13 1 5 12 7 11 8 3 2 4 10
Subject 3 16 15 6 14 17 18 9 13 12 5 1 7 8 11 3 2 4 10
Subject 4 15 13 16 14 6 18 9 17 1 5 7 12 11 8 3 2 4 10
Subject 5 1 15 6 17 16 14 18 9 13 5 12 7 11 8 3 2 10 4
Subject 6 15 13 17 6 14 18 9 16 5 1 12 2 4 8 3 11 7 10
Subject 7 6 15 14 16 9 18 17 13 12 11 7 5 1 4 2 3 8 10
Subject 8 6 15 13 14 9 16 18 17 12 5 1 7 11 8 3 4 2 10
Subject 9 6 17 1 15 14 18 13 16 9 5 12 7 11 8 3 2 10 4

Subject 10 15 6 14 17 18 13 9 16 5 12 1 11 7 2 4 3 8 10

Frequent Feature 6 15 6 17 14 18 9 13 5 5 12 7 11 8 3 2 4 10

Table 5. Support vector machine-recursive feature elimination (SVM-RFE) feature ranking for normal
vs. text.

Subjects

Normal vs. Text

RANK

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

Subject 1 15 6 17 14 18 9 16 13 5 1 12 7 11 3 8 2 10 4
Subject 2 15 6 17 14 18 16 9 13 12 7 11 5 1 3 8 10 2 4
Subject 3 5 6 15 17 18 14 16 9 13 1 12 7 11 3 4 2 8 10
Subject 4 17 15 13 18 14 6 16 9 1 12 5 7 11 3 8 2 10 4
Subject 5 6 17 15 16 14 18 9 13 5 1 12 7 11 3 8 2 4 10
Subject 6 17 16 6 15 18 14 9 13 1 2 4 12 5 8 3 11 7 10
Subject 7 15 17 9 14 18 16 13 12 8 11 10 7 6 5 4 3 2 1
Subject 8 5 15 6 17 14 18 16 9 13 12 7 8 11 10 4 3 2 1
Subject 9 5 6 17 15 18 14 9 16 13 1 12 7 11 8 3 2 4 10

Subject 10 15 17 12 14 18 13 9 6 16 11 5 1 8 3 2 4 7 10

Frequent Feature 15 6 17 14 18 14 9 13 13 1 12 7 11 3 8 2 2 10

Tables 6 and 7 provide the identification results corresponding to the selected subset of 7D feature
space in comparison with the results from 18D space. From Table 6 results using the subset of features
that SVM-RFE selected, it is observed that we were able to achieve the average identification accuracy
of 93.01% with a prediction speed of 7490 observations per second using polynomial kernel SVM
classifier. When compared to the original 18D feature space, the results showed a marginal decrease of
1.8% in identification accuracy while providing a considerable improvement in the prediction speed
(increase of 870 observations per second). From Table 7, we can see that the predictive model generated
after reducing the feature space to 7D also demonstrated similar performance as the 18D predictive
model for precision, recall and f-score measure of 89.61%, 95.83% and 92.50%, respectively. This
minimal performance decrease in the identification accuracy from the original 18D feature space to 7D
is a trade-off that results in improved response time for the online identification task in hand. Reducing
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the dimensions of the feature space can also potentially alleviate the effect of curse of dimensionality
and increase the robustness of the predictive model in the generalization phase.

Table 6. Identification results of linear and kernel-based (polynomial d = 2 and radial basis function)
support vector machine (SVM) including accuracy, prediction speed, and training time with the reduced
7D Feature Space.

Subjects

Classifier Performance

Support Vector Machine

Linear SVM Poly d = 2 Radial Basis Function (RBF)

Accuracy Prediction Speed Training Accuracy Prediction Speed Training Accuracy Prediction Speed Training
in % in obs/sec Time in sec in % in obs/sec Time in sec in % in obs/sec Time in sec

Subject 1 79.70 7000.00 0.68 85.60 6200.00 1.42 84.60 6300.00 0.69
Subject 2 97.10 9200.00 0.68 96.30 8600.00 1.89 97.30 8000.00 0.76
Subject 3 85.80 6600.00 0.75 91.20 5700.00 1.39 88.50 5800.00 0.71
Subject 4 99.70 7300.00 0.66 99.70 5700.00 0.79 98.70 5000.00 0.77
Subject 5 75.00 7800.00 1.27 95.40 7300.00 3.70 88.80 6500.00 0.78
Subject 6 82.90 8800.00 0.75 88.60 8700.00 0.76 86.80 8000.00 0.70
Subject 7 94.00 7900.00 0.65 96.30 7100.00 0.69 95.80 5500.00 0.78
Subject 8 92.50 12000.00 0.78 93.80 10000.00 0.77 94.60 9600.00 0.89
Subject 9 81.40 9800.00 1.49 88.00 8400.00 1.13 86.50 8200.00 0.77

Subject 10 95.40 8200.00 0.66 95.20 7200.00 0.77 94.50 7000.00 0.70

Average 88.35 8460.00 0.84 93.01 7490.00 1.33 91.61 6990.00 0.76

Table 7. 10-fold cross validation (10-CV) identification results using linear and kernel-based
(polynomial d = 2 and radial basis function) support vector machine (SVM) including accuracy,
precision, recall and F-Score with the reduced 7D feature space.

Subjects

Performance Measures in %

Support Vector Machine

Linear SVM Poly d = 2 Radial Basis Function (RBF)

Accuracy Precision Recall F-Score Accuracy Precision Recall F-Score Accuracy Precision Recall F-Score

Subject 1 79.70 72.94 81.05 76.78 85.60 80.12 86.93 83.39 84.60 75.26 93.46 83.38
Subject 2 97.10 95.36 99.63 97.45 96.30 95.29 98.13 96.69 97.30 95.70 99.63 97.62
Subject 3 85.80 75.26 99.31 85.63 91.20 83.14 99.31 90.51 88.50 78.69 100.00 88.07
Subject 4 99.70 99.34 100.00 99.67 99.70 99.34 100.00 99.67 98.70 98.01 98.67 98.34
Subject 5 75.00 69.16 82.63 75.30 95.40 93.85 96.32 95.06 88.80 83.33 94.74 88.67
Subject 6 82.90 65.41 86.43 74.46 88.60 75.76 89.29 81.97 86.80 75.00 81.43 78.08
Subject 7 94.00 96.43 90.00 93.10 96.30 96.09 95.56 95.82 95.80 95.53 95.00 95.26
Subject 8 92.50 92.93 97.66 95.24 93.80 93.39 98.94 96.08 94.60 93.98 99.36 96.59
Subject 9 81.40 76.94 95.67 85.29 88.00 83.33 98.33 90.21 86.50 81.49 98.33 89.12

Subject 10 95.40 96.62 95.02 95.82 95.20 95.83 95.44 95.63 94.50 94.29 95.85 95.06

Average 88.35 84.04 92.74 87.87 93.01 89.61 95.83 92.50 91.61 87.13 95.65 91.02

Table 6 demonstrates the nonlinear polynomial and RBF kernel SVM classifier generated the
highest average accuracy of 93.01% and 91.61% respectively compared to linear SVM classifier with
88.35%. From Table 7, it can be observed that polynomial kernel SVM demonstrates the highest average
precision, recall and f-score of 89.61%, 95.83% and 92.50%, respectively, which is consistent with the
results based on the original feature space. These observations indicate that the selected subsets of
features did not disrupt the discriminative capabilities of the original feature space by following similar
performance trends to identify the distracted state from the non-distracted state with minimal decrease
in the prediction accuracy and a considerable gain in response time.

4. Conclusions

In this study, we investigated if a continuous measure of phasic GSR can be used to identify
distracted driving state under naturalistic driving conditions using a wrist band wearable. In contrast
to other state-of-the-art driver monitoring and alerting systems using intrusive physiological signal
measures such as EEG and ECG, GSRs are minimally intrusive. We evaluated GSR toward real-time
identification of distraction using short-term segmented windows. We conducted decomposition
on the raw GSR to obtain a continuous phasic GSR signal that contained the most discriminative
characteristics to identify driver distraction. We then generated high resolution spectrograms of
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the phasic GSR signal to visualize and better understand its behavior. We extracted 18 features
including spectral and temporal features that capture the pattern changes from normal to distracted
scenarios at a physiological level. The nature of feature extraction is manual and might include
redundancies that can increase the computational complexity and decrease the robustness of the
predictor. Therefore, we employed the SVM-RFE technique to alleviate this limitation. SVM-RFE then
selected seven features based on the rank assigned to the features that best characterized the distracted
state from the non-distracted state. We employed linear and kernel-based SVM with 10-fold cross
validation (10-CV) to generate identification results on both the original 18D and reduced 7D feature
space. Further investigating the results demonstrated marginal reduction in prediction accuracy and
considerable increase in the prediction prediction speed. The results across the population of subjects
also demonstrated a high level of consistency. Our proposed driver monitoring and identification
system on the edge provided evident results using GSR as a reliable indicator of driver distraction
while meeting the requirement of early notification of distraction state to driver.
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