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�e aim of this study was to compare the physicochemical, rheological, and morphological characteristics of corn, nixtamalized 
flour, masa, and tortillas from the traditional nixtamalization process (TNP) and the extrusion nixtamalization process (ENP) and 
their relationship with starch. �e traditional and extrusion processes were carried out using the same variety of corn. From both 
processes, samples of ground corn, nixtamalized flour, masa, and tortillas were obtained. �e extrusion process produced corn 
flour with particle sizes smaller (particle size index, PSI = 51) than that of flour produced by the traditional nixtamalization process 
(PSI = 44). Masa from the TNP showed higher modulus of elasticity (��) and viscosity (���) values than that off masa from the ENP. 
Furthermore, in a temperature sweep test, masa from the TNP showed a peak in �� and ���, while the masa from the ENP did not 
display these peaks. �e ENP-produced tortillas had higher resistant starch contents and comparable firmness and rollability to 
those from the TNP but lower quality parameter values. A comparison of the products’ physicochemical properties obtained by 
the two processes shows the importance of controlling the damage to starch during the milling and extrusion processes to obtain 
tortillas of better quality. For the first time, we propose the measurement of the viscoelastic parameters �� and ��� in temperature 
sweep mode to monitor changes in the degree of starch damage.

1. Introduction

�e processing of maize through nixtamalization has allowed 
the development of traditional products, such as tortillas and 
other innovators with high consumer acceptance [1]. 
Currently, through this process, the maize is cooked in a solu-
tion of Ca(OH)2, then soaked, washed, and ground, and thus 
to obtain flour, masa (dough), tortillas, and other products are 
widely acceptable.

During traditional nixtamalization structural changes in 
the grain occur, resulting in rheological, functional, and tex-
tural properties that determine the acceptability of the final 
product. Among the most important structural changes is the 
gelatinization of the starch that is affected by factors such as 

temperature-cooking times and wet milling operations [2, 3]. 
In the traditional nixtamalization process (TNP), wet milling 
is used to separate the starch granules with excess of water, 
which reduces the damaged starch content [4–7]. Both factors, 
moisture content and particle size, make gradual starch gelat-
inization possible, improving the viscoelastic behavior of the 
obtained masa, as well as the flexibility, rollability, firmness, 
structural uniformity, color, and shelf life of the tortillas; the 
sensory attributes are appreciated by the consumer. �e lack 
of control of these factors (cooking conditions, grain moisture 
content, grinding particle size) in TNP results in a variability 
in the quality of nixtamalized products. Despite the benefits 
of traditional nixtamalization, this process involves high 
energy and water consumption, and leads to environmental 
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pollution [8]. So alternative methods such as extrusion-cook-
ing have been studied to obtain flour, masa, and tortillas 
[9–14].

Some studies of extrusion nixtamalization process (ENP) 
for obtaining nixtamalized corn flours, have evaluated the 
impact of the process conditions (temperature, moisture con-
tent, and calcium hydroxide, and enzymes in the feeding, 
screw speed, among others) in the physical and chemical prop-
erties of flour, masa, and tortilla, with good approaches to the 
traditional product [6, 7, 10–18]. However, adapting the ENP 
to obtain different quality nixtamalized products leads to tech-
nological limitations, since unlike wet milling, dry milling 
conditions used in ENP such as low water content and a 
reduced amount of lime, affect directly the behavior of corn 
starch, due to exhaustive mechanical force applied several 
times caused higher damaged starch contents [5–7, 19] and 
increase the content of starch damaged (SD).

Additionally, during extrusion-cooking an important 
damage occurs in starch granules, causing a certain dextrini-
zation degree, depending on the ENP conditions [10, 16, 20]. 
So, viscoelastic properties are lower than those observed in 
TNP [13], affecting the quality of masa and tortillas from ENP. 
Despite these disadvantages of extruded nixtamalized flours, 
tortillas obtained with extruded nixtamalized corn flour have 
been claimed to be comparable in quality to those made using 
the TNP, though textural, and shelf life problems still exist. 
�us, improvements have been focused on decreasing the 
firmness and increasing the rollability of tortillas [11, 14, 
21–23].

�ese structural properties in tortillas are related to the 
changes that occur in starch, as described above. To determine 
which operations are critical in the ENP compared to TNP, it 
is essential to evaluate the changes that occur in starch and 
their impact on the quality of flour, masa, and tortilla. �is 
allowed us to identify the extrusion conditions necessary to 
reduce the starch damage to a comparable level to that of the 
TNP.

�e aim of this study was to evaluate and compare the 
physicochemical, rheological, and morphological character-
istics of products from the traditional and extrusion nixtamal-
ization processes and their relationship to changes in corn 
starch granules to gain knowledge to improve tortillas obtained 
with extruded flour.

2. Materials and Methods

2.1. Raw Material.  White corn (Zea mays L.) H-430 and H-431 
commercial hybrids were selected. �is grain is resistant to 
high temperatures (up to 40°C) in the northwestern zone of 
México. It was purchased from a local market in Hermosillo, 
Sonora, México. Corn grain was cleaned using a vibratory 
cleaner (Clipper, Model V230, Clipper Products, Blu�on, 
IN, USA). �e chemical composition of corn grain was 
determined following the AACC [24] International Approved 
Methods are as follows: 11.2% moisture content (44–15.02), 
71.7% total starch content (dry basis), (76–13.01); 4.88% ether 
extract (dry basis), (30–20.01); 1.14% ash content (dry basis), 

(08–01.01); pH = 6.5 (02–52.01), and 9.17% (dry basis) protein 
content using the AOAC 990.03 method [25].

2.2. Extrusion Nixtamalization Process (ENP)

2.2.1. Grinding.  �ree 2-kg samples of corn were ground 
individually with different meshes (0.5 mm, 0.8 mm, or 1 mm) 
in a hammer mill (Model FT2, Armfield Limited, Bridge 
House, West Street Ringwood, England). Grinding operation 
was according to procedure used by Escalante-Aburto et al. 
[26], and Platt-Lucero et al. [13]. In the same way, Tran et al. 
[27], relates the particle size index with the effect of starch 
damage during milling. A composed blend of ground corn 
was prepared by mixing 0.45 g/g of ground corn with 0.5 mm 
mesh, 0.40 g/g with 0.8 mm mesh, and 0.15 g/g with 1.0 mm 
mesh. �is blend allowed an appropriate change (damage) in 
the starch granules to obtain a specific particle size for corn 
flour subjected to the extrusion process, and this change was 
made possible by manipulating the process factors in the 
extrusion experiment, including the type of mesh used to 
grind the grain, the moisture content of the feed material, the 
compression ratio, and screw speed.

2.2.2. Conditioning.  �e extrusion process starts by grinding 
whole corn grain and conditioning with lime and water before 
entering the extruder. �is step helps the water and lime 
diffuse into the internal structures of the corn kernel [11]. �e 
blend of ground corn was supplemented with 0.3 g lime/100 g 
flour (Nixtacal Calhidra de Sonora; Hermosillo, México) and 
distilled water, and adjusted to 25 g water/100 g flour. �is was 
mixed for 3 min in a horizontal mixer (Hobart model AS200; 
Troy, OH) and then stored in a refrigerator for 12 h at 5°C.

2.2.3. Extrusion.  A single screw laboratory extruder (Model 
E 19/25 D, OHG Duisburg, Germany) was used to obtain 
extruded nixtamalized corn flour (ENCF). �e extrusion 
experiment was performed according to the procedure reported 
by Platt-Lucero et al. [13], but with different conditions. A 
19 mm screw diameter was used, with a length-to-diameter 
ratio of 20 : 1, and a nominal compression ratio of 1 : 1, and a 
3.0 mm die opening with four zone heating cooling (1300 W 
each). �e feed speed of the conditioned sample was 45 rpm. 
�e screw speed was 145 rpm, with an average residence time 
of 13 min, and an operating pressure of 5.68 atm (83.6 psi). 
�e extrusion temperatures were 60°C, 70°C, 80°C, and 90°C 
in the first, second, third, and fourth heating/cooling zones, 
respectively. �e extrudates were collected in aluminum trays 
for later drying.

2.2.4. Drying and Grinding.  �e extrudates were dried at 60°C 
for 1 h using a custom-made constructed tunnel dryer (no 
brand) and according to the procedure reported by Platt-Lucero 
et al. [13]. �e main objective of using the drying process was to 
reduce the moisture content in the extrudates coming out from 
the extruder. �is moisture value lowered from 18% to 11%. 
Next, the dried extrudates were hammer-milled, first using a 
0.8 mm mesh and then ground again by the mill with a 0.5 mm 
mesh to obtain the extruded nixtamalized corn flour.



3International Journal of Food Science

2.2.5. Tortilla Preparation.  Tortilla were made in different 
ways depending on the nixtamalization process. In both 
processes of nixtamalization, the tortillas were prepared in a 
commercial plant (Tortillería Pimentel, Hermosillo Sonora, 
México).

For the ENP, once the extruded nixtamalized flour (ENCF) 
was obtained, the tortillas were prepared according to the pro-
cedure reported by Platt-Lucero et al. [13]. A sample of 2.5 kg 
of ENCF was mixed with water (2500 mL) in a horizontal 
mixer (Manufacturas Lenin Model 25, San Luis Potosi, 
Mexico) for 3 min to form 5.0 kg of corn masa as reported by 
Chaidez-Laguna et al. [12]. �e amount of masa obtained in 
that mixer was the minimum that could be made (according 
to the operator) and the minimum amount to run and be 
processed in the tortilla machine roller. Masa was wrapped in 
a plastic bag and allowed to rest for 20 min before processing. 
Masa disks (25 g) were formed in a tortilla-forming machine 
(Lenin Manufactures, Model MLR 30, San Luis Potosí, Mexico) 
and baked for 56 s in a three step oven at temperatures of 
221°C ± 10°C; 248°C ± 10°C, and 280°C ± 10°C. Corn tortillas 
were cooled and transported to the laboratory, where they 
were stored at room temperature (25°C) for further analysis.

2.3. Traditional Nixtamalization Process (TNP)

2.3.1. Cooking and Steeping.  Corn kernel samples (3 kg) were 
cooked with water (1 : 3) and 1 g lime/100 g, the grain was 
boiling (96°C) for 20 min according to the procedure reported 
by Ramírez-Wong et al. [28]. �e cooked corn was steeped 
for 14 h, then the cooking liquor (nejayote) was drained and 
the cooked kernels (nixtamal) were washed with tap water to 
remove the excess calcium and dissolved solids.

2.3.2. Grinding and Mixing.  �e nixtamal was ground to 
obtain fresh corn dough (fresh masa) in a 1HP volcanic 
stone spiral mill with a 5” diameter (Maquinaria del Río SA 
de CV, Michoacán, Mexico). Water was added subjectively to 
the fresh masa and mixed for 3 min to obtain a suitable masa 
consistency. Part of the fresh masa was lyophilized and ground 
to obtain nixtamalized corn flour (NCF). �e other part of the 
masa (fresh masa) was used to make tortillas.

2.3.3. Tortilla Preparation.  Corn tortillas from the TNP 
were made with fresh masa in the same commercial plant 
as described with same processing conditions previously 
described for the ENP. �en, the tortillas were cooled and 
transported to the laboratory and stored at room temperature 
(25°C) for further analysis.

2.4. Analytical Evaluations.  Measurement of the moisture 
content, pH, and resistant starch (RS) content of corn flour, 
masa, and tortilla from both processes was performed following 
the AACC [24] International Approved Methods 44–19.01, 
02–52.01, 32–40.0. �e RS content (Megazyme, K-RSTAR 
08/15) was reported as g RS/100 g. All determinations were 
made in triplicate.

2.4.1. Scanning Electron Microscopy (SEM).  �e morphology 
of the different samples was evaluated according to the 

procedure reported by Sánchez-Madrigal et al. [10], as follows: 
samples of ground corn grain, flour, masa, and tortilla from 
both nixtamalization processes were imaged with a scanning 
electron microscope (JSM-5800LV, JEOL, Akishima, Japan) 
and were exposed to an acceleration rate of 10 kV. Samples 
with particle sizes <0.15 mm and a moisture content of 1% 
were fixed and coated with a gold layer in a vacuum evaporator 
(Denton Desk II) at a pressure of 7.03 × 10–2 kg/cm2 using 
1000x magnification.

2.5. Corn Flour Evaluations

2.5.1. Particle Size Distribution (PSD).  Determination 
of the PSD of fresh masa from the TNP and the extruded 
nixtamalized corn flour of the ENP was carried out on a set of 
sieves but on a wet basis. �is obeys to that one flour (ENCF) 
sample and the other semisolid (fresh masa). In this case the 
masa fractionation technique reported by Pflugfelder et al. 
[29], was used. Briefly, for the TNP, 50 g of fresh masa were 
gently slurried with 100 mL of distilled water in a flask. �e 
slurry was resuspended and washed with water through U.S. 
standard sieves No. 20 (850 µm), 30 (600 µm), 40 (425 µm), 
60 (250 µm), 80 (180 µm) and bottom. Separation of fractions 
was performed in a vibratory shaker (AS 200, Retsch GmbH, 
Haan, Mettmann; Germany) for 5 min. Each sieve fraction 
was placed in a tared weighing aluminum dish and dried in 
an oven at 110°C for 24 h. �e percentage of material retained 
in each sieve was calculated.

Regarding the ENP, water was added to a sample of 
extruded nixtamalized corn flour to make masa with a mois-
ture content to prepare tortillas (53.1%). �en 50 g of masa 
were taken and the masa fractionation was done in the same 
way as the procedure to fractionate fresh masa of the TNP.

2.5.2. Particle Size Index (PSI).  �e PSI calculation followed 
the methodology reported by Bedolla and Rooney [30] and 
was performed in triplicate using the following formula:

where #SF is the sieve factor number and %RM�  is the retained 
material in each sieve.

�e factor number depends on the U.S. sieve number (0.2, 
sieve n° 20; 0.3, sieve n° 30; 0.4, sieve n° 40; 0.6, sieve n° 60; 
0.8, sieve n° 80; and 1.0, bottom).

2.5.3. Water Absorption Capacity (WAC).  �e WAC calculated 
was according to the criteria in Flores-Farias et al. [31], and 
reported as mL of water/100 g flour and in triplicate.

2.5.4. Water Absorption Index (WAI).  �e WAI was calculated 
from both corn flours according to the procedure of Anderson 
et al. [32] with slight modifications as follows: a 1 g sample 
(previously lyophilized and ground) was mixed with 15 mL 
of distilled water in a 50 mL centrifuge tube at 25°C. �e 
suspension was stirred for 30 min and centrifuged at 5000 rpm 
for 30 min. �e supernatant was placed in a tared aluminum 
plate and evaporated in a convection oven at 105°C for 12 h. 
�e weight of the gel, as well as the precipitate, was registered, 

(1)PSI = ∑((#SF�)(%RM�) + ⋅ ⋅ ⋅ + (#SF�)(%RM�)),
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instead of room temperature (personal communication). 
Tortillas were preheated as follows: individual pieces of 
tortilla were placed in a polyethylene bag and then heated in 
a microwave oven (Samsung Co., México) for 15 s at 100% 
electrical power. Immediately a�er heating, the tortilla was 
cut into a 41.47 cm2 rectangle and placed on the lower plate 
of the Kramer cell (part code HDP/K55 Stable Micro Systems, 
Surrey, England). Once the temperature of the tortilla reached 
30°C, the piece of tortilla was sliced with a five-bladed Kramer 
cell (top part) and then was connected to a texture analyzer 
(TA-XT-Plus Stable Micro Systems, Surrey, England). �e 
head speed was set at 2 mm/s and the firmness was reported 
in kPa [34].

2.7.3. Rollability.  �e subjective method reported by 
Arámbula-Villa et al. [14], was used to assign a nominal score 
for the measurement of tortilla rollability. A score of 5 indicates 
no tortilla breakage (the best rollability), a score of 3 reflects 
50% breakage in tortilla structure, and a score of 1 represents 
100% tortilla breakage. �e tortilla preparation was identical 
to the procedure reported to evaluate tortilla firmness. �e 
rollability was measured at 2, 24, and 48 h of storage.

2.8. Experimental Design and Statistical Analysis.  A completely 
randomized experiment was used, where the factor was 
the type of nixtamalization process (TNP or ENP) applied 
to each product (corn flour, masa and tortilla). Analysis of 
variance (ANOVA) was performed on all data gathered from 
the different evaluations using a significance level of 95%. To 
evaluate significant differences among the specific means, 
Tukey’s test was performed with 95% significance. ANOVA 
was performed using the Statistical Analysis So�ware [35].

3. Results and Discussion

3.1. Physicochemical Properties of Corn Flours.  Table 1 shows 
the physicochemical properties of the flours for the extrusion 
nixtamalization process and traditional nixtamalization 
processes. Both procedures gave products with different 
characteristics. TNP produced masa with a moisture content 
of 53.1% (g/100 g flour) and ENP produced corn flour with 
a moisture content of 8.8% (g/100 g flour). To perform the 
same evaluations, the moisture content of masa was freeze-
dried and diminished to a final value of 3.4%. According to 
this behavior, the ANOVA showed very significant differences 
(�푝 < 0.01) between the moisture contents of both flour types.

Regarding the pH, corn flours from both processes had an 
alkaline pH, which was slightly but significantly (�푝 < 0.05) 
higher in TNP (Table 1). �is pH is desirable in tortillas 
because of the traditional alkaline flavor identified by 
consumers [29].

Resistant starch content values were higher (�푝 < 0.05) for 
extruded flour (Table 1) than for freeze-dried nixtamalized 
flour. �is is probably due to the higher amount of fiber con-
tained in whole corn meal coming from dry milling. �e 
reduced water content, temperature inside the extruder, and 
subsequent periods of heating and cooling prevent complete 
gelatinization. �us, macromolecules such as amylopectin are 

and the WAI was reported as g gel/g dry sample and in 
triplicate.

2.5.5. Water Solubility Index (WSI).  �e WSI was determined 
using the methodology reported by Anderson et al. [32], in 
triplicate using the formula:

WSMS is the weight of soluble material in the supernatant and 
ISW is the initial sample weight.

2.6. Masa Rheological Evaluations

2.6.1. Frequency Sweep Test.  �e dynamic frequency sweep 
test was performed to measure the viscoelastic moduli of masa 
from both nixtamalization processes (Rheometrics Model RSF 
III, Piscataway, NJ, USA). �e elastic (��) and viscous (���) 
moduli of masa from both processes were obtained according 
to the procedure reported by Platt-Lucero et al. [13]. Briefly, 
a sample (3.0 g) was placed between two parallel plates with 
a diameter of 25 mm and a 2.5 mm gap. Part of the masa that 
was exposed to the environment was covered with petroleum 
jelly to avoid loss of moisture. �e frequency sweep test was 
executed using a strain of 0.04% (linear viscoelastic region) at 
25°C and a frequency range between 0.1 and 100 rad/s.

2.6.2. Temperature Sweep Test.  �e dynamic temperature 
sweep test was performed to evaluate the changes in the 
viscoelastic properties of the mass of both nixtamalization 
processes (Rheometrics Model RSF III, Piscataway, NJ, USA). 
�e elastic modulus (��) and the viscous modulus (���) of 
masa from both processes were obtained according to the 
procedure reported by Gerardo-Rodríguez et al. [33]. Briefly, 
a sample (3.0 g) was placed between two parallel plates with 
a diameter of 25 mm and a 2.5 mm gap. Part of the masa was 
exposed to the environment, a�er which Silicon oil (Sigma 
Aldrich, U.K.) was placed on the edges of the masa to help 
avoid moisture loss. �e temperature sweep test was executed 
in the temperature range from 25°C to 120°C with a frequency 
of 5 rad/s and 0.04% strain (linear viscoelastic region). �e 
viscoelastic parameters determined the �� and ��� moduli.

2.7. Tortilla Evaluations

2.7.1. Physical Properties.  Ten tortillas from each process 
were sampled to evaluate their weight (g), diameter (cm), and 
thickness (mm). Tortilla weight measurements were performed 
on an analytical balance (Sartorius Research R300S), while 
diameter and thickness were evaluated with a digital Vernier 
(Model CD6″C Mitutoyo Corporation, Kanawa, Japan). Mean 
values and the standard deviation of each physical property 
were reported.

2.7.2. Firmness.  To evaluate the firmness and rollability at 
2, 24, and 48 h of storage at room temperature, a procedure 
suggested by the corn flour industry was used, which indicates 
that the texture of a tortilla should be evaluated as a hot tortilla 

(2)WSI = (WSMS

ISW
) ∗ 100,
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starch granules in corn grain, flour, masa, and tortilla. As oper-
ations progress in both nixtamalization processes, the damage 
to starch increases, being more critical during baking of masa 
to tortilla. �is can be shown in a scanning electronic 
micrograph.

Table 1 shows the particle size index (PSI) of the corn 
flours from the ENP and TNP. According to Bedolla and 
Rooney [30], the higher the PSI value, the finer the corn flour. 
�e PSI in ENCF was significantly (�푝 < 0.05) higher than NCF. 
�is is probably due to the milling process used. Dry milling 
is more abrasive and produces a finer particle distribution, 
therefore creating more damaged starch granules. In contrast, 
wet milling is responsible for creating coarse granulometry, 
where more native and fragmented starch granules are present 
in every stage of the process [44]. �erefore, the cohesiveness 
of the masa is increased and the machinability of the tortillas 
improved. Choosing an adequate PSI to produce flour allows 
the improvement of the extrusion process conditions.

3.1.2. Water Absorption Capacity.  �e WAC (L water/kg flour) 
subjectively measures the amount of water absorbed by the 
flour during masa preparation; this is the quantity of starch 
degraded in the extrusion process [31]. Extruded nixtamalized 
corn flour exhibited a lower WAC (�푝 < 0.05) than did 
nixtamalized corn flour (Table 1). �is is probably due to the 
higher cooking degree and the compaction of extruded flour 
as a consequence of the smaller intermolecular spaces.

Dry milling and thermal gelatinization conditions are 
more severe than those observed in wet milling. 
�ermomechanical processes force the gelatinization in an 
accelerated manner, lowering the water absorption capacity 
of the extruded flours. Contreras-Jimenez et al. [22], consid-
ered the particle size, gelatinization degree, and damaged 
starch content as the most important factors for increasing the 
WAC in extruded flours.

However, wet milling is performed using plenty of water, 
which protects the starch granule structure. �e corn grain 
steeping period when cooking liquor promotes gradual starch 
granule gelatinization and higher calcium absorption, hard-
ening the cell wall. For that reason, the water enters into the 
protein matrix more easily.

We have found it necessary to develop extrusion condi-
tions that do not damage the starch as extensively to increase 
the water absorption capacity; consequently, the textural and 

partially disrupted and short lineal chains appear, promoting 
a low enzymatic digestion of starch [21, 36, 37].

Although a stronger interaction between starch and 
calcium is observed in the thermoalkaline process, the RS 
content can decrease because of pericarp losses in nejayote. 
Amylose leached, and gradual gelatinization gives rise to a 
stable crystalline structure, which takes more time. �us, the 
gelatinization temperature and enthalpy are bigger, and a 
higher crystallinity was observed [38]. �e RS values for both 
flours in this study are in agreement with Villada et al. [39], 
and Gutiérrez-Dorado et al. [21].

3.1.1. Particle Size Distribution.  Figure 1 presents the fraction 
of material in percentage of masa from the TNP and ENP 
retained in each mesh. According to the ANOVA results, 
significant (�푝 < 0.05) differences between nixtamalization 
processes were observed in every fraction of retained 
material. In both types of masa, the retained accumulative 
material between sieve U.S. No. 20 (850 µm) and sieve U. S. 
No. 80 (180 μm) were 92.3% and 83.1% for ENP and TNP, 
respectively. In this way, Mexican regulations related to the 
production of nixtamalized corn flours were accomplished 
when up to sieve U.S. No, 80 (180 μm), 75% of the accumulative 
material is retained [40]. �is indicate that this PSD has coarse 
to medium distribution of particles, which is appropriate for 
making tortillas. �e masa fractionation method allowed an 
efficient comparison between both processes.

�e PSD is directly related to the milling process used. 
Dry milling produces fine granulometry, modifying the 
physicochemical characteristics and drastically changing the 
granular structure and surface area of starch [5]. Wet milling 
requires coarse and fine particles to produce corn flour, but 
these differences are less pronounced than dry milling.

According to Campas-Baypoli et al. [41], Gómez and 
Vaniska [42], and Gómez et al. [43], it is possible to measure 
the extent of gelatinization by monitoring the presence of 
native and fragmented starch granules in every step of both 
processes. SEM micrographs show the quantity of damaged 

Table 1:  Physicochemical characteristics of corn flour from the 
extruded (ENP) and traditional (TNP) nixtamalization processes.

1Means ± standard deviation. 2 Means with the same letter are not signifi-
cantly different (�푝 > 0.05). 3 WAC water absorption capacity. 4 WAI water 
absorption index. 5 WSI water solubility index.

Characteristic ENP TNP
pH 8.21 ± 0.11a2 8.4 ± 0.06b
Moisture content (%) 8.83 ± 0.39a 3.42 ± 0.06b
Particle size index 51.01 ± 0.57a 48.7 ± 0.32b
WAC3 (mL water/100 g flour) 104.2 ± 0.29a 108 ± 0.5b
WAI4 (g gel/g dry matter) 3.7 ± 0.08a 3.6 ± 0.06b
WSI5 (%) 5.8 ± 0.01a 3.6 ± 0.06b
Resistant starch (g/100 g sample) 1.01 ± 0.051a 0.79 ± 0.06b
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volume as much as during traditional nixtamalization. In dry 
milling, the thermal and mechanical damage is higher. Starch 
granules do not adequately expand, producing a higher flour 
density, which leads to a more compact product.

Wet milling eases the release of starch granules from the 
protein matrix [36]. �is allows the increase in the water con-
tent because of the starch granule swelling, resulting in an 
increase in the volume up to 30−40%. Another point to con-
sider is that annealing favors the interaction of starch granules 
with calcium during the steeping of cooked corn, which is 
between 12 and 14 h. Annealing is performed in a range 
between the glass transition temperature and the gelatinization 
temperature. �is mechanism promotes an increase in the 
water content in masa to approximately 45−60% (w/w) and 
improves the pasting, rheological, and textural properties of 
masa [47].

Table 2 shows the resistant of starch contents from both 
the nixtamalization processes. RS was higher in the extruded 
nixtamalized corn flour, though no significant differences was 
observed. �is increase is probably due to the grinding method 
used to obtain the corn flour. Dry milling of whole corn grain 
includes the pericarp and avoids the release of lipid and pro-
teins from starch granules; therefore, it increases the dietary 
fiber content. Gelatinization still occurs though there is a 
reduced amount of water present.

Wet milling refers to the transformation of nixtamalized 
corn grain into fresh masa considering the loss of fiber and 
lipids during nejayote drainage. �is reduces the formation of 
amylose-lipid complexes. Villada et al. [39], found similar RS 
contents in extruded flour, which is consistent with the 
behavior observed in this study.

Although the measurement of pH in both processes were 
significantly different (�푝 < 0.05), both the alkaline values mean 
that specific lime content is necessary to promote the correct 
flavor when the tortilla is produced.

3.3. Masa Rheological Evaluations

3.3.1. Frequency Sweep Test.  Figure 2 shows the viscoelastic 
parameters �� and ��� as a function of frequency. According 
to Figure 2(a), �� showed a linear increase up to 10 rad/s. 
�en, the frequency rate increased and the structure of 
polymers collapsed [48]. �e higher �� observed in fresh 
masa is probably due to the lime concentration used during 
traditional nixtamalization. In contrast, wet milling includes 
the treatment of the starch granule with a higher concentration 
of lime, promoting stronger interactions with calcium ions, 
and leading to gradual gelatinization [33]. Moreover, the 
steeping period in cooking liquor reduces the glass transition 
temperature and imparts mobility to the starch granule 
amorphous region, making them so�er, deformable, and 
possibly more elastic [48]. However, the dry milling and 
thermomechanical process of extrusion destroys the starch 
granule native structure, which occurs with little water content 
and hastens gelatinization. �is leads to the decrease in the 
�� value [33].

Regarding the behavior of ��� (Figure 2(b)), the lower val-
ues observed in dough are the result of a higher quantity of 
pregelatinized starch. When extruded dough is rehydrated, it 

sensory characteristics of masa and tortillas are more like 
those from the traditional process.

3.1.3. Water Absorption Index.  �e WAI value relates with 
milling and extrusion parameters such as barrel temperature 
and moisture content. Extruded nixtamalized corn flour 
presented a slightly but higher water absorption index (�푝 < 0.05)  
than nixtamalized corn flour (Table 1). �is is probably due to 
the limited water content used in dry milling, producing a higher 
fragmentation of starch granule and dextrinization [13, 20]. In 
such a way, the breaking of inter and intramolecular hydrogen 
bonds allows the release of hydroxyl groups and increase the 
capability to form more hydrogen bonds with water [20].

Comparing both dry milling and wet milling, a high WAI 
is required to promote more flexibility and a better reheating 
capability in tortillas [45] but, excessive heating contribute to 
form an amorphous and sticky masa; where starch granules 
lose structure and integrity [19]. �erefore, appropriate pro-
cessing conditions in both processes help to diminish the 
damaged starch content. Similar WAI values have been 
reported previously [1, 4, 6, 13].

3.1.4. Water Solubility Index.  �e WAI value is related 
to milling and extrusion parameters such as the barrel 
temperature and moisture content. Extruded nixtamalized 
corn flour presented a slightly higher water absorption index 
(�푝 < 0.05) than nixtamalized corn flour (Table 1). �is is 
probably due to the limited water contents used in dry milling, 
which produces higher starch granule fragmentation and 
dextrinization [22, 46]. In this way, the breaking of inter and 
intramolecular hydrogen bonds allows the release of hydroxyl 
groups and increases the ability to form more hydrogen bonds 
with water [20].

By comparing dry milling and wet milling, a high WAI is 
required to promote more flexibility and better reheating of 
tortillas [1], but excessive heating contributes to the formation 
of amorphous and sticky masa, in which starch granules lose 
their structure and integrity [41]. �erefore, appropriate pro-
cessing conditions in both processes help to diminish the 
damaged starch contents. Similar WAI values have been 
reported previously [6, 20, 21, 39].

3.2. Masa Physicochemical Evaluations

3.2.1. Moisture Content, Resistant Starch, and pH.  �e 
moisture contents of masa were significantly higher (�푝 < 0.05)  
than masa prepared with extruded flour (Table 2).

�is occur because extruded flour absorbed less water than 
masa. �e extreme conditions inside the extruder are probably 
the main causes why the starch granules do not increase in 

Table 2:  Physicochemical characteristics of corn masa from the 
extruded (ENP) and traditional (TNP) nixtamalization processes.

1Means ± standard deviation. 2 Means with the same letter are not signifi-
cantly different (�푃 < 0.05).

Characteristic ENP TNP
Moisture content (%) 53.1 ± 0.13a1,2 57.4 ± 0.68b
Resistant starch (g/100 g sample) 1.43 ± 0.053a 0.85 ± 0.073b
pH 8.2a 8.4b
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3.3.2. Temperature Sweep Test.  Figure 3 shows the viscoelastic 
behavior of masa from the ENP and TNP as a function of 
temperature. Fresh masa showed a higher �� than the extruded 
dough, indicating the formation of two different starch granule 
structures (Figure 3(a)). �e maximum peak detected (129 KPa) 
in the �� plot of fresh masa is between 76°C and 80°C which 
explains the starch gelatinization of native and fragmented 
starch granules. �is is probably due to the jamming of small-
sized particles obtained in the fine grounding of the corn flour. 
�is also explains how some granules remain undamaged 
during this step in the process [34].

�e extruded masa did not present any peaks, and as tem-
perature increased, the �� curve showed a downward trend 
(Figure 3(a)). A drop in the �� indicated a higher weakening 
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Figure 2: (a) Elastic modulus (��) and (b) viscous modulus (���) of corn masa as a function of the frequency from the extruded (ENP) and 
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Figure 3: (a) Elastic modulus (��) and (b) viscous moduli (���) of corn masa as a function of temperature from the extruded (ENP) and the 
traditional (TNP) nixtamalization processes.

presents a compact and solid-state that originates due to the 
small difference between the viscoelastic moduli, which is a 
characteristic of a Hook solid. Dry milling and the thermo-
mechanical processes produce a dough with less resistance 
and lower viscoelastic properties.

Another apparent reason explaining this behavior is that 
dry milling induces deeper disruption of the crystalline struc-
ture and starch molecules degradation [12].

It can be assumed that the higher water content of the 
nixtamalized corn flour increases the elastic behavior of masa. 
Wet milling implies the formation of an elastic network due 
to a crystalline domain derived from the complexation reac-
tion between amylose and lipids. �erefore, the viscoelastic 
moduli show a large difference and the elasticity is increased.
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at the same commercial plant with the same baking process 
conditions. Proper temperature, water content, cooking time, 
and drying allowed for enhanced masa and tortilla textural 
properties.

�e moisture content of the corn tortilla is related to the 
water absorption capacity (WAC) and water absorption index 
(WAI), which is dependent on the damage to the starch gran-
ules [18].

3.4.2. Resistant Starch.  Table 3 shows RS contents in tortillas 
made with extruded nixtamalized corn flour and fresh masa. 
�is value was significantly higher (�푝 < 0.05) in tortillas 
made with ENCF (1.65 g/100 g sample) than with fresh masa 
(0.90 g/100 g sample). �is behavior is probably due to the 
processing steps in the extrusion nixtamalization process, such 
as dry milling, cooking, and baking, where starch granules are 
exposed to more severe mechanical and thermal treatment 
than that used to obtain an extruded corn meal [49]. �e high 
RS in tortillas produced with ENCF is also related to the higher 
dietary fiber content in the pericarp [21].

In contrast, the production of RS in the traditional 
nixtamalization process occurs during the cooking, steeping, 
masa formation, and tortilla baking steps. �e RS content may 
decrease or increase according to the degree of starch gelati-
nization and type of resistant starch [47]. Similar RS values for 
corn flours reported previously [21, 41] agree with this study.

Retrogradation is directly related to the RS content. �e 
reorganization reactions between amylose and amylopectin 
in retrograded starch depend on the storage time and ability 
of these polymers to form a new crystalline network. Amylose 
affects the short-term storage and is responsible for hardening 
and the loss of flexibility in tortillas. Amylopectin has long-
term effects and is related to the recrystallization process [41].

3.4.3. Physical Properties.  Table 3 shows the weight, diameter, 
and thickness of tortillas made with both technologies. 
Tortillas made with ENCF had significantly (�푝 < 0.05) higher 
weight, diameter, and thickness values than those observed 
for fresh masa. �is is probably due to the whole corn milled 
to produce the ENCF. �erefore, the diameter and thickness 
of the dough disks can be increased. According to Mery et al. 
[50], the corn grit particle size and masa disk thickness are 
the most important attributes in the subjective measurement 
of tortilla quality.

3.4.4. Firmness.  Figure 4(a) presents the firmness of 
tortilla evaluated at 2, 24, and 48 h of storage time at room 
temperature (25°C). Tortillas were preheated (60°C) and 
then cooled to 30°C before the firmness measurement. �is 
heating process suggested by the corn flour industry (personal 
communication) allows the measurement of firmness in the 
usual way a tortilla is consumed. �e ANOVA indicated that 
tortillas made with ENCF were significantly harder (�푝 < 0.05)  
than those made with fresh masa. Firmness increased to 18% and 
50% in extruded tortillas and 0.75% and 1.25% in nixtamalized 
tortillas a�er 24 and 48 h of storage, respectively. �is is probably 
due to the processing conditions used during extrusion and 
the changes in the gelatinization, melting, and dextrinization 
that directly affect the texture of the starch gels [20].  

in the network structure. �e straight line observed in the 
extruded dough plot probably indicates the presence of pre-
gelatinized starch and the decrease in the highly branched 
structure of amylopectin chains due to shear and heat degra-
dation [33].

�e results for the elastic moduli were similar to those 
obtained for the viscous moduli (���) for both processes 
(Figure 3(b)). �e ��� of fresh masa displayed a gelatinization 
temperature range between 76°C and 80°C, a maximum peak 
value of 32 kPa, and an abrupt decay when gelatinization con-
cluded. In contrast, ��� of extruded masa decreased with the 
increase in temperature rise and did not show any peak.

�is pronounced reduction in the viscous modulus of 
extruded masa is related to the rapid gelatinization and the 
previous modification of the starch granule structure [12]. �� 
was greater than ��� for both processes, indicating the pre-
dominance of the elastic contribution over the viscous 
contribution.

We have found the temperature sweep test as a very useful 
tool because of rheological changes, mainly the peaks observed 
for the elastic and viscous moduli, are clearly attributable to 
changes in starch granules due to gelatinization, and allow us 
to graphically observe the differences in the degree to which 
starch changes are produced by both processes. Manipulating 
the WAC and WAI is a way to control extrusion conditions so 
that physicochemical starch changes would be similar in both 
processes. When we observe similar behaviors in the sweep 
test for the masa produced from extruded nixtamalized corn 
flour and fresh masa produced by the traditional nixtamali-
zation process, we will identify extrusion conditions where 
the starch changes are similar, which will give rise to tortillas 
with better textural and organoleptic properties that are 
obtained through the extrusion process.

3.4. Tortilla Physicochemical Properties

3.4.1. Moisture Content.  �e moisture content in the tortillas 
from the ENP was significantly (�푝 < 0.05) higher than from 
the TNP (Table 3). �is difference is probably due to the 
amount of water added by the operator. When dough and 
masa were prepared previously in the laboratory, an empirical 
moisture content was established. From this moment on, the 
measurement of subjective texture was the responsibility of 
the operator. Tortillas from both processes were prepared 

Table 3:  Physicochemical and physical characteristics of 
corn tortillas from the extruded (ENP) and traditional (TNP) 
nixtamalization processes.

1Mean ± standard deviation. 2 Mean with the same letter are not significantly 
different (�푝 > 0.05).

Characteristic ENP TNP
Moisture content (%) 45.0 ± 0.18a1 40.7 ± 1.63b
Resistant starch (g/100 g sample) 1.64 ± 0.06a 0.90 ± 0.04b
Physical characteristics
Weight (g) 26.81 ± 1.0a2 20.3 ± 1.57b
Diameter (cm) 14.0 ± 0.14a 13.9 ± 0.09b
�ickness (mm) 2.5 ± 0.1a 1.4 ± 0.11b
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attribute that is most affected by extrusion and associated with 
the texture of tortillas. Firmness values obtained for ENCF 
reported by Platt-Lucero et al. [13], and Gutiérrez-Dorado  
et al. [21], behaved in a similar manner.

3.4.5. Rollability.  Rollability is a common subjective test related 
to the starch gelatinization reached during nixtamalization, 
and it is affected by the lime concentration and cooking time 
[44]. Rollability values are measured by assigning a score that 
reflects the tortilla breakage and somehow measures the starch 
damage.

Figure 4(b) shows the tortilla rollability at 2, 24, and 48 h 
of storage at room temperature (25°C). �e ANOVA showed 
significant differences (�푝 < 0.05) at 2 h and very significant 
differences (�푝 < 0.01) a�er 24 h between both types of tortilla. 
�e measurement at 48 h did not show significant differences 
(�푝 > 0.05). �is is probably due to the retrogradation process 
undergone by all types of tortillas. For both processes, tortillas 
were more breakable as the storage time progressed. �e 
ANOVA also showed that the type of process and the storage 
time very significantly affected the rollability (�푝 < 0.01). �e 
interaction between both variables (process × time) was not 
significant (�푝 > 0.05).

�e tortilla reheating process was similar to that reported 
in the tortilla firmness section. �is procedure allowed us to 
obtain high rollability values, leading to a score above 4, and 
in our opinion, both tortilla types were adequate for the con-
sumer. Other studies showed that rollability of tortillas made 
with ENCF without a previous reheating process diminished 
drastically as the storage time increased [11, 13, 14].

3.5. Morphology.  Figure 5 shows the scanning electron 
micrographs (SEM) images of corn grain, flour, masa, and 
tortilla from the ENP (Figures 5(a), 5(b), 5(c), and 5(d), 
respectively) and TNP (Figures 5(e), 5(f), 5(g), and 5(h), 
respectively). �e presence of native and fragmented starch 
granules in each step of both processes was observed. Figures 
5(a) and 5(e) show SEM images of corn, the starch granules 

Another explanation is the effect of the milled whole corn fiber 
content used in the ENP.

Alam et al. [51], mentioned that flours with a smaller par-
ticle size result in a starch-fiber matrix with a rigid structure, 
and therefore a harder product. Hardness is likely the sensory 
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4. Conclusion

In general, the physicochemical, rheological, and morpholog-
ical characteristics of products from the traditional and extru-
sion nixtamalization processes were different from the 
nixtamalization extrusion process. �is may be the reason that 
there is more damage in corn starch in EPN than TNP. Corn 
flour from the TNP had lower PSI, and resistant starch but 
higher water absorption capacity than flour from the ENP. �e 
viscoelastic parameters �� and ��� as a function of frequency 
were higher in masa from the TNP than masa from the ENP. 
According to results of the temperature sweep test, Fresh masa 
from TNP showed a peak in �� (364 KPa) and in ��� (138 KPa), 
while masa from ENP had lower values of these peaks 
(�� = 113 KPa, ��� = 33.5 KPa). Tortillas from the traditional 
nixtamalization process showed lower hardness and higher 
rollability values a�er 24 h of storage. At 48 h of storage, similar 
values of those parameters were found in both processes. 
Extrusion proved to be a good alternative in the production 
of corn flour and tortillas, although dry milling produced 
(ENP) more starch damage than wet milling (TNP). �e resist-
ant starch content in corn flour, masa, and tortillas increased 
gradually in both processes, but were higher in ENP than TNP. 
�is represents nutrimental benefits in health for tortilla con-
sumers. Finally, the greatest starch damage in the ENP is dur-
ing the extrusion step to produce flour and in masa-tortilla 
baking step. In TNP, the greatest damage of starch is in 
masa-tortilla baking step.
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