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Studies of microbiomes are booming, along with the diversity of computational approaches to make sense out of the se-

quencing data and the volumes of accumulated microbial genotypes. A swift evaluation of newly published methods

and their improvements against established tools is necessary to reduce the time between the methods’ release and their

adoption in microbiome analyses. The LEMMI platform offers a novel approach for benchmarking software dedicated

to metagenome composition assessments based on read classification. It enables the integration of newly published methods

in an independent and centralized benchmark designed to be continuously open to new submissions. This allows developers

to be proactive regarding comparative evaluations and guarantees that any promising methods can be assessed side by side

with established tools quickly after their release. Moreover, LEMMI enforces an effective distribution through software con-

tainers to ensure long-term availability of all methods. Here, we detail the LEMMI workflow and discuss the performances of

some previously unevaluated tools. We see this platform eventually as a community-driven effort in which method devel-

opers can showcase novel approaches and get unbiased benchmarks for publications, and users can make informed choices

and obtain standardized and easy-to-use tools.

[Supplemental material is available for this article.]

Metagenomics has made possible the study of previously undis-
covered, unculturedmicroorganisms. To probe the vast hiddenmi-
crobial landscape we need effective bioinformatics tools, in
particular taxonomic classifiers for binning the sequencing reads
(i.e., grouping and labeling) and profiling the corresponding mi-
crobial community (i.e., defining the relative abundances of
taxa). This is computationally challenging, requiring time and re-
sources to query shotgun sequencing data against rapidly expand-
ing genomic databases. Users have to choose a solution among the
plethora of methods that are being developed in a quest for accu-
racy and efficiency, for instance, lowering the run time and mem-
ory usage by reducing the reference material while maintaining
the diversity represented (Truong et al. 2015; Kim et al. 2016).
To date, at least 100 published methods can be identified (https
://microbe.land/97-metagenomics-classifiers/), and new develop-
ments that may bring innovations to the field cohabit with re-im-
plementations of already-explored strategies, complicating
method selection, fragmenting the community of users, and hin-
dering experimental reproducibility. Papers describing these
methods often fall in the “self-assessment trap” (Norel et al.
2011), in which all publishedmethods are the best on carefully se-
lected data. Such assessments give no indication to potential users
about general performance, which should be a prerequisite before
considering any case-specific improvements or novel features.

Independent comparative benchmarking studies (Peabody
et al. 2015; Lindgreen et al. 2016; McIntyre et al. 2017; Gardner
et al. 2019; Ye et al. 2019) and challenges (Sczyrba et al. 2017)
are a major step toward a fair and efficient assessment of methods.
They discuss the results and pinpoint advantages and weaknesses
of different technical approaches, promote developments dedicat-

ed to specific technologies or problems (Bremges and McHardy
2018), and have introduced valuable benchmarking resources
(Belmann et al. 2015; Meyer et al. 2018, 2019). Unfortunately,
some tools have not been considered by any of the comparative
studies published to date. For instance, MetaCache (Müller et al.
2017), despite being an alternative to well-adopted tools such as
Kraken 2 (Wood et al. 2019), still lacks an independent confirma-
tion of the favorable evaluation presented by the investigators in
its accompanying paper. Although published benchmarking data
sets can be reused in subsequent publications, follow-up studies
comparing newly published methods under the same conditions
are not the norm. More importantly, the true weakness of these
studies is the absence of regularly scheduled publication of results,
with possibly years between successive assessments, because no
continuous monitoring strategy exists, perpetuating uncertainty
about the true state of the art.

To offer a solution to this problem, we introduce A Live
Evaluation of ComputationalMethods for Metagenome Investiga-
tion (LEMMI; https://lemmi.ezlab.org) (Fig. 1). It establishes con-
tinuous and generalizable comparisons of individual tools or
heterogeneous multistep pipelines in a controlled environment
to ensure publishedmethods have a reliable benchmark on unified
hardware. It hosts in its infrastructure a semiautomated evaluation
and presents detailed results and rankings for multiple analytic
objectives and their computational costs (e.g., accuracy vs. memo-
ry usage) in a web-based interface that allows users to assess the
pros and cons of new entries with more flexibility than a static re-
port would offer. The first available LEMMI component, which is
the focus of this publication, assesses taxonomic profilers
and binners. LEMMI follows several recommendations for efficient
“omics” tool benchmarking (Capella-Gutierrez et al. 2017; Maier-
Hein et al. 2018; Mangul et al. 2019a), namely, (1) using and
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distributing containers (i.e., isolated software packages) to allow re-
producibility and long-term availability of tools (Mangul et al.
2019b); (2) reporting the consumption of computational resourc-
es, which is essential as available hardware limits the choice to oth-
erwise less efficient methods; and (3) exploring parameters and
avoiding rankings based on a single metric. In the particular case
of taxonomic classification, a benchmark that uses the same refer-
ence for all methods is necessary to perform a valid evaluation of
their respective algorithms, in addition to assessing the variety of
available databases. Therefore, both strategies are implemented
by LEMMI. With an expected delay of a few weeks between sub-
mission and appearance of the method on the website, our solu-
tion complements and supports analyses of specific cases
discussed in self-evaluations or periodical comparative studies,
bridging the time gap between them. We describe below the ad-
vantages of the LEMMI workflow for tool developers and users,
and discuss the performances of some recently published
methods.

Results

A fully containerized hosted evaluation

LEMMI inputs consist of methods wrapped in standardized con-
tainers resembling a previously suggested format, bioboxes
(Belmann et al. 2015), which can be prepared by the LEMMI devel-
opment teams; the vision is for method developers to contribute
and submit to LEMMI themselves immediately on release of the
tool. In the latter case, containers can be exchanged through pub-
lic channels (e.g., https://hub.docker.com) to be loaded and run on
the LEMMI platform (Supplemental Fig. S1A). Rules are well de-
fined (https://www.ezlab.org/lemmi_documentation.html), and
no human-made decisions and curations are needed once the con-
tainer is submitted. This minimizes the time from submission to
the publication of the results and also excludes any arbitrary inter-
pretation. In addition, evaluated containers and their building
sources can be downloaded by users from the LEMMI website, un-
less the method is commercialized and/or not under open source
licensing. Thus, users have a simple access to the evaluated version
to conduct their analyses. LEMMI is the first solution in its field to
compel containerization to manage a benchmarking workflow in-
stead of simply suggesting this solution. The benefits of such an
approach regarding systematic reevaluation (Supplemental Fig.
S1B) and reusability are likely greater in the long term than mere

submission of results. As strategies that
facilitate automated conversion between
distribution channels are being explored,
for instance from BioConda to biocon-
tainers (da Veiga Leprevost et al. 2017),
promoting benchmarking processes
that rely exclusively on these channels
to obtain all methods ensures that the
otherwise subjective question of install-
ability is addressed unambiguously.

A dynamic interface to explore multiple

objectives

Making informed decisions when de-
signing analyses or pipelines requires
a thorough exploration of the parameter
space of available algorithms. In LEMMI,
multiple runs of a container enable such

exploration as shown with the tool MetaCache, which was run
with different k-mer lengths (Figs. 2, 3; Supplemental Figs. S2–
S5, S7; Supplemental Table S1). On the other hand, users are some-
times looking for trade-offs between several features offered by a
single tool or pipeline and its ability to complete multiple objec-
tives with a single analysis (e.g., profiling and binning), given
hardware limitations imposed by their environment. Thus,
LEMMI does not segregate methods in categories with separate
runs for the two objectives, because many tools provide both fea-
tures or have extra scripts that blur the demarcation. For example,
Kraken (Wood and Salzberg 2014; Wood et al. 2019) is a read clas-
sifier that can be associated with its companion tool Bracken (Lu
et al. 2017) to produce a valid taxonomic abundance profile.
LEMMI is “results-oriented,” the tools or pipelines wrapped in a
container can output either abundance profiles, bins, or both in
a single run. The metrics specified when exploring the results
will define the dynamic ranking and determine whether the
tool/pipeline meets the users’ needs without specifically asking
for a profiler or a binner. These two-dimensional results can be vi-
sualized from different perspectives through a multicriteria rank-
ing in which users can put the emphasis on metrics matching
the objectives they recognize as important. These choices are algo-
rithmically converted into scores, ordering methods to facilitate
more detailed investigations (Figs. 2, 3; Supplemental Figs. S2–
S8). In each displayed ranking, a green color highlights methods
that score >90% of the theoretical maximum for the selected met-
rics, to give the user a sense of the room for improvement left to
future developments.

Prepackaged and built reference databases

Somemethod implementations provide prepackaged reference da-
tabases, and others provide scripts to generate them. LEMMI eval-
uates these prepackaged references to include tools whose value
lies in providing a curated database, for example, marker genes
(Truong et al. 2015), and to keep track of reference genome cata-
logs available to method users. However, because the use of differ-
ent reference databases is likely a major source of result
discrepancies, methods accepting any nucleotide or protein files
to construct their database need to include the corresponding
scripts in the container to create references as part of the bench-
mark. This enables LEMMI to report the resources (i.e., memory,
run time) required to both build a reference and run the analysis,
and then to assess the algorithm independently from its default

Figure 1. Connecting users and developers through benchmarking. The LEMMI platform facilitates
the access to up-to-date implementations of methods for taxonomic binning and profiling. LEMMI cre-
ates a link between developers and users as it provides independent and unbiased benchmarks that are
valuable to both. Developers need comparative evaluations to keep improving the methodology and to
get their work published in peer-reviewed journals. Method users need a resource that keeps track of new
developments and provides a flexible assessment of their performances to match their experimental
goals, resources, and expectations. The containerized approach of LEMMI guarantees the transfer of a
stable and usable implementation of each method from the developer to the final user, as they appear
in the evaluation.
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reference database. To provide a continuous evaluation that is un-
affected by the publication of new genomic sequences, LEMMI
maintains an in-house repository currently based on all bacterial
and archaeal RefSeq (O’Leary et al. 2016) assemblies. However,
only entries having both nucleotide and corresponding pro-
tein files are kept to offer both types of sequences as a possible ref-
erence with equal representation (hereafter, the LEMMI/RefSeq

repository). When conducting a benchmark run, LEMMI can sub-
sample it by publication date, assembly states, or a fixed number of
representatives per taxonomic identifier (taxid). As for parameters,
this enables for each method the exploration of references, for in-
stance, by restraining the sourcematerial to what was available at a
given date or to specific criteria (e.g., assembly states being only
“Complete Genome”). Not every method can process the

Figure 2. LEMMI web interface. (i) The LEMMI users obtain a list of entries suited to their needs through the dynamic ranking interface that allows them
to select and weight the criteria of interest. The ranking visible here shows the performances when identifying species while ignoring taxa under 100 reads,
balancing precision and recall. The score assigned to each entry visible in LEMMI rankings averages selected metrics over all tested data sets. Underlying
values can be seen by clicking on the score (∗). (ii) A unique “fingerprint” allows custom rankings to be shared and restored at any time on the LEMMI
platform through the address bar. (iii) The benchmark category can be selected in the dashboard. (iv) Prediction accuracy metrics can be chosen along
with their importance (weight for “Important” is 3, “Somewhat” is 1, and “Not at all” is 0). This will cause the list to be updated with the corresponding
scores. (v) Several presets corresponding to common expectations are available. (vi) Computational resources and the time required to complete the anal-
ysis can be included as an additional factor to rank the methods.
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125,000 genomes included in LEMMI/RefSeq with the resources
provided for benchmarking (245 GB of RAM, representing a medi-
um-scale environment). It is therefore relevant to assess which
subsets constitute good trade-offs in terms of run time, memory
use, and accuracy of the predictions for each method, and to track
the impact of continuous database growth on different methods
(Supplemental Fig. S6; Nasko et al. 2018). For all methods allowing
database creation, we first used as reference one representative per
species taxid (entries labeled as RefSeq/08.2018/1rep.), which was
defined empirically. This is suitable for most tools. Methods that
could not build this reference owing to memory limitation were

considered as being above the reasonable resource requirements
to be useful to most users. They are listed on https://www.ezlab
.org/lemmi_failed.html. On the other end of the range, memory-
efficient methods that could process the complete set of reference
genomeswere also evaluatedwith thewhole LEMMI/RefSeq repos-
itory to test whether this technical advantage translates into better
predictions (entries labeled as RefSeq/08.2018/all) (Supplemental
Table S1). Our results with Kraken 2 indicate that it is the case,
with a cost in terms of extra memory that is relatively small with
this tool. In the case of MetaCache, a trade-off had to be made to
use more genomes, decreasing the k-mer length from 22 to 16.

B

A

C

Figure 3. “Detailed plots by data sets” interface. Plots for up to 17 metrics are available for each data set, and the LEMMI user can toggle each line rep-
resenting a method associated with a reference and specific parameters individually (i). Plots can be zoomed in to disentangle overlapping points and per-
mit focused interpretations (ii). The pages exist for all taxonomic ranks investigated, that is, genus and species in the release beta01. (A) The precision-recall
curve in species identification, when filtering to only consider taxa represented by an increasing minimum of reads. If a curve contains fewer than four
independent points (precision-recall at minimum 1/10/100/1000 reads), it indicates that filtering did not change the precision and recall at all thresholds,
leading to overlaps. The entries are amix of methods using references freely provided or built using the currentmaximal memory capacity of LEMMI of 245
GB. B and C show results when assessing methods using an identical built reference. (B) Illustration showing how LEMMI assesses the precision improve-
ment enabled by filtering low abundance taxa at different thresholds. (C) Reporting the peak of memory necessary to construct the reference.
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Results indicate it is an efficient choice with some configurations
and data sets, as seen on Figure 2 and Supplemental Figure S5, in
which MetaCache using k=16 outperforms the use of k=22
thanks to a larger reference (Supplemental Fig. S7). MetaCache
with k=16 is better ranked thanwith k=22 in some configurations
(Supplemental Fig. S2A,D), but it is not in others (Supplemental
Fig. S2C) in which a larger k-mer value is more beneficial than a
larger reference (Fig. 3).

In silico data sets and genome exclusion

LEMMI uses its repository not only as source material provided to
each method to create their reference database, but also for sam-
pling mock microbial communities to generate in silico paired-
end short reads used to measure the accuracy of predictions
made by each method. It implements a genome exclusion
(Peabody et al. 2015) approach to simulate unknown organisms
at various taxonomic ranks and to prevent overfitting by excluding
the source of the analyzed reads from the reference (Supplemental
Fig. S9;Methods). Inmost biological samples, it is expected that or-
ganisms unrepresented in databases constitute a fraction of the
reads. A proper benchmark should assess the ability of methods
to label unknown organisms at a given taxonomic level as being
unknown. Simulating clades that have no corresponding organ-
isms in the reference is therefore useful to spotmethods producing
an excess of false positive identifications under this situation (Fig.
3B). Data sets generated in-house by LEMMI contain randomly
sampled bacteria and archaea, representing generic communities
of variable complexity in terms of number of species, abundance
distribution (i.e., absence or presence of taxa below 100 reads),
and number of nonunique k-mers composing the reads. The de-
scription of all data sets is presented in Supplemental Table S2.
Their detailed taxonomic compositions remain private as long as
they are in use in the platform and will be published when
LEMMI moves to its next major release (Methods). A demo data
set is available to exemplify their typical composition and help
with preparing a method container for evaluation. LEMMI data
sets are complemented by others used in previously published
benchmarking studies, namely CAMI1 (Sczyrba et al. 2017) and
mockrobiota (Bokulich et al. 2016). They are useful because they
enable comparisons with past benchmarks familiar to the users
and introduce variety in terms of data sets tested, which permits
the identification of unwanted patterns inherent in the bench-
marking design (Supplemental Note S1). Detailed evaluation re-
sults using up to 17 metrics are presented individually in
interactive plots for each data set and taxonomic rank, namely, ge-
nus and species (Fig. 3; Supplemental Figs. S3–S8; Supplemental
Table S3).

Two benchmarking categories

Our platformoffers evaluations conductedwith preprocessed data-
bases, meaning no possibility of genome exclusion, as well as eval-
uations conducted under an identical set of genomes absent from
the source of in silico reads. Their results cannot be interpreted to-
gether, and LEMMI distinguishes two benchmarking categories
(Fig. 2). When choosing “TOOLS & REFERENCES,” users can get
an overview of all tools and references included in LEMMI and
their respective abilities to capture the known microbial diversity.
This is strongly influenced by the database sampling strategy and
creation date, but reflects what practitioners will encounter when
using ready-to-use solutions. The second category, “METHOD
ALGORITHMS,” considers only methods and data sets that permit

the creation of a reference thatwill be identical for each run. This is
the best possible benchmark for developers to support their algo-
rithm improvement claims and for advanced users interested in
producing their own reference database after selecting themost ef-
ficient method.

Evaluation of recent methods

The release of the LEMMI benchmarking platform described here
(beta01.20191118) includes the well-established methods Centri-
fuge (Kim et al. 2016), Kraken (Wood and Salzberg 2014) and Kra-
ken 2 (Wood et al. 2019), alongwith Bracken (Lu et al. 2017), Kaiju
(Menzel et al. 2016), and MetaPhlAn2 (Truong et al. 2015). They
are a good representation of the field as it is today, because they
stand among methods evaluated together recently (Ye et al.
2019). This allows LEMMI users to judge additionalmethods never
before evaluated side by side with tools they are already familiar
with. We highlight on Figures 2 and 3 and Supplemental Figures
S2–S5 and S7 a glimpse of the performances of the novel algo-
rithms implemented by ganon (Piro et al. 2020), MetaCache (Mül-
ler et al. 2017), and CCMetagen (Marcelino et al. 2020), which are
described in their supporting publications but currently absent
fromcomparative benchmarks.We report overall very goodperfor-
mances in recall and precision at the species level for MetaCache
and ganon. These tools perform well when compared to other so-
lutions using freely selected references (Figs. 2, 3A; Supplemental
Fig. S2A) as well as when compared to other tools using an identi-
cal built reference (Fig. 3B; Supplemental Figs. S2E, S3). They are
also top scorers when taxonomic binning objectives are consid-
ered (Supplemental Figs. S2D,F, S4A,C). CCMetagen minimizes
false positives but suffers from poor recall (Fig. 3A,B), except
when analyzing data sets having a lower number of species (Sup-
plemental Fig. S5). As LEMMIminor releases are continuously pro-
duced, the current list of methods and databases (Supplemental
Table S1) will rapidly be enriched. To appreciate the full extent
of the results through detailed plots, we invite readers to visit the
LEMMI web platform (https://lemmi.ezlab.org).

Evaluation of different references with Kraken 2

Taking advantage of the flexible reference selection in LEMMI, we
investigated the improvement of the Kraken algorithm in its sec-
ond version (Wood et al. 2019) regarding its ability to build large
references without using a considerable amount of memory.
Kraken 2 is among the most memory-efficient methods evaluated
in LEMMI to date when building the medium-sized representative
reference (RefSeq/08.2018/1rep.) used for all tools (Fig. 3C) or the
largest reference (RefSeq/08.2018/all) (Supplemental Fig. S7).
Kraken 2 combined with Bracken 2 remains among the best meth-
ods according to several metrics and is the top scorer in relative
abundance estimation (Figs. 2, 3; Supplemental Fig. S2A,B,D).
We then compared the most comprehensive reference built in
LEMMI with one of Kraken’s prebuilt databases: Minikraken.
This 8 GB reference is intended for low memory environments
and created by subsampling k-mers from RefSeq “Complete ge-
nomes” sequences only. The diversity of data sets offered by
LEMMI shows that good performances with Minikraken depend
almost entirely on the source of the in silico reads being complete
genome sequences. Otherwise, Minikraken ignores the large part
of the diversity proxied by NCBI species taxids that have no com-
plete genome representatives, which is likely present in real sam-
ples. This can be observed when analyzing CAMI1 data sets, in
which a large proportion of taxa is overlooked, whereas Kraken 2
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can actually recover themwhen using the comprehensive LEMMI/
RefSeq repository as reference (Supplemental Fig. S8).

Discussion

Here, we introduce the first-of-its-kind, continuous integration
benchmarking platform formetagenomics classifiers to enable im-
mediate and independent assessment of any newly published
method using data sets of various compositions that can be gener-
ated or reused from previous effort. A key advantage of LEMMI is
that the method and not the result of the computation is submit-
ted for evaluation, enabling assessment under identical conditions
and subsequent reevaluations on new data. It also proves that the
tool can easily function outside the developer’s environment.
Thanks to this, LEMMI envisions a sustainable life cycle: It main-
tains a benchmark unchanged for a certain period of time to allow
many methods to be integrated, and thenmigrates all the content
to an updated version to meet the new expectations of the field.
We are planning to produce a new major release of LEMMI every
2 yr to renew the data sets, for example, to support long read tech-
nologies, to integrate newly discovered taxa or covering currently
unsupported clades, and above all to make the benchmark design
evolve. For instance, although the initial release presented in this
publication uses the NCBI taxonomy (Federhen 2012) and has
put the focus on evaluating the lowest supported ranks, that is, ge-
nus and species, the pipeline is designed to integrate alternative
ranks or taxonomies if future method implementations embrace
them. There are calls to revise NCBI taxonomy (Parks et al. 2018,
2020) and future tools could bemore agnostic regarding taxonom-
ic systems (i.e., configuring the ranks and identifiers, instead of
having the NCBI taxonomy entangled with the core classification
algorithm). This would enable the exploration of new approaches
meant to improve the classification resolution, for example, reach-
ing bacterial strains or viral operational taxonomic units (Paez-
Espino et al. 2019). Moreover, because LEMMI is an approach
that avoids manual intervention, it encourages developers with
different ideas to agree on comparable outputs besides standard-
ized file formats. Post-processing and filtering procedures can be
explored as parameters during the benchmarking. Feedback and
exchanges within the community of method developers and users
will be important aspects of the LEMMI evolution and will help to
define new directions and rules. When a major LEMMI release oc-
curs, methods that are still valuable will be reevaluated as they
stand if their developers are no longer active, or will be replaced
by an updated container otherwise (Supplemental Fig. S1B).
Developers interested in submitting their tools can visit https
://lemmi.ezlab.org, where documentation, support, a discussion
board, and evaluated containers are available. Future extensions
of LEMMI may also include a standalone version to allow private
assessment and help with development before submitting to the
public platform for an independent evaluation. At all times,
LEMMI ensures a traceable archive of past rankings through the
use of unique “fingerprints” to be reported in publications.

In addition to presenting the pipeline, we highlight the high
potential of some recently published methods that had not previ-
ously been evaluated independently.MetaCache and ganon are ef-
ficient methods constituting an alternative to Kraken 2 combined
with Bracken 2. When methods are evaluated using an identical
reference of one representative per species, ganon is ranked first
in accurately predicting the species composition, whereas
MetaCache has the best binning performances. This makes them
worth considering as alternatives to other solutions, especially if

their specific innovations, for instance, the ability of ganon to in-
crementally update a reference database without full reconstruc-
tion, are beneficial to the user. However, Kraken 2 is definitely
the most memory-efficient tool and, with the Bayesian reestima-
tion offered by Bracken 2, remains the best solution among those
compared for relative abundance estimation. We also show, by
comparing Minikraken with other references, the importance of
considering all assembly states issued fromRefSeq to avoidmissing
most of the diversity available in public databases. Therefore, bet-
ter subsampling strategies than simply keeping complete genome
sequences should be explored by database creators to include the
whole available genomic diversity while limiting the number of
genomes to mitigate the constraints of insufficient computational
resources. Moreover, to assess the true ability of methods to scale
with the ever-growing diversity of sequenced taxa, future bench-
marking efforts should not rely exclusively on complete genomes
(Ye et al. 2019), because a substantial fraction of assemblies are
deposited in databases as draft genomes (Supplemental Note S1).

Benchmarking has become amust-have requirement for pub-
lishing novel methods. To bring credibility and facilitate adoption
by their target audience, it is essential that new methods appear
rapidly side by side with established competitors in a trusted inde-
pendent ranking. LEMMI encourages developers to consider bio-
containers to disseminate their work and to standardize the
results formats so users can obtain easy-to-use and stable imple-
mentations of up-to-date methods as they appear in the
benchmark.

Methods

Release strategy

LEMMI rankings are identified by the major release version of the
platform (e.g., beta01) and theminor release date (e.g., 20191118).
Until the next major release, the content of the LEMMI/RefSeq re-
pository, the version of the NCBI taxonomy, and the data sets are
frozen to a specific version that guarantees exact comparisons.
Continuous additions or withdrawals of an entry in the rankings
generate a newminor release date, while previous rankings remain
accessible by requesting old fingerprints (e.g., https://lemmi.ezlab
.org/#/rankings/SD.DEFAULT.beta01.20191118).

Structure of the pipeline

An in-house Python3-based (McKinney 2010; Oliphant 2015)
controller coordinates the many subtasks required to generate
data sets, run the candidate containers, and compute the statistics.
Snakemake 5.3.1 (Koster and Rahmann 2012) is used to supervise
individual subtasks such as generating a data set or running one
evaluation. The process is semiautomated through configuration
files, designed to allow a potential full automation through a
web application. To be easily deployable, the benchmarking pipe-
line itself is wrapped in a Docker container. The plots presented on
the user interface are generated with the mpld3 library (https://
mpld3.github.io) (Hunter 2007).

LEMMI containers

The LEMMI containers are implemented for Docker 18.09.0-ce.
They partially follow the design (Belmann et al. 2015) introduced
by http://bioboxes.org/ as part of the first CAMI challenge effort.
The required output files are compatible with the profiling and
binning format created for the CAMI challenge. Two tasks have
to be implemented to generate a reference and conduct an analysis
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(Supplemental Fig. S1A). To take part in the benchmark, a method
developer has to build the container on their own environment,
while ensuring that both tasks can be run by an unprivileged
user and return the desired outputs. A tutorial is available on
https://www.ezlab.org/lemmi_documentation.html. The contain-
ers or the sources to recreate them are made available to the
users. The sources of all method containers presented as results
in this study are available on GitHub (https://gitlab.com/ezlab/
lemmi/tree/beta01.20191118/containers).

Computing resources

During the benchmarking process, the container is loaded on
a dedicated server and given 245 GB of RAM and 32 cores.
Reaching the memory limit will cause the container to be killed,
ending the benchmarking process unsuccessfully. All inputs and
outputs are written on a local disk, and the container is not given
access to the Internet.

Taxonomy

The NCBI taxonomy is used to validate all entries throughout the
process, andunknown taxids are ignored (unclassified). The frame-
work etetoolkit (ETE3) (Huerta-Cepas et al. 2016) is used to query
the taxonomy. The database used in beta01 was downloaded on
March 9, 2018, and remains frozen to this version until a newma-
jor release of the LEMMI platform.

RefSeq repository

All RefSeq assemblies for bacteria, archaea, and viruses were down-
loaded from https://ftp.ncbi.nlm.nih.gov/refseq/release/ (down-
load date for the beta01 release was August 2018) with the
conditions that they contained both a protein and a nucleotide
file and that their taxid has a corresponding entry in the ETE3
NCBI taxonomy database, for a total of 132,167 files of each se-
quence type. The taxonomic lineage for the seven main levels
was extracted with ETE3 (superkingdom, phylum, class, order,
family, genus, species). Viruses were not used for generating refer-
ences and data sets in the current release, and the number of ge-
nomes in the reference RefSeq/08.2018/all is 124,289. To subset
the repository and keep one representative per species as inputs
for the reference construction, the list of bacterial and archaeal ge-
nomes was sorted according to the assembly states (1:Complete
Genome, 2:Chromosome, 3:Scaffold, 4:Contig) and the first entry
for each species taxidwas retained, for a total of 18,907 files.When
subsampling the repository in the genome exclusion mode (i.e.,
for the METHOD ALGORITHMS category) (Supplemental Fig.
S9), if the entry to be selected was part of the reads, the next repre-
sentative in the list was used instead when available.

LEMMI data sets

To sample the genomes included in the LEMMI data sets, a custom
Python script was used to randomly select representative genomes
in the LEMMI/RefSeq assembly repository, among bacterial and ar-
chaeal content (Supplemental Table S2). Their abundancewas ran-
domly defined following a lognormal distribution (mean=1,
standard deviation) (Supplemental Table S2). In the case of
LEMMI_LOWDIV data sets, additional low coverage species (abun-
dance corresponding to <100 reads) weremanually defined, but in
LEMMI_MEDDIV data sets, low coverage species were produced as
part of the random sampling procedure. Each species abundance
was normalized according to the species average genome size (as
available in the LEMMI/RefSeq repository) to get closer to organ-
isms’ abundances (considering one genome copy per cell), and

the total was normalized to one to constitute a relative abundance
profile. Therefore, both tools classifying all reads and those using
marker genes can normalize their output to provide a unified an-
swer. BEAR (Johnson et al. 2014) was used to generate paired-end
reads, 2 × 150 bp, and DRISEE (Keegan et al. 2012) was used to ex-
tract an error profile from the NCBI Sequence Read Archive (SRA)
entry ERX2528389 to be applied onto the generated reads. This ap-
proach, while biased toward that particular sample, was preferred
to a simulation to model the artificial reads with an error pattern
coming from a real experiment. The ground truth profile for the
seven taxonomic ranks and taxonomic bins for species and genus
were kept. The nonunique 50-mers and 31-mers diversity of the
obtained reads were generated with Jellyfish 2.2.8 (Marçais and
Kingsford 2011) on the concatenated pair of reads using the fol-
lowing parameters: jellyfish count -m 31 -s 3G ‐‐bf-size 5G -t 8 -L
1 reads.fq.

Additional data sets

The CAMI1 data sets were obtained from https://data.cami-
challenge.org/ (accessed September 2018) alongwith themetadata
describing their content, already in the expected file format. The
binning details were reprocessed to obtain distinct lists at the spe-
cies and genus rank. CAMI data sets are in silico sequencing reads
sampled frommockmetagenomes generated using real sequenced
bacteria, archaea, viruses, plasmids, and other circular elements
that were new at the time of the challenge and subsequently
made publicly available (Sczyrba et al. 2017). The mockrobiota-
17 data set (Kozich et al. 2013; Bokulich et al. 2016) was obtained
through GitHub (https://github.com/caporaso-lab/mockrobiota)
and reprocessed to obtain a taxonomic profile in the appropriate
format. It is composed of even amounts of genomic DNA from
21 bacterial strains. No binning detail is available for this data
set; therefore, no assessment of this aspect is based on this data
set. Diversity of 50-mers and 31-mers were computed as detailed
above.

Analysis of the results

The profile and binning reports are processed with OPAL 0.2.8
(Meyer et al. 2019) and AMBER 0.7.0 (Meyer et al. 2018) against
the ground truth to obtain awide range ofmetrics. Binning reports
are processed to obtain a file for each taxonomic rank (genus/spe-
cies), moving reads up from lowest levels. The profiles of the can-
didate methods and the ground truth are filtered to discard low
coverage taxa at different thresholds (below values corresponding
to 1/10/100/1000 reads), and all metrics are computed for all val-
ues. When a container is not able to provide a profile as output,
the LEMMI platform generates one using the proportion of report-
ed reads. Taxa detection metrics are based on OPAL and thus on
the profile output. Methods reporting a profile with a zero score
for low abundance taxa despite being present in their binning files
will shift the balance from recall to precision. The low abundance
score takes into account both the profile and binning output and is
a custommetric calculated separately to evaluate the ability of the
method to correctly identify organisms represented with very low
read coverage (<100 reads). However, it penalizesmethods likely to
recover these organisms by recurrent reporting of the same taxids
owing to very poor precision. Because false positives always have a
true abundance of zero, it is not possible in a given data set to filter
low abundance false positives to compute them against low abun-
dance true positives and obtain a precision restricted to these taxa.
A different approach has to be used. The metric is computed by
pairing two data sets to judge whether a prediction can be trusted.
As illustrated with Supplemental Figure S10, the data sets D1 and
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D2 contain a subset of lowabundance taxa (D1_low,D2_low, <100
reads coverage). When computing themetric on predictionsmade
by a method on D1, all correctly identified taxa belonging to
D1_low increase the low abundance score for that method. How-
ever, if one of these taxa is also predicted in D2 when it does not
exist in D2, the method is not reliable in detecting this taxon,
and this decreases the low abundance score for D1. This is a proxy
for low abundance precision. The metric is also applied from the
D2 perspective, D2_low being validated through the same process
against D1. Thus, both paired data sets provide a low abundance
score between 0.0 and 1.0. In the current release of LEMMI, this
metric is only defined for the pair of LEMMI_LOWDIV and the
pair of LEMMI_MEDDIV data sets (low abundance species: n=
10, n=8, n= 98, and n= 138 for LEMMI_LOWDIV_001, LEMMI_
LOWDIV_002, LEMMI_MEDDIV_001, and LEMMI_MEDDIV_
002, respectively). The run time corresponds to the time in
minutes during which the container is loaded. The memory is
the peak value of total RSS memory reported when the container
is loaded to complete one task. Methods unable to deliver part of
the expected outputs are assigned 0.0 for the corresponding met-
rics (e.g., methods unable to provide a read binning report).

Ranking score calculation

Metrics are averaged over all data sets. Values that are not already
between 0.0 and 1.0, with 1.0 being the best score, are trans-
formed. The details of these transformations are presented in
Supplemental Table S4. Any resulting metric below 0.0 or above
1.0 is set to be 0 (in practice, 10−5 to prevent divisions by zero)
and 1.0, respectively. Each value is calculated for genus and species
at 1, 10, and 100 reads low coverage filtering level and used or ig-
nored according to the choice of the LEMMI user regarding these
parameters. The final score displayed in the ranking is the harmon-
ic mean of all retained metrics, taken into account 0, 1, or 3 times,
depending on the weight assigned to the metric by the LEMMI
user. Harmonic mean is preferred to arithmetic mean to combine
quantities with different measures in the same way that the F1-
score averages precision and recall.

Data access

All containers representing evaluated methods are available on
https://lemmi.ezlab.org and as Supplemental Code. The LEMMI
demo data set is available in the Zenodo repository (https
://zenodo.org/record/2651062).
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