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Abstract
As a prominent regulator of plant growth and development, the hormone auxin
plays an essential role in controlling cell division and expansion.
Auxin-responsive gene transcription is mediated through the TRANSPORT
INHIBITOR RESPONSE1/AUXIN SIGNALING F-BOX (TIR1/AFB) pathway.
Roles for TIR1/AFB pathway components in auxin response are understood
best, but additional factors implicated in auxin responses require more study.
The function of these factors, including S-Phase Kinase-Associated Protein 2A
(SKP2A), SMALL AUXIN UP RNAs (SAURs), INDOLE 3-BUTYRIC ACID
RESPONSE5 (IBR5), and AUXIN BINDING PROTEIN1 (ABP1), has remained
largely obscure. Recent advances have begun to clarify roles for these factors
in auxin response while also raising additional questions to be answered.
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Introduction
The plant hormone auxin plays a vital role in nearly every aspect of 
plant growth and development1. Auxin-responsive gene expression 
relies on the TRANSPORT INHIBITOR RESPONSE1/AUXIN 
SIGNALING F-BOX (TIR1/AFB) pathway to trigger the expres-
sion of genes controlling auxin-regulated cell division, expansion, 
and differentiation2,3. Whereas the role of the TIR1/AFB pathway 
in the auxin signal transduction pathway has been well established, 
the existence of additional components raises the possibility that we 
have yet to uncover the entire story of auxin signaling.

Auxin signaling through the TIR1/AFB pathway involves three 
major protein families (Figure 1A) – the auxin-binding TIR1/AFB 
F-box proteins, the AUXIN RESPONSE FACTOR (ARF) transcrip-
tion factors, and the AUXIN/INDOLE-3-ACETIC ACID INDUC-
IBLE (Aux/IAA) repressor proteins2,3. In the absence of auxin, the 
Aux/IAA proteins repress activity of the ARF transcription factors4. 
In the presence of auxin, the TIR1/AFB F-box proteins, which par-
ticipate in a SCF (Skp1-Cullin-F-box) E3 ubiquitin ligase, interact 
with Aux/IAA repressor proteins to form a co-receptor, with auxin 
acting as the “molecular glue”4–6. This interaction results in ubiq-
uitylation and consequent degradation of the Aux/IAA repressor 
proteins through the 26S proteasome, relieving repression of the 
ARF transcription factors and allowing for auxin-regulated gene 
transcription7. Interactions among these three protein families is now 
understood at a molecular level2 and provides a signal transduction 
pathway that controls auxin-responsive gene transcription in plants.  
For recent reviews of the TIR1/AFB pathway, please see 1,3.

In addition to components of the TIR1/AFB pathway, other fac-
tors implicated in auxin response have been identified – however, 
roles for these components in regulating auxin signaling are much 
less understood. Although insight into the function of some of these 
factors, such as S-PHASE KINASE-ASSOCIATED PROTEIN 
2A (SKP2A), SMALL AUXIN UP RNAs (SAURs), INDOLE 
3-BUTYRIC ACID RESPONSE5 (IBR5), and AUXIN BINDING 
PROTEIN1 (ABP1), has been elusive, roles for these factors in reg-
ulating auxin outputs are slowly starting to be determined. In this 
commentary, we explore recent advances in our understanding of 
these factors and their roles in auxin response.

SKP2A
Whereas extensive work has gone into understanding the auxin-
binding capabilities of TIR1 and its downstream effects on auxin-
regulated developmental responses (Figure 1A), less is known 
about the molecular mechanisms that directly connect auxin to its 
role in cell division. Several cell cycle genes are upregulated by 
auxin8 and other cell cycle genes contain auxin response elements 
in their promoter regions; however, these do not appear to be upreg-
ulated by auxin8, suggesting that additional mechanisms linking 
auxin to cell division control may exist. Heterologously expressed 
SKP2A, an F-box protein involved in regulating the proteolysis of 
cell-cycle-related transcription factors9,10, directly binds auxin11 and 
may provide a mechanism for auxin-mediated regulation of cell 
division (Figure 1B).

The retinoblastoma-E2F pathway regulates the cell cycle through 
the interaction of E2F proteins with dimerization proteins (DPs) 
to form transcription factors that either activate or repress the 

expression of genes involved in cell cycle progression12. SKP2A 
incorporates into an SCF complex9,13 with E3 ubiquitin ligase 
activity13. Intriguingly, binding of auxin by SKP2A is necessary for 
degradation of E2FC and its dimerization partner DPB through the 
26S proteasome11. Degradation of E2FC and DPB relieves repres-
sion of cell cycle control genes to allow cell cycle progression9,10. In 
addition to regulating the degradation of E2FC/DPB, auxin binding 
promotes proteolysis of SKP2A itself13, perhaps setting up a system 
in which auxin prevents SKP2A overfunction11. The skp2a mutant 
hyperaccumulates E2FC and DPB protein10,13. Further, expressing a 
SKP2A variant unable to bind auxin in the mutant background fails 
to rescue this phenotype, suggesting that auxin binding by SKP2A 
is required for E2FC/DPB degradation11. Overexpression of SKP2A 
results in increased cell division and induces lateral root primordia 
(LRP) formation, a process known to be dependent on auxin 
signaling9. The molecular phenotypes of the skp2a mutant com-
bined with the phenotypes of the SKP2A overexpression lines sug-
gest a role for SKP2A in promoting auxin-regulated cell division.

Involvement of SKP2A in auxin binding and consequent degrada-
tion of the cell-cycle regulators E2FC and DPB implicate this F-box 
as a missing link connecting auxin regulation to cell division; how-
ever, relatively little is known about this pathway. Many questions 
remain for SKP2A roles in auxin-regulated cell division control. 
For example, SKP2A directly binds auxin and functions as part of 
an SCF complex responsible for targeting downstream components 
for degradation – are additional factors, other than E2FC and DPB, 
targeted for degradation by SKP2A to contribute to auxin response? 
Further, are activating E2F+/EP+ complexes similarly regulated by 
the proteasome? What is the effect on plant growth and develop-
ment if this auxin-induced degradation of these factors is disrupted? 
There appear to be no gross effects on plant morphology in the 
skp2a mutant; is this because of redundancy or is it indicative of a 
minor role for SKP2A in plant growth and development? Answer-
ing these questions will inform our understanding of SKP2A roles 
in mediating auxin effects on cell division.

SAUR proteins
Auxin regulation downstream of the TIR1/AFB pathway involves 
the induction of the early auxin response gene family SAURs. Ini-
tially discovered as auxin-induced transcripts in elongating soybean 
hypocotyls using a hybridization screen14, multiple lines of evidence 
have been used to assign SAUR functions in auxin-related aspects 
of plant growth and development, including cell expansion, tropic 
growth, and apical hook development15. Although SAURs represent 
the largest family of early auxin response genes, SAUR function in 
mediating auxin effects has only recently begun to be elucidated.

Ca2+ is a well-known secondary messenger regulating develop-
mental and physiological aspects of plant growth16. Auxin has been 
proposed as a Ca2+ activating signal17; however, mechanisms con-
necting Ca2+ to auxin signaling have remained largely elusive. SAUR 
proteins from multiple species interact with calmodulin (CaM) in a 
calcium-dependent manner18–20 and additional SAUR proteins are 
predicted to contain a CaM-binding site15. Binding of SAUR70 to 
CaM or CaM-like proteins has been confirmed in planta19; how-
ever, further studies will be necessary to determine the extent and 
functional relevance of SAUR-CaM interactions in auxin-regulated 
calcium signaling.
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Figure 1. Auxin signal transduction pathways. (A) Model of the TRANSPORT INHIBITOR RESPONSE1/AUXIN SIGNALING F-BOX (TIR1/AFB) 
signaling pathway. Auxin promotes the formation of the TIR1/AFB Auxin/INDOLE-3-ACETIC ACID INDUCIBLE (Aux/IAA) co-receptor 
to promote the ubiquitylation and subsequent degradation of the Aux/IAA repressor. Aux/IAA degradation relieves repression of AUXIN 
RESPONSE FACTOR (ARF) transcription factors, allowing for auxin-responsive gene expression. One of the transcript families upregulated by 
auxin is the SAUR family. The small SMALL AUXIN UP RNA (SAUR) proteins encoded by these transcripts have been suggested to play roles 
in multiple processes, one of which is interaction with and inhibition of members of the PP2C.D family of phosphatases, which act to regulate 
H+-ATPase activity. Further, INDOLE-3-BUTYRIC ACID RESPONSE5 (IBR5) and MITOGEN-ACTIVATED PROTEIN KINASE12 (MPK12) have 
been implicated in regulating auxin-responsive gene transcription; this regulation is not through destabilization of the Aux/IAA repressors, 
suggesting a yet-to-be discovered mechanism of regulating auxin-responsive gene expression. For in-depth reviews of the TIR/AFB signaling 
pathway, please refer to 1,3. For an in-depth review of SAUR proteins, please refer to 15. (B) Model of the S-PHASE KINASE ASSOCIATED 
PROTEIN 2A (SKP2A) signaling pathway. E2FC/DPB repress expression of cell cycle genes. The F-box protein SKP2A binds auxin and 
promotes degradation of E2FC/DPB in an auxin-dependent manner. Degradation of E2FC/DPB relieves repression of cell cycle genes and 
allows for binding by activating E2F+/DP+ complexes. For an in-depth review of the SKP2A signaling pathway, please refer to 8. (C) Model of 
the putative AUXIN BINDING PROTEIN1 (ABP1) signaling pathway. Apoplastic auxin is bound by ABP1, which allows for interaction with the 
TRANSMEMBRANE KINASE RECEPTOR (TMK) family of leucine-rich repeat receptor-like kinases. ABP1 binding of auxin regulates RHO-LIKE 
GTPASE 2 (ROP2) and ROP6 activation and binding to ROP interactive CRIB motif-containing proteins (RICs) proteins to positively regulate 
microtubule polymerization and F-actin polymerization and also alter PINFORMED1 protein localization to alter auxin efflux. For an in-depth 
review of the ROP/RIC system, please refer to 54.
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Several SAUR subfamilies, including SAUR19-24, are likely 
involved in cell expansion21; however, mechanistic insight into 
SAUR roles in this auxin-regulated response has been lacking. 
Auxin has long been proposed to induce cell elongation through 
an acid growth mechanism22, in which auxin is responsible for acti-
vating H+-ATPases to acidify the extracellular matrix, in turn acti-
vating expansins and promoting solute and water uptake to drive 
cell expansion. Recently, Spartz et al.23 determined that SAUR 
proteins promote phosphorylation of the C-terminal autoinhibitory 
domain of PM H+-ATPases, causing activation. In addition, several 
SAUR proteins interact with a group of the D-clade PP2C phos-
phatases to inhibit phosphatase activity23,24. These phosphatases 
likely modulate the phosphorylation status of H+-ATPases23. Thus, 
SAURs likely act to inhibit the PP2C.D inhibitors of H+-ATPase 
activity, suggesting a role for the SAUR proteins as positive effec-
tors in auxin-mediated cell expansion through regulation of the PM 
H+-ATPase activity. If PP2C.D deactivates H+-ATPase activity 
through de-phosphorylation, it then follows that a kinase is nec-
essary to activate H+-ATPases. Many protein kinases have been 
proposed to regulate H+-ATPase activity25 – perhaps one of these 
functions in an auxin-dependent manner to regulate H+-ATPases. 
Further, the identified SAUR-CaM interactions combined with 
the recently identified roles for SAUR proteins in regulating phos-
phatases raise the possibility that SAUR proteins could act as a link 
between calcium signaling, auxin, and phosphatase activity.

Recent studies have provided increasing evidence of SAURs’ 
importance in auxin-regulated plant growth and development. 
The large families of these proteins identified in widespread plant 
species suggest multiple and diverse SAUR functions in auxin 
response. One possible mechanism for SAUR regulation of such 
varied auxin-related plant responses may be provided by combi-
natorial diversity in SAUR-PP2C.D interactions. In Arabidopsis, 
there are 81 SAURs26 and nine PP2C.D family members24, many 
of which have been proposed to have differential expression pat-
terns throughout the plant27. Varying SAUR-PP2C.D combinations 
may regulate the phosphorylation status of distinct downstream 
elements to regulate different aspects of auxin response15. Interac-
tion experiments using the different SAUR-PP2C.D combinations 
may uncover whether SAUR proteins from additional clades also 
interact with these phosphatases. Further, the distinct subcellular 
localization and various developmental processes associated with 
individual SAUR proteins15 suggest that SAUR targets in addition to 
H+-ATPases likely exist. Whereas recent studies have finally begun 
to illuminate SAUR molecular functions in auxin response, further 
research will surely uncover additional mechanisms connecting the 
SAUR proteins to auxin signaling.

IBR5 and MPK12
Auxin pathway roles for IBR5 and its interacting MAP kinase 
MPK12 remain enigmatic. The ibr5 mutant was initially isolated 
for its resistance to the auxin precursor indole-3-butyric acid 
(IBA)28, but subsequent studies revealed that ibr5 was resistant to 
all tested auxins29 and auxin transport inhibitors30. In addition to 
reduced physiological responses to exogenous auxin application, 
ibr5 mutants display developmental phenotypes29,31,32 and reduced 
auxin-responsive transcription29–32, suggesting roles for IBR5 in the 
auxin signaling pathway.

IBR5 encodes a dual-specificity protein phosphatase29; related 
phosphatases de-phosphorylate MAP kinases33,34. Dual-specificity 
protein phosphatases are distinct from the PP2C-type phosphatases 
associated with SAUR activity (see above). IBR5 splice variants 
appear to play distinct roles in regulating plant growth and auxin 
responses and at least some of these roles may be independent 
of its catalytic activity31. However, the IBR5 catalytic cysteine is 
necessary for auxin responsive inhibition of root elongation30,31 
and IBR5 can de-phosphorylate the Arabidopsis MPK12 in vitro35. 
Further, RNAi lines of MPK12 display auxin resistance35, suggest-
ing that IBR5 and MPK12 play opposing roles in regulating auxin 
responsiveness.

ibr5 double mutants with other mutants that dampen auxin responses, 
including tir1, axr1, and aux1, exhibit additive auxin resistance in 
one or more bioassays30. Most notably, combining ibr5 with an auxin 
receptor mutant, tir1, greatly enhances auxin resistance relative to 
either parent30, consistent with the possibility that IBR5 effects on 
auxin response are TIR1 independent. Similar to other auxin-resistant 
mutants, ibr5 exhibits decreased levels of auxin-responsive 
transcripts29–32. However, unlike other characterized auxin-response 
mutants, Aux/IAA proteins are not stabilized in ibr5 and are actu-
ally destabilized30,31, again suggesting that IBR5 modulates auxin 
signaling in a manner unique from other known auxin response 
regulators. ARF proteins mediate auxin-responsive gene tran-
scription and the primary known mechanism of ARF regulation is 
repression by Aux/IAA proteins3. The decreased auxin-responsive 
gene transcription29–32 combined with destabilized Aux/IAA repres-
sor proteins30,31 observed in ibr5 mutants suggest that either Aux/
IAA destabilization is not the sole mechanism of regulating ARF 
activity or that there exists an additional auxin signaling pathway 
that ends in regulating the same gene targets as the TIR1/AFB path-
way. Elucidating IBR5 and MPK12 targets may help differentiate 
between these possibilities. Recently, IBR5 was found to interact 
with SUPPRESSOR OF G2 ALLELE SKP1 (SGT1b), HEAT 
SHOCK PROTEIN90 (HSP90), and the Toll/interleukin-1 receptor 
domains of CHILLING SENSITIVE 3 (CHS3), SUPPRESSOR OF 
NPR1-1 (SNC1), and RESISTANT TO P. SYRINGAE 4 (RPS4)36. 
IBR5 interaction with SGT1b may provide a mechanism for IBR5 
regulation of auxin responses; mutants defective in SGT1b/ETA3 
have been isolated as enhancers of tir1 auxin resistance, perhaps 
by modulating 26S proteasome activity37. SGT1b is a co-chaperone 
with HSP90. Further, TIR1 has recently been identified as a HSP90 
client and HSP90 plays roles in integrating temperature and auxin 
signaling38; perhaps IBR5 is an additional HSP90 client to allow 
temperature and auxin response integration.

ABP1 and TMK1
Opinions about ABP1, first discovered over 40 years ago, have var-
ied over the years. ABP1 has been proposed to act as an apoplastic 
auxin receptor whose downstream signal transduction pathway reg-
ulates cytoskeletal rearrangement and internalization of auxin trans-
porters in response to auxin39–41. Study of roles for ABP1 in plant 
auxin signaling was limited by the reported embryo lethality of null 
abp1 alleles42–45. In the absence of a viable allele, the field made 
progress in understanding ABP1 function by use of ABP1 knock-
down lines, provided by expression of an inducible ABP1 antisense 
transcript or of an inducible single-chain fragment variable from 
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a monoclonal antibody raised to ABP146. The identification of an 
EMS-generated TILLING line, abp1-5, carrying a point mutation 
in the auxin-binding pocket of ABP147,48 allowed for intense study 
of ABP1 functions in auxin signaling and spurred an explosion of 
ABP1-related discoveries, uncovering roles for this elusive auxin-
binding protein in a wide variety of processes throughout plant 
development39. These new findings allowed for widespread accept-
ance of ABP1 as a bona fide auxin receptor41.

The recognition of ABP1 as an auxin receptor, however, has once 
again been called into question. A recent report showing that new 
abp1 null alleles display no obvious auxin-related or developmen-
tal phenotypes49 was contradictory to earlier reports of the embryo 
lethality of the abp1-1 null allele42–45 and the physiological and 
molecular phenotypes displayed by conditional knockdown and 
abp1-5 alleles39. This conflict was recently partially reconciled 
by the discovery that the embryo lethal phenotypes of abp1-1 and 
abp1-1s were caused by a loss of the neighboring BELAYA SMERT 
gene rather than from loss of ABP150,51 and that the abp1-1 allele, 
which is null for ABP1, displays no obvious morphological phe-
notypes when the BSM defect is rescued in the mutant50. Further, 
at least some of the phenotypes observed in the abp1-5 TILLING 
allele may be the result of a background mutation in PHYTO-
CHROME B52. Future work with new ABP1 genetic resources49,51 
will be necessary to clarify the role of ABP1 in auxin signaling 
and plant development and will determine whether abp1 null alleles 
display molecular phenotypes.

The auxin-binding affinity of ABP1 combined with its widespread 
conservation throughout plants would suggest an important role 
for ABP1; however, lack of physiological phenotypes in the null 
mutants49,50 would suggest that ABP1 does not play a prominent 
role in Arabidopsis development. At this time, auxin-related roles 
for downstream components in the ABP1 pathway (Figure 1C) 
including the TRANSMEMBRANE KINASE (TMK) family of 
receptor-like kinases53 and the ROP-RIC system54 remain unchal-
lenged. This is a turbulent time in the ABP1 field as new discoveries 
are being made and roles (or lack thereof) for this signaling path-
way in plant growth and development are being clarified. Roles for 
ABP1 in auxin response and development have once again become 
controversial; clearly more work will be needed to reconcile 
conflicting reports in this area.

Conclusions and future directions
The existence of factors in addition to the components of the 
well-established TIR1/AFB pathway suggests that we have yet to 
uncover the entire story of auxin response. Recent advances in the 
field are slowly bringing to light roles in auxin signaling for each 
of these factors − SKP2A, the SAUR proteins, IBR5, and ABP1 – 
however, many questions still remain. In addition, although the 
TIR/AFB pathway appears to be well characterized, new struc-
tural data suggest that there are additional regulatory aspects of this 
pathway, including ARF proteins acting as molecular DNA calipers 
and ARF and Aux/IAA protein multimerization2,55 that have yet to 
be fully explored. Further research will undoubtedly uncover new 
regulatory mechanisms for the TIR/AFB pathway and molecular 
roles for these untethered factors in auxin signaling − the sky is the 
limit!
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