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Taste and Temperature Encoding in Cortical Neurons

Abstract

Eating behaviors are influenced by the integration of gustatory, olfactory, and somatosensory signals,

which all contribute to the perception of flavor. Although extensive research has explored the neural cor-

relates of taste in the gustatory cortex (GC), less is known about its role in encoding thermal information.

This study investigates the encoding of oral thermal and chemosensory signals by GC neurons compared

to the oral somatosensory cortex. In this study, we recorded the spiking activity of more than 900 GC

neurons and 500 neurons from the oral somatosensory cortex in mice allowed to freely lick small drops of

gustatory stimuli or deionized water at varying non-nociceptive temperatures. We then developed and

used a Bayesian-based analysis technique to assess neural classification scores based on spike rate and

phase timing within the lick cycle. Our results indicate that GC neurons rely predominantly on rate

information, although phase information is needed to achieve maximum accuracy, to effectively encode

both chemosensory and thermosensory signals. GC neurons can effectively differentiate between thermal

stimuli, excelling in distinguishing both large contrasts (14°C vs. 36°C) and, although less effectively,

more subtle temperature differences. Finally, a direct comparison of the decoding accuracy of thermosen-

sory signals between the two cortices reveals that while the somatosensory cortex showed higher overall

accuracy, the GC still encodes significant thermosensory information. These findings highlight the GC’s

dual role in processing taste and temperature, emphasizing the importance of considering temperature

in future studies of taste processing.

Introduction

Eating behaviors are influenced by the initial sensation and the reward experienced when eating food and

beverages. This sensation results from the integration of intraoral gustatory, olfactory (retronasal), and

somatosensory cues that all contribute to the percept that we know as flavor (Samuelsen and Vincis, 2021;

Spence, 2015; Small, 2012; Lemon, 2021). Numerous electrophysiological studies in behaving rodents have

described the neural correlates of one of these sensory components, taste. Using fluid stimuli at room

temperature, these investigations revealed that gustatory information undergoes neural computations within

interconnected brain regions, including the gustatory cortex (GC), the primary cortical region responsible

for the processing of taste (Vincis and Fontanini, 2019; Spector and Travers, 2005). GC neurons have shown

time-varying patterns of activity in response to chemosensory qualities and the hedonic value of gustatory

stimuli, which play a role in guiding taste-related decisions (Katz et al., 2001; Stapleton et al., 2006; Dikecligil

et al., 2020; Jezzini et al., 2013; Levitan et al., 2019). Furthermore, the ability of GC neurons to distinguish

between tastes is improved when the rate and spike-time are interpreted relative to the timing of the licks,

indicating that the lick cycle is a key factor in taste processing (Neese et al., 2022).

Several studies indicate that GC neurons also respond to non-gustatory components of oral stimuli (Vincis

and Fontanini, 2016; Samuelsen and Fontanini, 2017; Rudenga et al., 2010; Samuelsen and Vincis, 2021),

including temperature, a prominent feature of the sensory properties of food and beverages. Studies in

humans and primates (Cerf-Ducastel et al., 2001; Verhagen et al., 2004), as well as in anesthetized rats

(Yamamoto et al., 1981; Kosar et al., 1986) and investigations by our laboratory in awake mice (Bouaichi et

al., 2023), suggest that changes in oral temperature, even in the absence of classical taste qualities, modulate

activity in GC neurons. In particular, our recent findings (Bouaichi et al., 2023) revealed that more than

half of the GC neurons that encode chemosensory taste stimuli can also discriminate thermal information.

Although these data suggest that the GC is a potential key brain region for integrating chemosensory and
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thermosensory inputs from the oral cavity, they do not provide a detailed analysis of its neural responses.

Consequently, different aspects of the GC’s capability to process taste and oral thermal stimuli are poorly

characterized.

This study aims to evaluate the role of GC neurons in the encoding of oral thermal information and their

ability to process chemosensory taste signals at room temperature, particularly compared to the thermosen-

sory and chemosensory coding functions of the oral somatosensory cortex (S), which represents the sensory

input of the tongue and intraoral region (Accolla et al., 2007; Nakamura et al., 2015; Clemens et al., 2018;

Samuelsen and Vincis, 2021). To this end, we collected recordings of spiking activity from more than 900 GC

neurons and 500 neurons in the somatosensory cortex in mice allowed to freely lick to receive a small drop

(3 µl) of one of four liquid gustatory stimuli (sucrose, NaCl, citric acid, and quinine) at room temperature

or deionized water at one of three different non-nociceptive temperatures (14°, 25° and 36°C). Our previous

study (Bouaichi et al., 2023) indicated that the responses of GC neurons to different temperatures of deion-

ized water and artificial saliva - a stimulus often used as a neutral control in taste research - were highly

similar, supporting the use of deionized water at different temperatures as a thermal stimulus in the absence

of overt chemosensory taste information. We then applied a Bayesian analysis to compute classification

scores for spike trains, considering both the rate and the phase (timing of spikes within the lick cycle) in

response to various oral stimuli. Our results indicate that GC neurons primarily rely on rate information,

with phase providing complementary input, to effectively encode chemosensory and thermosensory signals

from the oral cavity. In addition, a qualitative evaluation of our decoding analysis showed that many GC

neurons classify thermal stimuli more accurately and rapidly than gustatory information. Finally, a direct

comparison of the decoding accuracy of thermosensory and chemosensory signals between the GC and the

somatosensory cortex reveals that although the somatosensory cortex exhibits higher overall classification

accuracy, the GC contains a substantial amount of thermosensory information.

Overall, our results offer a comprehensive analysis of the gustatory cortex’s ability to encode thermal

information in addition to gustatory stimuli, highlighting its crucial role in processing thermal cues relevant

to taste. This dual capacity emphasizes the importance of incorporating temperature as a key factor in

future studies of cortical taste coding.

Methods

Experimental design and statistical analysis

Data acquisition

The experiments in this study were conducted on 30 wild-type C57BL/6J adult mice (aged 10–20 weeks;

comprising 16 males and 14 females). The mice were acquired from The Jackson Laboratory and upon

arrival housed in conditions with a 12/12 hour light/dark cycle, with unrestricted access to food and water.

The experiments and training sessions were performed during the light phase of this cycle. All experiments

are reviewed and approved by the Florida State University Institutional Animal Care and Use Committee

(IACUC) under the protocol PROTO202100006. The experimental dataset consists of 962 neurons recorded

in the gustatory cortex and 529 neurons recorded in the oral somatosensory cortex. For the recording in the

gustatory cortex, the taste dataset (529 neurons) neurons come from a previously published dataset (Neese et

al., 2022); neural activity was recorded while the mice were allowed to freely lick to receive 3 µl of one of the

four taste stimuli (sucrose, NaCl, citric acid and quinine) at room temperature; the temperature dataset (433
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Figure 1: (A) Schematic showing the recording setup and a head-restrained mouse licking a spout to
obtain oral stimuli. The taste dataset includes GC neurons recorded while animals experience one of four
taste stimuli (sucrose 0.1 M, NaCl 0.05 M, citric acid 0.01 M, and quinine 0.001 M) at room temperature.
The temperature dataset includes GC neurons recorded while the animals experience deionized water at one
of three non-nociceptive temperatures (14°, 25,° 36°C). (B) Raster plots and peristimulus time histograms
(PSTHs) of 2 representative GC neurons from the taste (left) and temperature (right) dataset.

neurons) neurons come from a second previously published dataset (Bouaichi et al., 2023); neural activity

was recorded while mice were allowed to freely lick to receive 3 µl of deionized water presented at one of three

non-nociceptive temperatures (14°, 25° and 36°C). A detailed description of surgery, probe implantation, and

stimulus delivery can be found in (Bouaichi and Vincis, 2020; Bouaichi et al., 2023; Neese et al., 2022). It is

important to note that the experimental settings in which neurons were recorded across the different datasets

were identical, with the only difference being the type of stimuli used: taste stimuli for the taste dataset and

deionized water at different temperatures for the temperature dataset.

For the recording in the oral somatosensory cortex, mice were anesthetized with an intraperitoneal injec-

tion of a cocktail of ketamine (25 mg/ml) and dexmedetomidine (0.25 mg/ml). The depth of anesthesia was

monitored regularly by visual inspection of breathing rate, whisker reflexes, and tail reflex. Body temper-

ature was maintained at 35°C using a heating pad (DC temperature control system, FHC, Bowdoin, ME).

Once a surgical plane of anesthesia was achieved, the animal’s head was shaved, cleaned, and disinfected with

iodine solution and 70% alcohol before positioning it in a stereotaxic plate. A first craniotomy was drilled

above the left oral somatosensory cortex on the mouse’s skull (AP: 1.1 mm, ML: 3.8 mm relative to bregma)

to implant a movable bundle of eight tetrodes and one single reference wire (Sandvik-Kanthal, PX000004)

with a final impedance of 200–300 kΩ for tetrodes and 20–30 kΩ for the reference wire. A second hole was

drilled on top of the visual cortex, where a ground wire (A-M Systems, catalog no. 781000) was lowered

∼300 µm below the brain surface. During surgery, the tetrodes and reference wires were lowered 0.2 mm

below the cortical surface; they were further lowered ∼200 µm before the first day of recording and ∼80 µm

after each recording session. Before implantation, tetrode wires were coated with a lipophilic fluorescent dye

(DiI; Sigma-Aldrich), allowing us to visualize the final location of the tetrodes at the end of each experiment.

Tetrodes, ground wires, and a head screw (for the purpose of head restraint) were cemented to the skull with

dental acrylic. Animals were allowed to recover for a week before the water restriction regimen began. The

voltage signals from the tetrodes were captured, digitized and filtered by bandpass (300-6000 Hz) using the

Plexon OmniPlex system at a sampling rate of 40 kHz. For automated spike sorting, Kilosort by Pachitariu
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et al. (Pachitariu et al., 2016) was used on a workstation equipped with an NVIDIA GPU, CUDA, and

MATLAB. After spike sorting, Phy software facilitated manual curation. Subsequently, the quality metrics

and waveform characteristics were determined using scripts based on SpikeInterface (Buccino et al., 2020).

Only units exhibiting an overall firing rate greater than 0.3 Hz, a signal-to-noise ratio greater than 3.0 and

an ISI violation rate less than 0.2 were considered for further analysis. At the end of the experiment, the

mice were deeply anesthetized for the last time and subjected to transcardial perfusion with 30 ml of PBS,

followed by 30 ml of 4% paraformaldehyde (PFA). The brains of the subjects were then removed and further

fixed in PFA for 24 hours. After fixation, coronal brain sections (100 µm thick) that included the oral

somatosensory cortex were prepared using a vibratome (VT1000 S; Leica, Wetzlar, Germany). To highlight

the paths taken by the tetrode bundles and probes, brain sections were counterstained with Hoechst 33342

(1:5000 dilution, H3570; Thermo Fisher, Waltham, MA) using standard techniques and then placed on glass

slides. The stained sections of the oral somatosensory cortex were examined and imaged with a fluorescence

microscope.

For retrograde tracing experiments, mice were anesthetized with an intraperitoneal injection of a cock-

tail of ketamine (25 mg/ml) and dexmedetomidine (0.25 mg/ml). The depth of anesthesia was monitored

regularly by visual inspection of breathing rate, whisker reflexes, and tail reflex. Body temperature was

maintained at 35°C using a heating pad (DC temperature control system, FHC, Bowdoin, ME). Once a

surgical plane of anesthesia was achieved, the animal’s head was shaved, cleaned, and disinfected with io-

dine solution and 70% alcohol before positioning it in a stereotaxic plate. Two small craniotomies were

drilled above the left GC (+1.1 mm AP; 3.8 mm ML relative to bregma) and the left oral somatosensory

cortex (+1.1 mm AP; 3.8 mm ML; relative to bregma). A glass pipette was loaded with cholera toxin

subunit B (CTB-488; Thermo Fisher Scientific, Waltham, MA) and lowered into the GC (2.2 mm from

the brain surface). We injected 150 nl of CTB-488 at a rate of 2 nl/s using a Nanoject III microinjection

pump (Drummond Scientific, Broomall, PA). Following injection, we waited an additional 10 minutes before

slowly extracting the glass pipette. A second glass pipette was then loaded with cholera toxin subunit B

(CTB-594; Thermo Fisher Scientific, Waltham, MA) and lowered in the oral somatosensory cortex (-0.8

mm from brain surface). We then injected 150 nl of CTB-594 at a rate of 2 nl/s using a Nanoject III as

described above and waited an additional 10 minutes before slowly extracting the glass pipette. The scalp

of the mouse was then sutured and the animals were allowed to recover from anesthesia. One week after

CTB injections, mice were terminally anesthetized and transcardially perfused with 30 ml of PBS followed

by 30 ml of 4% paraformaldehyde (PFA). Similarly to what we described earlier for tetrode tracks, the

brains were extracted and postfixed with PFA for 24 h, after which coronal brain slices (100-µm thick) were

sectioned with a vibratome (VT1000 S; Leica, Wetzlar, Germany). To visualize the anatomical tracers brain

slices were counterstained with Hoechst 33342 (1:5000 dilution, H3570; ThermoFisher, Waltham, MA) using

standard techniques and mounted on glass slides. Brain sections were viewed and imaged on a fluorescence

microscope.

Data Pre-Processing and Normalization

Raw spike trains are mathematically represented as 4000-dimensional vectors, with one entry (either 0 or

1) per millisecond of experimental data collection. Lick timings are also represented as vectors of the same

dimension with entries of either 0 or 1 reflecting the absence or presence of a lick at each time point. Time

0 is defined as the time of the first lick for which water is present in the spout. Only data after this time

point are used in the classification analysis.
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A B
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Figure 2: Illustration of the lick interval normalization process and calculation of empirical probability
distribution functions. (A) A depiction of the timings of the licks (orange) and the neuronal spikes (red).
There are 5 spikes within the 140 ms lick interval delimited by the two licks shown. (B) The lick interval
is extended to 200 ms, preserving the number of spikes and the relative differences in the timing of the
spikes. (C) For the phase distribution, the black bars indicate the union of all spike times in the processed
spike train vectors across all trials. The blue curve is the probability density function generated by kernel
density estimation. (D) For the rate distribution, the black bars are a histogram showing the frequency of
spike numbers per test in a population of processed spike train vectors. The probability density function
is again generated using kernel density estimation. This example features data from the 22 trials recorded
from neuron 380 in response to sucrose.
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The time between two licks, or lick interval, is a natural frame of reference to determine the spiking

phase. To help in this, we normalize the lick intervals so that all have a normalized time duration of 200

time units. Lick intervals that are longer than 200 ms are contracted and those shorter than 200 ms are

stretched. This normalization of the lick interval, or time warping, is done uniformly so that the number of

spikes per lick interval is not changed and the relative timing of the spikes within a lick interval is maintained.

This is illustrated in Fig. 2A,B. The phase of the first spike is ≈ 40/200, or 0.2. The phase of the last spike

is ≈ 170/200, or 0.85. In our analysis, we examine the first 5 lick intervals starting at time 0. Therefore,

each spike train vector used in the analysis contains 1000 elements: 200 for the time points within each of 5

normalized lick intervals. We refer to each such vector as a processed spike train vector.

Creating Empirical Rate and Phase Distributions

From the processed spike train vectors, we construct approximate phase and rate probability distributions

for each neuron that responds to each stimulus. A phase distribution describes the timing of spikes relative

to licks in the processed spike train. To construct this, we first form the union as a multiset of the processed

spike trains for that neuron/stimulus pair to create one 1000-dimensional vector for each pair. We convert

this distribution, defined only at discrete time points, to a continuous distribution. We then remove the rate

information by normalizing the distribution to sum to 1, regardless of the number of spikes considered. To

construct a rate distribution, we form a histogram (with bin size of 1) of the number of spikes produced per

trial.

Transformation to a continuous distribution is done using a Gaussian Kernel Density Estimator (Pe-

dregosa et al., 2011) as follows. The continuous function that interpolates our recordings for a particular

neuron/stimuli pair is

µ(x) =
1

K

K∑
i=1

1√
2πh2

exp

(
− (x− xi)

2

2h2

)
where x ∈ [0, 999], and (x1, x2, . . . , xK) are the K data points. For phase distributions, the data are the

union of all spike times. For rate distributions, the data are the values of the spike frequency histogram. The

parameter h is called the bandwidth and is akin to a smoothing parameter - the larger the bandwidth, the

greater the smoothing. We use h = 5 when calculating Phase PDFs and h = 2 when calculating Rate PDFs,

using a finer bandwidth when smoothing histograms with a small bin size and a larger bandwith when trying

to get a sense of the density of spiking for phase distributions. We verified that the results were stable under

a range of bandwidth values for phase functions, so we chose a value on the lower end of the stable range

to retain as much variability within the data as possible while maintaining similar results. Similarly, when

searching for optimal bandwidth values to use for rate functions, we found that the results are optimal with

lower bandwidth, achieving the best classification scores overall with h=2.

This process is illustrated in Fig. 2C, D. Panel C shows the timing of spikes over all 5 lick intervals

(black bars). These data are used to construct a probability density function (blue curve) using kernel

density estimation. Probability values are low because the time spans all five lick intervals, and the number

of data points (spikes), K, is large over that long time span. Panel D illustrates the construction of the

spike-rate density function. The process begins with a histogram of the number of spikes per trial for a

particular neuron/stimulus pair. These data are then used in the kernel density estimator to generate a

smooth, continuous probability density function (blue curve). In this case, the number of data points, K, is

the number of different values of spikes per trial that occur in the trials examined.
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Bayesian Classifier Design

We quantify the degree to which a neuron successfully distinguishes one stimulus from the others through

classification scores. We employ a Bayesian classification scheme that makes use of one or both of the

probability density functions described above. The data sets (processed spike trains) were first divided into

training (80%) and testing (20%) sets. The spike trains in the training set were used to construct empirical

rate and phase distributions as described above. The spike trains in the test set were used to determine the

classification score, as described below.

For classification based on phase distributions, each processed spike train with N spikes in the test

set is interpreted as N i.i.d. samples (x1, . . . , xN ) from a phase distribution for one of the stimuli M

stimuli: µP
i , i = 1 . . .M . To determine the most likely stimulus (a taste or temperature) Ti, we maximize

P
(
Ti|(x1, . . . , xN )

)
for i = 1, . . . ,M . Employing Bayes’ theorem, we obtain

P
(
Ti|(x1, . . . , xN )

)
=

P
(
(x1, . . . , xN )|Ti

)
P
(
Ti
)∑M

j=1 P
(
(x1, . . . , xN )|Tj

)
P
(
Tj
) , (1)

where P
(
Tj
)
are the prior probabilities that the observation is from stimulus Tj . To ensure that all stimuli

are equally probable, we include an equal number of trials per stimulus (Q) in the analysis, where Q is the

smallest number of trials recorded for any stimulus in a given data set. For stimuli for which more than

Q trials were performed, excesses were not included in the analysis. Hence, since all stimuli are equally

probable, P
(
Tj
)
= 1

M . Under the i.i.d. assumption, Eq. (1) simplifies to

P
(
Ti|(x1, . . . , xN )

)
= LP

i /
M∑
j=1

LP
j ,

where LP
j is the likelihood,

LP
j = µP

j (x1) . . . µ
P
j (xN ) .

A similar process is used in the case in which rate distributions alone are used in the classification. In

this case, each processed spike train is interpreted as a single sample y from a rate distribution for one of the

stimuli, µR
i , i = 1 . . .M . To determine the most likely stimulus Ti, we maximize P

(
Ti|y

)
for i = 1, . . . ,M ,

and from Bayes’ theorem,

P
(
Ti|y

)
=

P
(
y|Ti

)
P
(
Ti
)∑M

j=1 P
(
y|Tj

)
P
(
Tj
) ,

or with the i.i.d. assumption,

P
(
Ti|y

)
= LR

i /
M∑
j=1

LR
j ,

where LR
j is the likelihood,

LR
j = µR

j (y) .

Finally, in the case in which both rate and phase are used in the classification, we maximize the weighted

sum of the two probabilities:

RPi = αP
(
Ti|y

)
+ (1− α)P

(
Ti|(x1, . . . , xN )

)
(2)
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with weight α ∈ [0, 1]. When α = 0 only the phase information is used and when α = 1 only the rate

information is used. The values of α between 0 and 1 use a combination of the two, and are equally weighted

when α = 0.5.

Using this approach, we obtain a value RPi for each of the stimuli, and the stimulus with the highest

value is selected as the one most likely to produce the spike train. This is done for all elements of the test

set, and the classification score is the fraction of times the classification is correct. This process is repeated

15 times for each neuron, each with a different partition of spike trains into training and testing sets. The

classification scores are then averaged over these 15 splits to obtain an overall classification score for the

neuron.

Support Vector Machine Classification

To validate our Bayesian analysis classification results, we compare them with a similar classification ex-

periment carried out with a Support Vector Machine (SVM), a tool of classical machine learning (Fan et

al., 2008; Pedregosa et al., 2011). Roughly, the SVM determines the optimal hyperplanes that separate the

data into a specified number of classes. Each of these is associated with a stimulus, based on the labels of

the data used to train the SVM. To perform this experiment, the processed spike train vectors for every

neuron/stimulus pair were smoothed by convolving the sequence of values 0 and 1 with a Gaussian kernel

(a smoothing window of 100 was used). As in Bayesian classification, the processed spike train data were

divided into a training set (80%) and a test set (20%). The training set was used to fit the parameters of

the SVM model. Using the trained model, each element of the test set was classified. The fraction of correct

classifications is then the classification score. This sequence was repeated 15 times for each neuron, with the

same random partitions for training and testing sets that were used in Bayesian classification. The average

classification score for a single neuron in all 15 iterations is the final classification score for that neuron. See

(Neese et al., 2022) for more details on the SVM classifier and smoothing process.

Results

Using a Bayesian classifier to elucidate gustatory cortex activity

To begin investigating how neurons in the gustatory portion of the insular cortex encode oral information

in freely licking mice, we made extracellular recordings using movable bundles of tetrodes or silicon probes

implanted unilaterally in the GC (Fig. 1). After habituation to head restraint, a group of mildly (1.5 ml per

day) water-deprived mice was engaged in a task in which they had to lick a dry spout 6 times to obtain a

drop of one of four gustatory stimuli (100 mM sucrose, 50 mM NaCl, 10 mM citric acid, 0.5 mM quinine)

and water presented at room temperature. A second group of mice, in a different session, was also trained

to receive deionized water at three different non-nociceptive temperatures (14°, 25° and 36°C). At the end

of the training (1 week), the recording session started. For the mice included in the taste dataset (n = 12

mice), we recorded and analyzed neural activity (n = 529 neurons) only in response to gustatory stimuli at

room temperature (Fig. 1A-B) as discussed in Bouaichi and Vincis (2020) and Neese et al. (2022). For the

mice included in the temperature dataset (n = 18 mice), we initially recorded neural activity evoked by taste

stimuli presented at room temperature. Following this recording session, we analyze the spiking activity of

each neuron. If taste-selective neurons were detected, the tetrodes or probes were lowered approximately 100

µm and subsequent recording sessions exclusively captured the activity evoked by deionized water at various
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temperatures. As explained in Bouaichi et al. (Bouaichi et al., 2023), this approach was specifically selected

to provide additional functional evidence confirming that neuron responses to thermal stimuli were acquired

from the taste cortex. Overall, for the temperature dataset we recorded and analyzed 433 GC neurons (Fig.

1A-B; see Methods for additional details).

To investigate the neural dynamics of GC neurons in relation to taste and thermal information, we

employed a Bayesian classification approach. For each neuron, the spike trains were initially divided into a

training set (80% of total trials for each stimulus) and a test set (20% of total trials for each stimulus). The

spike trains from the training sets were then used to construct a spike timing and a spike rate probability

distribution function for each neuron-stimulus pair (Fig. 2), which characterize the response of the neuron

to the different oral stimuli. For each spike train in the test set, we determined (1) the phase in which each

spike occurred and (2) the spike rate for the entire spike train to calculate the corresponding probability

values. Then these probability values were combined, weighted by a factor α ∈ [0, 1] where α < 0.5 places

greater emphasis on phase information and α > 0.5 gives more weight to rate information. The result is a

value RPj , which quantifies the degree to which the spike train in the test set matches the characteristic

phase and rate distributions of stimulus j in that neuron (Eq. (2)). The neural response is classified as

selective to stimulus j if the objective function RPj is greater than that of all other stimuli. In other words,

the classification is determined by RPj > RPi for all i ̸= j and i = 1, . . . ,M , where M is the number of

different stimuli for that experimental session. The fraction of correctly classified elements in the test set

gives the classification score for that neuron. We showed previously that a different approach, employing

Support Vector Machines (SVM), is highly effective in correctly classifying spiking responses of neurons to

a variety of oral stimuli (Neese et al., 2022) in behaving rodents. However, unlike the Bayesian approach we

used in this study, the SVM method provides limited information on which specific aspects of the spike trains

contribute to the classification success. In contrast, the Bayesian approach employed here not only offers

empirical distributions for spiking phases and rates, but also allows for the assignment of different weights to

these factors during classification, thereby offering a more detailed understanding of the underlying neural

coding mechanisms.

Although the proposed Bayesian classification approach provides better insight into the contributions

of spike timing and rate, we recognized the need to validate its effectiveness. Specifically, for the sake of

comparison, we first compared our new Bayesian method with the SVM approach used in the past (Neese et

al., 2022) to ensure its reliability in classifying taste and thermal neural responses. Figure 3 illustrates the

comparison of classification scores between the Bayesian and SVM approaches on the same datasets. For

each GC neuron, the training sets used to form the empirical rate and phase distributions for the Bayesian

analysis were also used to determine the SVM parameters. The test sets were then used to calculate the

classification scores for both methods. For the Bayesian classification, “ optimal” values of α=0.875 and

0.750 were used for the taste (Fig. 3A) and temperature (Fig. 3B) datasets, respectively, with the rationale

for these choices discussed in the next section. The classification scores for both datasets indicates that both

methods yield comparable scores. Consequently, all subsequent analyzes were performed using the Bayesian

classification approach.

Classification using rate and phase is better than either alone

We first applied the Bayesian classifier to calculate the classification scores for taste information in GC

neurons. Classification scores were calculated with different values of α ranging from 0 to 1 in increments

of 0.125. Previous electrophysiological data obtained in behaving rodents indicate that the fraction of taste-
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A B

Figure 3: Comparison of classification scores computed with Bayesian and SVM methods. (A) The pop-
ulation of 529 neurons in response to 4 tastants (citric acid, NaCl, quinine, and sucrose). The score for
random guessing is 0.25. The red point indicates the neuron used in Fig. 2. Points on the dashed line have
the same classification score when computed with either method. (B) A different population of 433 neurons
in response to water at three different temperatures (14°, 25°, and 36°C). The score for random guessing is
0.33. Bayesian analysis scores were computed with α = 0.875 (panel A) and α = 0.750 (panel B).

selective neurons in the GC varies depending on multiple factors, including the type of stimulus delivery

(intraoral cannulae or active licking), the concentrations of the taste stimulus, the cortical layers, and the

method of analysis of stimulus-evoked spike trains (Dikecligil et al., 2020; Levitan et al., 2019; Bouaichi and

Vincis, 2020; Katz et al., 2002; Jezzini et al., 2013). In the context of our dataset and experimental conditions,

previous analyses have indicated that 10 to 30% of GC neurons can be considered taste-selective (Bouaichi

and Vincis, 2020; Neese et al., 2022). Therefore, we focused on the “best” GC neurons, specifically those

with taste classification scores in the top 20% (105 neurons). When averaging over this subset of neurons, the

mean classification scores ranged from 0.37 to 0.40, significantly higher than the expected score for random

guessing (Fig. 4A). The mean score for the classification based solely on phase (α = 0) was the lowest among

all α values. However, although the mean score for the classification based solely on rate (α = 1) was

higher, it did not reach the maximum value, which was achieved when both rate and phase were combined

in the classification (α = 0.875). These results confirm that spike timing is a critical factor in taste decoding

(Neese et al., 2022) and that gustatory information is enhanced when changes in spike rate are considered in

conjunction with temporal dynamics (Katz et al., 2001). Therefore, we used this optimal α in all subsequent

taste classification analyses unless otherwise noted.

Next, we aimed to quantify the amount of oral thermal information encoded in the GC spike trains. To

do this, we applied the Bayesian classifier to calculate classification scores for fluid temperature using our

temperature dataset. For a population of 433 neurons, the mean classification scores ranged from 0.38 to

0.41, slightly above the score of 0.33 expected for random guessing (data not shown). When considering

only “best” GC neurons, specifically those with taste classification scores in the top 20% (86 neurons), the

mean classification scores were substantially higher, ranging from 0.18 to 0.23 above the expected score for
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A B

Figure 4: Bayesian-based classification that uses both rate and phase information is optimal. (A) Difference
between the mean taste classification scores and the random guess score (0.25). For each α, only the top 20%
neurons were used in the mean classification score. The optimal α for this subpopulation is α = 0.875. (B)
Difference between mean classification scores in animals responding to water at three different temperatures
(14°, 25°, and 36°C) and random guessing (0.33). The analysis performed was similar to that in panel A.
The optimal weighting parameter value for the top 20% subpopulation of neurons is α = 0.750.

random guessing (Fig. 4B). As in the taste data set, the classification score based on rate alone exceeded

that based on phase alone, and the optimal combination of the two involved primarily rate, with phase

also contributing to the objective function (α = 0.750). This optimal value α was used in all subsequent

temperature classification analyses.

Many GC neurons are highly responsive to temperature and taste

To go beyond average classification scores, we assessed whether the spike activity of recorded GC neurons

decodes chemosensory and thermal stimuli uniformly or whether it more readily distinguishes certain tastes

or temperatures. To investigate this, we focused on the “best” GC neurons which are, as explained earlier,

those with taste and temperature classification scores in the top 20%.

Figure 5A-B shows the results of this analysis. Each bar’s color coding illustrates how a neuron’s spike

train was classified (i.e., predicted stimulus; y-axis), with the x-axis labels indicating the actual stimulus

for the spike train. In panel A, for example, more spike trains associated with the citric acid (C) stimulus

were correctly classified as citric acid (blue region at the bottom of the first bar) than any other stimulus.

When misclassification occurred, the error rate was similar in the other three tastants. Similar patterns were

observed for NaCl (N) and quinine (Q). Sucrose (S) had the lowest percentage of correct classifications; the

fraction of spike trains incorrectly classified as citric acid was nearly equal to those correctly classified as

sucrose. This suggests that the top-performing GC neurons examined were better at distinguishing citric

acid, NaCl, and quinine compared to sucrose. A similar analysis was conducted for the temperature dataset

(Fig. 5B). Spike trains in response to deionized water at 14°C were correctly classified almost 60% of the time
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Figure 5: (A) Spike train classification from the neurons that performed at the top 20% for taste in the
GC. The color corresponds to the way the spike train was classified. The label on the x-axis is the actual
stimulus for the spike train. C=citric acid, N=NaCl, Q=quinine, and S=sucrose. The correct classifications
are at the bottom of each bar. The black horizontal dashed line is the expected score for random guessing.
(B) Spike train classification from the neurons that performed at the top 20% for temperature in the GC.
The fraction of correct classifications was much higher for 14°C and 36° temperatures than for 25°C. (C)
Comparison of classification scores for pairs of temperatures, using neurons scoring in the top 20%. (D)
Comparison of classification scores for pairs of tastes, using only neurons that performed at the top 20%.
C=citric acid, N=NaCl, Q=quinine, and S=sucrose. One-way ANOVA between taste pairs: F=6.12, p <
0.001. For both C and D, the orange line in each box indicates the median score, and outliers are represented
by open circles.
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14°C v 36°C 14°C v 25°C Q v S C v N C v Q C v S N v Q
14°C v 25°C < 2−16 -
25°C v 36 °C 5.30−05 4.60−07

C v N 0.016 - - - -
C v Q 0.01679 1 - - -
C v S 1 0.00014 0.00014 - -
N v Q 1 1 1 0.12378 -
N v S 1 0.99108 1 0.52713 1

Table 1: Table of the p values of pairwise comparisons between oral stimuli using the Bonferroni correction
method to adjust for multiple testing (type I error) associated with figure. 5C-D. Significant p values (p <
0.05) are indicated in red.

(first bar). The most frequent misclassification for 14°C was at 25°C (yellow region of the first bar). The

water at 25°C produced the lowest percentage of correct classifications (second bar), with the majority of

misclassifications identifying the cool temperature (14°C). Water at 36°C resulted in the highest percentage

of correct classifications (third bar), with the most common misclassification also being water at 25°C (yellow

region of the last bar).

Next, we compared the distribution of classification scores for pairs of stimuli (Fig. 5C). Visual inspection

of the box plots indicates that the mean classification scores obtained for thermal stimuli at 14°C and 36°C,
the two thermal stimuli with the highest temperature contrast, are above any other, just below 80%. One-

way analysis of variance (ANOVA) tests revealed that the classification scores were significantly different (F

= 76.88, p < 0.001). Post hoc pairwise comparison (using the Bonferroni correction method to adjust for

multiple tests) further revealed significant differences between the three temperature pairs tested, confirming

that each pair exhibited distinct classification scores (Table 1). This suggests that GC neurons can effectively

differentiate between thermal stimuli, excelling in distinguishing both large contrasts (14°C vs. 36°C) and,

although less effectively, more subtle temperature differences. A similar analysis, including ANOVA and

post hoc tests, was performed on taste stimulus pairs, with the results presented in Fig. 5D and Table 1.

Based on a qualitative overview of these data, it could be tempting to speculate that, at least within our

datasets, GC neurons seem to encode oral thermal signals more effectively than taste information. However,

a quantitative assessment of this point is not appropriate at this time; we will explore this further in the

subsequent results sections.

Stimulus identification over individual lick intervals

Thus far, our analysis has focused primarily on spike trains that span five consecutive lick intervals, and the

first lick occurs when the stimulus is delivered. However, an intriguing question arises: how robustly are the

chemo- and thermosensory stimuli encoded within spike trains over post-stimulus lick intervals compared to

the entire five-lick duration? Does classification performance vary significantly between individual lick inter-

vals? To address these questions, we performed a Bayesian classification analysis using portions of processed

spike trains that occurred during individual lick intervals (Fig. 6). Similarly to what was described earlier,

this analysis used spike trains of “best” neurons for taste or temperature classifications when considering the

duration of five licks. Figures 6A and B depict the mean classification score in the different lick intervals for

the taste triplets and the temperature, respectively. Visual inspection of the graphs reveals two main points.

First, the initial lick interval, which corresponds to the time period approximately 125 ms after stimulus
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Figure 6: Classification scores based on individual lick intervals. (A) Calculated as the average of scores for
taste triplets. (B) Based on three different water temperatures. Each point represents the mean classification
score from the top 20% of neurons when considering classification scores over that particular lick interval only.
(C) Left panel shows the difference between mean classification score and random guessing for the average
of all taste triplets over the 5 different lick intervals across the range of α values. The data set from panel A
is used in the analysis. The right panel shows a similar analysis, but for the three water temperatures. The
data set from panel B is used. (D) Difference in classification scores between lick interval 3 and lick interval
2, for taste and thermal stimuli. Each point represents the score difference for a particular value of α. The
horizontal bars are the average values. *p<0.05.
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delivery, contains both chemosensory and thermal information. Second, while temperature classification

reaches a plateau during the second lick interval, taste classification appears to take longer to reach its peak

score, which occurs in the third lick interval. To further investigate this trend, we calculated classification

scores for different lick intervals and different rate/phase weighting values α (Fig. 6C). For both taste and

temperature, although the optimal α varies somewhat from lick interval to lick interval, the performance is

best for values of α close to, but less than, 1 (Fig. 6C). This indicates that a classification that weighted heav-

ily, but not entirely, on the spike rate is optimal. Furthermore, while the classification scores for temperature

beyond the first lick interval are comparable between the α values, for taste stimuli the classification score

is highest during the third lick interval regardless of α (Fig. 6C). Analysis of differences in all classification

scores using the second and third lick intervals revealed early success in the classification of thermal stimuli

compared to taste stimuli (Fig. 6D; ttest: t(9.4)=3.39, p=0.0073). This suggests a potentially differential

processing of thermal and chemosensory stimuli within the GC, confirming that the timing of neural events

can contribute to the representation of oral stimuli (Lemon and Katz, 2007) and that the somatosensory

input can be encoded earlier than the chemosensory input (Katz et al., 2001). An important caveat to

consider is that the taste stimuli were delivered in solutions at room temperature (around 22°-23°C). Future
studies are necessary to investigate whether and to what extent the magnitude and lick-related time course

of taste classification vary as a function of temperature.

Comparison of taste and thermal responses between taste and somatosensory

cortex

To summarize our findings so far, we applied a Bayesian analysis to calculate classification scores for GC

spike trains, accounting for both the rate and phase codes in response to different oral thermal and gustatory

stimuli. Our results appear to indicate that the temperature of the fluid is encoded more effectively by taste

cortical neurons, making it more prominent than taste information. However, an important caveat must

be acknowledged. Taste responses were recorded exclusively at room temperature (ranging from 22°C to

23°C). Previous work in anesthetized rodents has shown that temperature can have nonlinear additive or

subtractive effects on neural activity in response to some tastes (Lemon, 2017), although no information is

available for awake behaving animals. Thus, while our results qualitatively suggest that the gustatory cortex

reliably encodes oral thermal signals, quantifying this effect compared to taste information is currently not

appropriate.

To facilitate a more accurate evaluation of oral thermal coding in the GC, we recorded taste and thermal-

evoked spiking activity in oral somatosensory fields as a point of comparison (Fig. 7A). To this end, we

implanted a movable bundle of tetrodes unilaterally in the cortical fields dorsal to the GC (Fig. 7B).

Anatomical and functional studies confirmed that the cortical area that represents the somatosensory input

of the tongue and the intraoral region is located immediately dorsal to the gustatory cortex (Remple et

al., 2003; Accolla et al., 2007; Nakamura et al., 2015; Samuelsen and Vincis, 2021; Clemens et al., 2018).

Our histological analysis confirmed that the oral somatosensory fields targeted by our tetrodes received

thalamic input from the ventroposteromedial (VPM) and not from the gustatory thalamus (VPMpc) (Fig.

7C). Neural recordings with respect to taste and temperature in the somatosensory fields were made under

identical conditions used to collect the two data sets in the GC described above (see Methods). A total of

461 neurons from 16 wild-type mice and 68 neurons from 7 mice were recorded for the temperature and

taste datasets respectively. Despite the difference in neuron count, the taste dataset serves as an additional

physiological control, verifying the location of neurons in the somatosensory cortical fields. Based on previous
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research, gustatory responses are not expected in this area (Clemens et al., 2018; Accolla et al., 2007). Figure

7D shows the raster plots and PSTHs of three representative neurons. Visual inspection of the plots indicate

that, while the neuron in the taste dataset appears to respond similarly to all stimuli (i.e., being modulated

by the presence of the fluid irrespective of the taste), the two neurons in the temperature dataset each

responded to thermal signals in a selective and temporally dynamic manner. We then used the Bayesian

analysis described above to calculate the average taste and temperature classification scores for the neurons

recorded in the somatosensory oral fields. Figure 7E shows the plots of the taste (green) and temperature

(red) average classification score of the 50 best neurons recorded in the GC and somatosensory cortex (S).

As expected, neurons in the oral somatosensory cortex do not reliably process gustatory information,

as their overall classification was not statistically different from random guessing (t-statistic =-1.84, p-

value 0.08) and was different from the classification score of the GC neurons (p-value < 2−16, t-statistic

15.51). Comparison of temperature classification between neurons of the two cortices indicates that the

oral somatosensory cortex contains more information about oral thermal stimuli ( p-value < 2−16, t-statistic

-8.39), which is expected due to its primary function in processing somatosensory signals from the oral cavity

(Accolla et al., 2007; Clemens et al., 2018; Nakamura et al., 2015) (Fig. 7E). Despite the difference, the GC

also shows a high classification score for oral thermal information, highlighting its significant role in thermal

processing.

Next, we sought to provide a detailed assessment of the classification performance of each thermal stim-

ulus. To do this, we constructed confusion bar charts and analyzed the classification accuracy of neurons in

the somatosensory cortical fields for each temperature (Fig. 8A-B). For ease of qualitative comparison, we

also re-plotted the bar chart for thermal decoding in the GC in Fig. 5A. The evaluation of the confusion

bar chart provides insight into the differences in the average decoding of thermal stimuli between the two

cortices, as shown in Fig. 8. A qualitative comparison suggests that the oral somatosensory cortex exhibits

greater reliability in distinguishing each absolute temperature, as indicated by the roughly equal fraction of

trials correctly classified for each stimulus (bottom section of each bar, panel B). In contrast, as discussed

previously, the GC appears to more reliably encode information for the two temperatures with the greatest

differences (14°C and 36°C). This observation is also confirmed by the analysis of the classification scores for

pairs of thermal stimuli using the best (20%) decoding neurons (86 neurons for the GC and 92 neurons for

the somatosensory cortex; Fig. 8C). A two-way analysis of variance (ANOVA) confirmed that there was a

significant difference in the classification scores between the two cortices (F-value 151.09, p < 0.001). Similar

results are obtained when the best decoding neurons were selected with a different cut-off point (15% and

25%; F-value 113.507, p< 0.001 and F-value 181.91, p< 0.001 respectively). Post hoc pairwise comparisons

further confirmed that while both the GC and the oral somatosensory cortex neurons show similar encoding

capabilities for some temperature pairs, neurons in the somatosensory cortex consistently performed better

at distinguishing all temperature pairs than those in the GC, with the exception of the 25° vs. 36°C pairs

(Fig. 8C and Table 2).

In general, our results indicate that despite the overall higher classification accuracy observed in the

somatosensory cortex, the ability of the GC to encode thermal information, particularly for the most distinct

temperature pairs, underscores its potential role in integrating thermal cues relevant to gustatory processing.
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Figure 7: (A) Schematic showing the recording setup and a head-restrained mouse licking a spout to obtain
different oral stimuli. (B) On the left, histological section showing the track (blue) of 1 tetrode bundle in
the oral somatosensory field. Blue arrow points to the tip of the tetrode. On the right, schematic of the
summary of tetrode tracks from the mice used for the recordings of temperature or taste in the somatosensory
cortex. (C) On the left, coronal section of mouse brain showing the CTB injection site (in red, CTB594)
in the somatosensory cortex and the gustatory cortex (in green, CTB488) counterstained with Hoechst (in
gray). On the right, a coronal section showing the location of CTB+ neurons in the somatosensory thamalus
(VPM, in red) gustatory thalamus (VPMpc, in green). (D) Raster plots and peristimulus time histograms
(PSTHs) of 3 representative somatosensory neurons from the taste (left) and temperature (center and right)
dataset. Trials pertaining to different oral stimuli are grouped together (in the raster plots) and color-coded
(both in the raster plots and PSTHs). (E) Plots showing the taste (green) and temperature (red) average
classification score of 50 best neurons recorded in the GC and somatosensory cortex (S). Black horizontal
lines represent the mean while dotted horizontal gray lines represent chance level.

14°/36°C:GC 14°/25°C:GC 25°/36°C:GC 14°/36°C:S 14°/25°C:S 25°/36°C:S
14°/36°C:GC -
14°/25°C:GC < 2−16 -
25°/36°C:GC < 2−16 < 2−16 -
14°/36°C:S 0.010 < 2−16 < 2−16 -
14°/25°C:S 0.664 < 2−16 < 2−16 0.397 -
25°/36°C:S 0.0004 < 2−16 0.208 < 2−16 < 2−16 -

Table 2: This table presents the p values of post hoc pairwise comparison associated with figure 8C.
Significant p values (p < 0.05) are indicated in red.
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Figure 8: Comparing Thermal Responses (A) Spike train classification from the neurons that performed at
the top 20% for temperature stimuli in the Oral Somatosensory Cortex. Color of each vertical bar corresponds
to the way the spike train was classified. The label on the x-axis is the actual stimulus used to evoke that
group of spike trains, and the correct classifications are at the bottom of each bar. The black dashed line
represents random guessing (33%). The fraction of correct classifications was much higher for 25°C in the
oral somatosensory cortex than in the GC. (B) Fig. 5B copied here for ease of qualitative comparison. (C)
Comparison of classification scores for pairs of temperature stimuli in different brain regions. The orange
line in each box indicates the median score, and outliers are represented by open circles. GC = gustatory
cortex, S = oral somatosensory cortex.
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Discussion

Experimental evidence from electrophysiological and optical imaging studies shows that neurons in the

gustatory cortex represent multimodal, non-gustatory signals experienced before and/or during sampling

(Chen et al., 2021; Vincis and Fontanini, 2016; Samuelsen and Fontanini, 2017; Maier, 2017; Livneh et al.,

2017; Gardner and Fontanini, 2014; Samuelsen et al., 2012). Of particular relevance are studies that have

examined how neurons in the GC respond to intraoral somatosensory characteristics, such as temperature

variations. Pioneering work in anesthetized rats (Yamamoto et al., 1981; Kosar et al., 1986) and work in

the primate insular/opercular cortex (Verhagen et al., 2004; Kadohisa et al., 2005) indicates that thermal

changes in fluid solutions appear to modulate the activity of a subset of GC neurons. Furthermore, our recent

work has shown that GC neurons were capable of reliably responding to and discriminating a wide range

of innocuous oral temperatures of deionized water in a mostly monotonic manner (Bouaichi et al., 2023).

Although these observations highlight the GC’s crucial role in processing thermal signals, they leave open

several questions about its capacity to encode oral thermosensory signals and the coding strategies involved.

The objective of this study was to evaluate the role of GC neurons in the encoding of oral thermal information

and their ability to process chemosensory taste signals at room temperature, particularly compared to the

thermosensory and chemosensory coding functions of the oral somatosensory cortex (S), which represents

the sensory input of the tongue and intraoral region (Accolla et al., 2007; Nakamura et al., 2015; Clemens et

al., 2018; Samuelsen and Vincis, 2021). Given the role of the GC in processing taste stimuli (Mukherjee et

al., 2019; Chen et al., 2021; Fletcher et al., 2017; Katz et al., 2001), it could be speculated that taste-related

sensory input could inherently have a more prominent representation within this cortical region. This would

align with intuitive - but admittedly overly simplistic - expectations, considering the taste cortex function in

gustation. However, increasing evidence of nuanced and multifaceted involvement of the GC in the processing

of not only gustatory, but also other components of oral stimuli relevant to flavor (Rudenga et al., 2010;

Samuelsen and Fontanini, 2017; Verhagen et al., 2004; De Araujo et al., 2003; Vincis and Fontanini, 2016;

Bouaichi et al., 2023; De Araujo and Simon, 2009; Maier, 2017) introduces the intriguing possibility that

temperature information might play an equally vital role in its sensory integration processes.

In this study, we collected recordings of spiking activity from the gustatory and somatosensory cortex in

mice allowed to freely lick to receive a small drop (3 µl) of one of four liquid gustatory stimuli (sucrose, NaCl,

citric acid and quinine) at room temperature, or deionized water at one of three different non-nociceptive

temperatures (14°, 25° and 36°C). We then developed and employed a new Bayesian-based spike train analysis

method to determine the optimal weighting of the rate and phase information for the accurate classification

of oral stimuli by cortical neurons. In the gustatory cortex, our analysis revealed that classification scores

for both chemosensory and thermosensory modalities were highest when most of the weight was assigned to

rate information, although incorporating phase information was necessary to achieve maximum classification

accuracy. These results indicate that GC neurons employ a similar strategy to encode oral stimuli across

different modalities when experienced via active licking. As we demonstrated previously for taste (Neese et

al., 2022), rate information is clearly the dominant factor, but the timing of spikes also plays a complementary

role in enhancing thermosensory coding.

Our analysis revealed that the GC robustly encodes thermal information, indicating a strong neural

salience of temperature in this brain region. Using the best-performing neurons for encoding (top 20%), our

comparisons of classification scores between different thermosensory stimuli revealed that neuronal responses

in GC neurons can effectively differentiate between thermal stimuli, excelling in distinguishing both large

contrasts (14°C vs. 36°C) and, although less effectively, more subtle temperature differences (Fig. 5C, left
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panel). A qualitative evaluation of these results might lead to the tempting — though not necessarily

valid — deduction that GC neurons encode oral thermal signals more effectively than taste information.

Indeed, Fig. 5 suggests that GC more effectively distinguishes between deionized water at warm and cool

temperatures, particularly at the extremes of our temperature range (14°C vs. 36°C), than between any

pair of chemosensory stimuli presented at room temperature. However, this conclusion is highly speculative

at this stage for at least two key reasons. First, recent studies show that taste responses in the GC are

scattered rather than spatially organized (Chen et al., 2021; Fletcher et al., 2017; Levitan et al., 2019). It

is possible that our recordings were mostly from GC regions less sensitive to taste (see, for example, (Chen

et al., 2011)). Our experimental approach counters this concern to some extent. Our dataset (Bouaichi

and Vincis, 2020; Neese et al., 2022; Bouaichi et al., 2023) includes recordings from a broad section of the

GC and captures neurons broadly tuned to different taste qualities (Bouaichi and Vincis, 2020; Neese et al.,

2022). However, there may still be variability in the taste responses within our neural sample that could

affect the classification outcomes. Second, taste responses were recorded exclusively at room temperature

(ranging from 22°C to 23°C). Previous work in anesthetized rodents has shown that temperature can have

nonlinear additive or subtractive effects on neural activity in response to some taste qualities (Lemon, 2017).

Consequently, although no data are available for awake, behaving animals, it is possible that the temperature

of the gustatory stimulus could influence the taste-evoked neural responses in GC. Thus, taste classification

outcomes might change as a function of the temperature at which the taste stimulus is presented.

Our analysis also revealed that the temporal dynamics of signal encoding in the GC for the two sensory

modalities differs, with classification accuracy of thermal stimuli reaching a peak earlier than taste stimuli

(Fig. 6). Notwithstanding the caveats discussed above, this result underscores a potential fundamental

difference in how the GC processes these two types of oral signals. This finding is closely aligned with

previous research in rats, which used intraoral cannulae (IOCs) to deliver taste stimuli, providing insight

into the temporal dynamics of cortical taste processing (Katz et al., 2001). In this seminal study by Katz

and colleagues, analysis of the time courses of GC neural responses to taste revealed that modulation of the

GC firing rate arose from separable processes, each corresponding to distinct temporal epochs, with the first

two representing an early somatosensory input (i.e., the “touch” evoked by squirting the taste solution in the

mouth) followed by a later chemosensory input (represented by taste identity). Once again, future studies

are necessary to investigate whether and to what extent the lick-related time course of taste classification

vary as a function of temperature.

To better evaluate the neural relevance of thermosensory decoding by neurons in the gustatory cortex, we

recorded taste and thermal-evoked spiking activity in the somatosensory cortical fields, whose neurons play

a crucial role in the encoding and processing of fine somatosensory discrimination (Romo et al., 2002; Foffani

et al., 2008; Staiger and Petersen, 2021). In particular, we focused on a region of the somatosensory cortical

fields, located immediately dorsally to the gustatory cortex, known to represent the somatosensory input

of the tongue, and the intraoral region (Accolla et al., 2007; Nakamura et al., 2015; Samuelsen and Vincis,

2021; Clemens et al., 2018) (Fig. 7). As expected, neurons in the oral somatosensory cortex do not reliably

process gustatory information (Clemens et al., 2018). However, in accordance with their primary role in

processing somatosensory signals from the oral cavity, they are capable of reliably encoding all different oral

temperatures tested. Interestingly, our results revealed a notable difference from findings in a recent study

that used calcium imaging to evaluate the cortical representation of thermosensory signals from the skin. In

that study, neurons in the somatosensory cortex were reported to respond exclusively to cooling stimuli, with

no response to warming stimuli (Vestergaard et al., 2023). In contrast, our study found that all oral thermal
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stimuli, including the warming temperature of 36°C, are represented and encoded in the somatosensory

cortex. The results shown in Fig 8 revealed that although both the gustatory and the somatosensory cortex

reliably encode all temperature pairs well above chance level, the somatosensory cortex generally outperforms

the GC with the exception of distinguishing 25° vs. 36°C.
Some key questions emerge from our results. First, what functional role could thermal oral signals,

encoded by gustatory cortex neurons, play in the context of sensory processing and behavioral responses?

We can safely speculate that these oral signals are integral to flavor processing and behavioral responses,

particularly in relation to consummatory behavior. The gustatory cortex has been implicated in functions

related to taste processing (Katz et al., 2001; Blonde et al., 2015; Sadacca et al., 2012), taste learning (Schier

et al., 2016; Kayyal et al., 2021; Yiannakas et al., 2021; Arieli et al., 2022) and expectation (Samuelsen et

al., 2012; Gardner and Fontanini, 2014; Vincis and Fontanini, 2016; Livneh et al., 2017), but also in taste-

based decision making (Mukherjee et al., 2019; Vincis et al., 2020), highlighting its role not only in sensory

processing, but also in modulating consummatory behaviors. Therefore, encoding oral thermal signals by

the GC could help improve the fidelity of food evaluation processes, integrating temperature as a crucial

parameter in evaluating food quality and palatability (Zellner et al., 1988; Moskowitz, 1973; Torregrossa et

al., 2012).

This leads to the second question: why does the gustatory cortex, as opposed to only the somatosensory

cortex, appear to play a crucial role in encoding thermal oral signals? Previous experimental evidence may

provide information. A study in humans (Craig et al., 2000) and a more recent study in rodents (Vestergaard

et al., 2023) indicated that the posterior insular cortex, a region located closely but posterior to the areas

targeted in our recordings, functionally represents and underlies the thermosensory perception of the skin.

This, together with our findings, points to the possibility of a postero-anterior gradient across the insular

cortex for representing thermal information, extending from extraoral to oral thermal signals. This gradient

could imply that the gustatory cortex, located within this continuum, is optimally positioned to integrate

oral thermal information as a component of its broader role in sensory processing. This specialization might

reflect an evolutionary adaptation, prioritizing the gustatory cortex for oral thermal sensing due to its direct

implications for feeding and the evaluation of food stimuli, in contrast to the more general body temperature

regulation functions possibly attributed to more posterior regions of the insular cortex.

Finally, we consider the potential differences between the gustatory and somatosensory cortices in encod-

ing oral thermal stimuli. One speculative distinction between how the gustatory and somatosensory cortices

encode non-nociceptive oral thermal information might lie in their respective roles in processing “gross”

versus “fine” temperature differences. It is possible that the gustatory cortex is primarily responsible for

encoding broad or “gross” differences in oral thermal stimuli, such as differentiating between temperatures

that are cooler or warmer (i.e., 14° vs. 36°C oral stimuli in our experiments) than the “resting” oral temper-

ature. This kind of thermal information, potentially related to GC neurons having a large receptive field for

oral thermal stimuli, could be integrated with gustatory signals to influence overall flavor perception based

on temperature, potentially enhancing or diminishing certain tastes. However, the GC may be less able to

detect fine differences in temperature, where the temperature variations are smaller and closer to the normal

oral temperature range. This finer discrimination could instead be the domain of the somatosensory oral

cortex, which is well-suited for fine-tuned tactile stimulus discrimination (Romo et al., 2002; Foffani et al.,

2008; Staiger and Petersen, 2021), that might lead to including small receptive fields and precise temperature

detection. In this context, while the gustatory cortex might primarily handle broad thermal cues to adjust

flavor perception, the somatosensory oral cortex could be tuned more to detect and process fine thermal
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differences, ensuring a more detailed and accurate thermal perception that complements the gustatory expe-

rience. Moreover, it is important to consider that these two cortices are likely to interact and should not be

viewed as completely independent in their functions. Reciprocal cortico-cortical projections between the GC

and the oral somatosensory cortex (Shi and Cassell, 1998) suggest that they work together, likely integrating

broad and fine thermal cues to produce a cohesive perception of oral temperature, a critical somatosensory

signal, and flavor component. Future studies will be crucial to further elucidate the specific contributions of

these two cortices to thermal processing, providing a clearer understanding of how they collaborate to shape

sensory perception.

Overall, our findings highlight that GC neurons are not limited to processing taste information; they also

play a significant role in encoding thermal signals from the oral cavity. This dual capacity is particularly

relevant compared to the encoding observed in the oral somatosensory cortex. These results suggest that

temperature should be considered a critical dimension in future studies of cortical taste coding, as it can

substantially affect the cortical coding of gustatory stimuli and refine our understanding of the role of the

gustatory cortex in shaping nuanced perception of flavor.
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