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Identification of prognostic genes 
through expression differentiation 
during metastatic process in lung 
adenocarcinoma
Ning An & Xue Yang   

Cancer is a highly complicated biological process due to large scale heterogeneity. Identification of 
differentially expressed genes between normal and cancer samples is widely utilized in the discovery of 
prognostic factors. In this study, based on RNA sequencing data of lung adenocarcinoma, we focused on 
the expression differentiation during confined (with neither lymph node invasion nor distant metastasis) 
primary tumors and lymphnode (with only lymph node invasion but not distant metastasis) primary 
tumors. The result indicated that differentially expressed genes during confined-lymphnode transition 
were more closely related to patient’s overall survival comparing with those identified from normal-
cancer transition. With the aid of public curated biological network, we successfully retrieved the 
biggest connected module composed of 135 genes, of which the expression was significantly associated 
with patient’s overall survival, confirmed by 9 independent microarray datasets.

Due to the rapid development of molecular cancer research, more and more prognostic factors and therapeutic 
targets have been discovered, greatly aiding the clinical cancer treatment1, 2. However, carcinogenesis is still a 
highly complicated process, containing substantial and extensive molecular dysregulations. Although remarkable 
progress has been made to investigate the underlying molecular mechanism, the understanding of the compli-
cated carcinogenesis process was enormously hindered by large-scale tumor heterogeneity3–8, adding to the dif-
ficulty of molecular cancer research. Therefore, understanding the intricate underlying molecular mechanisms is 
essentially important in introducing prognostic markers and potential therapeutic targets.

The comparison between cancer samples and normal tissues has been repetitively and effectively utilized in 
many studies9–12. Certainly, as for the process of carcinogenesis, normal tissue is the start point, whereas cancer 
tissue is the end event of the whole process. Therefore, the differentially expressed genes (DEGs) between nor-
mal and cancer samples might contain substantial information of cancer transformation and clinical prognosis. 
However, the normal-cancer comparison might be oversimplified by only looking into the two extremes of car-
cinogenesis, and focusing upon specific biological event after cancer transformation is complete might also be 
informative of patient’s prognosis.

Lymph node and distant metastasis is the main cause of treatment failure and the mortality of cancer patients. 
In most cancers, including lung adenocarcinoma (LUAD), the first site of tumor metastasis is lymph nodes, and 
lymph node invasion is unquestionably one of major criteria for evaluating patient prognosis and further options 
of clinical implementations13, 14. Moreover, lymph node invasion, mostly as the first step of distant metastasis in 
LUAD, has proven to be an independent predictor of poor outcome in numerous solid organ tumors, including 
invasive breast carcinoma15, prostatic adenocarcinoma16, sporadic colorectal cancer17, as well as lung cancer18. 
Admittedly, each step of metastatic process might be regarded as a potential target for the anti-tumor therapy, and 
understanding the metastatic process is probably a very promising maneuver for discovering potential therapeu-
tic targeting19. Therefore, DEGs identified between different metastatic stages might also be helpful in discovering 
prognostic molecules.

The Cancer Genome Atlas (TCGA) database was a powerful resource of genomic data of various cancers, 
greatly helpful in the discovery of prognostic signature. For instance, Shukla et al. successfully retrieved a 
four-gene signature statistically significantly stratified overall survival of LUAD patinets in important clinical 
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subsets, including Stage I and EGFR wild-type, and EGFR mutant subgroups20. In this study, we used LUAD 
RNA sequencing (RNA seq) data downloaded from TCGA database. Instead of only focusing on normal-cancer 
comparison, we divided the primary tumor samples into three groups according to metastatic status: (1) confined: 
primary tumors with neither lymph node invasion nor distant metastasis; (2) lymphnode: primary tumors with 
only lymph node invasion but not distant metastasis; (3) metastasis: primary tumors with distant metastasis. 
Therefore, since lymph node invasion and distant metastasis were greatly important in prognosis prediction and 
clinical implementations, the identification of DEGs during confined-lymphnode and lymphnode-metastasis 
transition might be a novel channel to understand the underlying mechanism of tumor invasion and migration. 
Hopefully, this study might provide another perspective in discovering promising prognostic factors and thera-
peutic targets for LUAD patients.

Method
Data retrieval.  The transcriptional expression profile of LUAD was downloaded from TCGA data portal 
“RTCGA.rnaseq” (http://rtcga.github.io/RTCGA), containing 515 cancer samples and 59 normal tissues. One 
hundred and sixteen paired samples (including 58 cancer samples and 58 corresponding adjacent normal tissues) 
were retrieved to reduce potential individual bias in differentially expressed gene (DEG) identification. Moreover, 
three types of primary tumors were also collected to identify DEGs between each two sequential time points, 
including 218 confined samples, 124 lymphnode sample and 22 metastasis samples. Additionally, overall survival 
(OS) and other clinicopathological informations of cancer patients were also obtained from TCGA data portal 
“RTCGA.rnaseq”. As for microarray data validation, 9 LUAD microarray datasets were downloaded from Gene 
Expression Omnibus (GEO) database, with GEO accession numbers GEO68571 (n = 86), GEO68465 (n = 443), 
GEO41271 (n = 181), GEO11969 (n = 90), GEO30219 (n = 85), GEO42172 (n = 133), GEO50081 (n = 127), 
GEO13213 (n = 117), and GEO8894 (n = 62).

Data prepossessing and normalization.  The log2 transformed normalized RNAseq counts [using 
RNASeq by Expectation Maximization (RSEM) method] of LUAD were retrieved for further analysis. Genes with 
missing values in more than half of all the subgroup samples were all eliminated from further analysis, and all the 
missing values were imputed through Bioconductor package “impute”. Additionally, the whole TCGA transcrip-
tional profile was normalized using “Cyclicloess” method with “limma” R package to further approximate normal 
distribution. As for GEO microarray datasets, all the normalized expression profiles and clinical information were 
downloaded directly from GEO database.

Calculation of differential score in each transition.  Due to the limited sample numbers, we considered 
both fold change and the p value of Wilcoxon rank sum and signed rank test (Wilcox test) to calculate differential 
score. Differential score Di for gene i was calculated as follows:

= ∗ −D FC Plog ( ) ( log ( )) (1)i i i2 10

In which, FCi represented the fold change of gene i, and Pi represented the p value of Wilcox test.

Establish merged biological network.  The protein–protein interaction network was downloaded from 
the Human Protein Reference Database (HPRD), and Kyoto Encyclopedia of Genes and Genomes (KEGG) net-
work. Therefore, gene regulatory network was established by merging the two networks, including 10,340 nodes 
and 60,642 edges after eliminating self-loops and duplicated edges.

Survival analysis.  Principal component analysis (PCA) is a statistical procedure using an orthogonal trans-
formation to convert a set of observations into a set of linearly uncorrelated variables, of which the first principal 
component (PC1) has the largest possible variance. Therefore, calculated PC1 value of the candidate genes across 
the expression profile of cancer patients, and then all the cancer patients were divided into two groups according 
to the median of PC1 value. In this way, the expression of these candidate genes were linearly transformed into 
PC1 values capturing the largest variance of these genes’ molecular characteristics. Kaplan–Meier survival anal-
ysis and the log-rank test were used to evaluate the prognostic difference between the two PC1-assigned groups. 
The Cox proportional hazards regression model was used to evaluate the independence of the prognostic factors 
in a stepwise manner. Samples in the each dataset with complete information of age, sex, stage, and OS were used 
for Cox analysis, and a value of p < 0.05 was regarded as significant.

Results
Expression differentiation between consecutive metastatic time points were not as distinct 
as normal-cancer paired samples.  In order to identify significant DEGs, paired t test was used to iden-
tify DEGs in normal-cancer paired samples, and unpaired Student’s t test was conducted between each pair of 
consecutive metastatic time points. Furthermore, p values of t test were also adjusted using false discovery rate 
(FDR) method. The result indicated that 5405 genes were significantly differentiated in normal-cancer transi-
tion, including 2676 up-regulated and 2729 down-regulated genes (FDR < 0.001). However, no significant DEGs 
were identified in neither confined-lymphnode nor lymphnode-metastasis transition (FDR < 0.001). In addition, 
principle component analysis (PCA) of the normal-cancer, confined-lymphnode and lymphnode-metastasis data 
were conducted with corresponding top 25% genes with the largest standard deviation in each dataset. In nor-
mal-cancer paired data, the cancer samples and normal samples could be clustered into two distinct groups, while 
in the other two transitions, the cancer samples and normal samples were just dispersing randomly within each 
other (Fig. 1), suggesting the traditional t test was not suitable for DEG identification in these data without drastic 
expression differentiation.

http://rtcga.github.io/RTCGA
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Expression differentiation in confined-lymphnode transition was more relevant to survival sta-
tus.  Differential score (described in method section) denoted the status of expression differentiation, and the 
absolute value of Cox correlation coefficient quantified the interrelation between gene expression and patient’s OS. 
In order to compare the survival association of the DEGs in three transitions (normal-cancer, confined-lymphnode, 
and lymphnode-metastasis transition), we collected top 2000, 1500, 1000, and 500 up-regulated and down-regulated 
DEGs based on differential score in each transition, and calculated the average absolute values of Cox correlation 
coefficients to quantify the OS correlation of corresponding collected gene groups (Fig. 2A). The result indicated 
that the correlation between OS and DEGs in confined-lymphnode transition were all significantly higher than 
the other two transitions in both differential directions (Wilcox test, p < 1e-5), and corresponding p values were 
illustrated in Fig. 2B. Moreover, the association between average absolute Cox coefficient values (AACCV) and top 
gene numbers (TGN) was also illustrated in both up-regulated genes (Fig. 2C) and down-regulated genes (Fig. 2D), 
respectively. The curves in confined-lymphnode transition were located above those of the other two transitions in 
both differential directions, indicating that DEGs in confined-lymphnode transition were probably more relevant 
to patient’s OS with the comparison to those in the other two transitions. In order to complete the comparisons 
between each comparison among four sample types, we also conducted AACCV-TGN analysis in six comparisons 
(i.e. normal-confined, confined-lymphnode, lymphnode-metastasis, confined-metastasis, normal-lymphnode, and 
normal-metastasis) in both up-regulated and down-regulated directions (Supplementary Figure S1). The result 
indicated that the DEGs in confined-lymphnode transition performed best in both directions, indicating molec-
ular dysregulation during confined-lymphnode transition probably contained much more prognostic information 
comparing with the others.

Density plots of Cox correlation coefficients in each transition.  Top 2000, 1500, 1000, and 500 
down-regulated and up-regulated genes were collected according to differential score in each transition, respec-
tively. The density plots of Cox correlation coefficients were illustrated in Fig. 3, with red curves represented 
normal-cancer transition, green curves represented confined-lymphnode transition, and blue curves represent 
lymphnode-metastasis transition. The result revealed that the Cox coefficient density of top 2000 DEGs during 
three transitions were similarly distributed, i.e. normal distribution with the mean near 0. However, with fewer 
top genes we used, the density curve of Cox coefficients in confined-lymphnode transition were gradually sepa-
rated from the others, suggesting a stronger OS association of these DEGs. Meanwhile, the mean Cox coefficients 
of up-regulated DEGs in confined-lymphnode transition was inclined to be > 0, and the mean of down-regulated 
DEGs was inclined to be < 0, indicating the overexpression of most of these up-regulated genes might probably 
shorten patient’s OS, while underexpression might suggest a better prognosis.

Figure 1.  Schematic diagram of the reason why use differential score to identify DEGs during metastasis.

http://S1
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Figure 2.  DEGs identified from confined-lymphnode transition contained the most prognostic information. 
(A) Top 2000, 1500, 1000 and 500 up-regulated and down-regulated were collected to calculate the average 
absolute values of Cox correlation coefficients. Red bar represented up-regulated DEGs, while green bar 
represented down-regulated ones. (B) Corresponding p values of average absolute values in each transition. 
The average values of top bi-directional DEGs (e.g. top 2000 bi-directional DEGs included 2000 up-regulated 
and 2000 down-regulated DEGs) were compared between DEGs identified during each transition using Wilcox 
test, and –log10 transformed p value were plotted against y axis. P value < 1e-05 was considered as significant. 
(C,D) Association between top DEG numbers and average Cox coefficients for both up-regulated DEGs (C) and 
down-regulated DEGs (D), respectively. X axis represented the top DEG numbers, and y axis represented the 
average absolute value of Cox coefficients of these DEGs.

Figure 3.  Density plot of Cox correlation coefficients within each DEG groups.
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Identify significant DEGs in three transitions.  Kolmogorov-Smirnov test was conducted to prove that 
the differential scores in three transitions could significantly approximate normal distribution (normal-cancer: 
D = 0.221, p < 0.001; confined-lymphnode: D = 0.283, p < 0.001; lymphnode-metastasis: D = 0.317, p < 0.001). 
Therefore, one-sided normal distribution function was used to identify significant DEGs in corresponding nor-
mal distribution of each transition (p < 0.05). In this manner, 1216 DEGs were identified in normal-cancer paired 
data, including 502 up-regulated and 714 down-regulated DEGs; 1077 DEGs were found in confined-lymphnode 
transition, including 616 up-regulated and 461 down-regulated DEGs; and 1306 DEGs were identified dur-
ing lymphnode-metastasis transition, including 530 up-regulated and 776 down-regulated DEGs (Fig. 4A). 
Since normal-cancer comparison has always been repetitively utilized in cancer research, gene set enrich-
ment analysis (GSEA) was used to illuminate the distribution of DEGs identified from the other two transi-
tions against normal-cancer paired data (Fig. 4B). The result indicated that the expression differentiation of 
confined-lymphnode DEGs were significantly accordant with those in normal-cancer transition. Although 
lymphnode-metastasis DEGs were also statistically significant, the normalized enrichment scores (NES) were 
quite lower than those of confined-lymphnode DEGs, and the differential direction was opposite to that in 
normal-cancer transition (Fig. 4B).

Figure 4.  Identification of significant DEGs during each transition based on differential score. (A) Heat maps 
of corresponding significant DEGs identified in each transition. Columns represented samples, and rows 
represented genes. DEGs were also clustered using unsupervised clustering algorithm. (B) GSEA analysis of 
DEGs in confined-lymphnode and lymphnode-metastasis transition in normal-cancer paired data. (C) GO 
analysis of corresponding significant DEGs.
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Gene ontology (GO) biological process enrichment analyses were carried out via the DAVID bioinfor-
matics tool (http://david.abcc.ncifcrf.gov, Fig. 4C). GO analysis indicated that normal-cancer up-regulated 
DEGs were greatly related to cell division, cell cycle, and DNA replication, which was highly consistent with 
confined-lymphnode up-regulated DEGs. A very small number of GO terms were weakly enriched with 
normal-cancer down-regulated DEGs, including angiogenesis, cell surface receptor signaling pathway, and 
vasculogenesis, and the FDR values were relatively close to the verge of insignificance (with the criterion 
FDR = 0.05). No GO items were significantly enriched with confined-lymphnode down-regulated DEGs, while 
lymphnode-metastasis down-regulated DEGs were significantly enriched in cell adhesion, extracellular matrix 
organization and collagen catabolic process, highly related to invasion and migration process (Fig. 4C).

DEGs during confined-lymphnode transition were most significantly correlated with 
OS.  Kaplan–Meier survival analysis was conducted to evaluate the prognostic values of collected up-regulated 
and down-regulated DEGs during the three transitions, respectively. As shown in Fig. 5, lymphnode-metastasis 
DEGs were not significantly associated with OS. Up-regulated DEGs in normal-cancer transition, rather 
than down-regulated ones, were significant correlated with patient’s OS (n = 515, p = 0.0027). However, both 
up-regulated and down-regulated DEGs in confined-lymphnode transition were significant (p = 1.3e-5 and 
p = 0.041, respectively), suggesting the strongest association with LUAD’s prognosis.

Biggest connected component composed of confined-lymphnode DEGs were intimately asso-
ciated with patient’s OS and clinicopathological variables.  We projected 1077 confined-lymphnode 
DEGs onto HPRD-KEGG merged biological network, and obtained the biggest connected component containing 
135 DEGs (including 102 up-regulated and 33 down-regulated DEGs, Fig. 6). Nine LUAD microarray datasets 
were downloaded from GEO database in order to evaluate the prognostic value of these genes. The result indi-
cated that DEGs within this connected module were significantly associated with patient’s OS in all 9 datasets 
(Fig. 7). To show the robustness of this methodology, we re-analyze these confined-lymphnode DEGs in a curated 
human singling network (HSN, http://www.cancer-systemsbiology.org/data-software, Supplementary Figures S2 
and 3), and HPRD-KEGG-HSN merged network (Supplementary Figures S4 and 5), and the results were all sat-
isfactory, indicating that the whole methodology in finding prognostic genes were quite stable and convincing.

Furthermore, we used 7 GEO datasets with definite information of OS, age, sex, stage or grade to evaluate the 
independence of the prognostic factors with Cox regression analysis in a stepwise manner (Table 1). The result 
indicated that these 135 connected genes were all significantly associated with patient’s OS in both univariate and 
multivariate Cox analysis (Table 1).

We also compared this 135-gene signature to three other published LUAD prognostic signatures through 
Kaplan–Meier survival analysis and Cox analysis in these microarray independent datasets21–23. The result indi-
cated that none of the other three signatures was statistically significant for all these independent datasets in both 
Kaplan–Meier analysis and Cox analysis, highly suggesting the validity and stability of this 135-gene signature 
(Supplementary Figures S6–8, Supplementary Tables S1–3).

Figure 5.  Survival analysis of corresponding significant DEGs in three transitions.

http://david.abcc.ncifcrf.gov
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Discussion
Since carcinogenesis is a highly complicated biological process, studies of underlying molecular mechanisms in 
various types of cancers have always been the highlighted spot in cancer research. The precious knowledge we 
obtained from previous cancer studies undoubtedly provided us with the effective therapeutic methods to treat 
cancer patients. For instance, emerging molecular targeted drugs ushered us into a brand new era of clinical 
oncology24–27. However, the large scale heterogeneity of cancer cells succeeds in keeping us from fully understand-
ing its intricate molecular mechanism. Cancer cells need to acquire functional capabilities to survive, proliferate, 
disseminate and colonize in distant organs. These functions are acquired in different tumor types via activating 
distinct hallmark networks and at various times during the course of multistep tumorigenesis28. Therefore, it is 
desirable to analyze the cancer hallmark genes from the DEGs and discover stable gene signatures with profound 
prognostic information29. In numerous cancer studies, the identification of differential expressed molecules is the 
first step in the identification of prognostic indicators. For instance, AHNAK2 expression was identified as upreg-
ulated in clear cell renal cell carcinoma based on the comparison between cancer and adjacent normal tissues, 
leading to further exploration of its prognostic relevance30. The under-expression of lncRNA LINC00261 was also 
first identified in gastric cancer comparing with normal adjacent tissues, was then proven associated with poor 
prognosis by promoting distant metastasis31. Admittedly, molecules undergoing substantial differentiation prob-
ably play important roles during carcinogenesis, and furthermore influence cancer patient’s survival accordingly. 
However, the samples for identifying differentially expressed molecules were, in most circumstances, majorly 
cancer and normal samples. This comparison is actually so plausible, that it has become the safest and most 
acceptable way in molecular cancer research32–36. However, expression differentiation between normal and cancer 
tissues is intended to measure the molecular dysregulations between the two extreme end points of carcino-
genesis, and this oversimplified version of comparison probably overlooks the subtle molecular dysregulations 
happening during specific carcinogenic stage, for instance, metastasis. Therefore, identification of DEGs during 
the process of metastasis might uncover the intricate underlying molecular mechanism, and be greatly helpful in 
finding prognostic factors and potential therapeutic targets.

Figure 6.  Retrieval of biggest connected module composed of DEGs during confined-lymphnode transition. 
Significant DEGs identified from confined-lymphnode transition were projected onto the merged biological 
network, and the biggest connected component was obtained for further analysis. Red nodes represented up-
regulated DEGs, while blue ones represented down-regulated DEGs.
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TCGA database is an immeasurable source of knowledge launched in 2005, which provides publicly available 
cancer genomic datasets37. With the aid of TCGA database, we successfully retrieved the RNA sequencing data 
of LUAD samples. Since the metastasis is so important in the carcinogenesis, we started to focus on the expres-
sion differentiation during this crucial biological process. Primary tumors were divided into three groups, i.e. 
confined, lymphnode and metastasis, to simulate the trajectory of metastasis, since lymph node invasion under 
most circumstances is the first step of tumor metastasis in LUAD. The reason why we used primary tumors in this 
study is to avoid systematic bias. Apparently, if the secondary metastatic tumors were used for DEG identification, 
tremendous systematic bias might be introduced since the molecular characteristics of the secondary site (includ-
ing lymph nodes and distant organs) are surely different than primary sites, even in physiological state. Since the 
comparison between cancer samples and corresponding adjacent normal tissues is frequently used in molecular 
cancer research, LUAD paired samples were also extracted as the standard to evaluate the prognostic information 
of DEGs identified during metastatic process.

Not surprisingly, traditional t test could not identify significant DEGs during confined-lymphnode and 
lymphnode-metastasis transitions, due to relatively much less expression differentiation comparing with 
normal-cancer transition (Fig. 1). This difference in DEG numbers is quite easy to understand. The pathological 
characterization is completely distinct between normal and cancer, certainly as well as the molecular charac-
teristics. Additionally, expression differentiations during confined-lymphnode and lymphnode-metastasis were 
inclined to concentrate upon a very small time window during the process of metastasis, and the pathological 
characteristics were almost the same for these primary tumors. In order to identify potential DEGs with subtle 
expression differentiation, we proposed a more “lenient” manner, differential score, as a new statistic alternative 

Figure 7.  Survival analysis of 135 module DEGs in nine independent datasets.
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to quantify the molecular dysregulation. Based on differential score, top DEGs in both directions were collected, 
and the Cox correlation coefficients were calculated to represent corresponding prognostic values. The results 
consistently showed that DEGs during confined-metastasis transition were most closely related to patient’s OS 
(Fig. 2). As addressed in our previous study, a variety of molecules have already been differentially expressed 
in precancerous stage38. In this case, confined-lymphnode transition could be regarded as pre-metastatic stage, 
probably containing most precious untapped resource of prognostic information.

Based on extensive literature searching, the overexpression of the molecules up-regulated in cancer, in most 
of cancer studies, might shorten patient’s survival, while that of down-regulated ones might have the opposite 
effect. This impression is certainly not explicitly explained by any researchers, but the mainstream voice strongly 
advocates this research pattern, since nearly no exception has been ever found. In the scenario of LUAD, this is 
probably true. The means of Cox correlation coefficients in normal-cancer and confined-lymphnode transition 
were both accordant with the direction of expression differentiation, that is, up-regulated DEGs were associated 
with a poor prognosis, while down-regulated ones predicted a better prognosis. Additionally, the density curve 
of confined-lymphnode DEGs seemed gradually separated from the other two curves as the gene number was 
decreasing, suggesting DEGs identified form confined-lymphnode transition were probably most closely related 
to patient’s OS. Therefore, as mentioned before, comparison between confined and lymphnode primary tumors 
might be superior in survival association than traditional normal-cancer comparison.

Furthermore, significant DEGs were identified in each transition based on differential score in corresponding 
normal distribution, which was confirmed by Kolmogorov-Smirnov test. Although the expression differentiation 

Factors

Univariate Cox regression Multivariate Cox regression

HR (95% CI) p HR (95% CI) p

GSE13213

 Age 1.006 (0.978~1.035) 0.678 — —

 Sex (Male/Female) 1.359 (0.773~2.387) 0.286 — —

 Stage (II + III/I) 2.536 (1.446~4.448) 0.001 2.1230 (1.200~3.781) 0.010

 PC1a 0.374 (0.206~0.680) 0.001 0.435 (0.236~0.800) 0.007

GSE50081

 Age 1.020 (0.990~1.050) 0.192 — —

 Sex (Male/Female) 1.4101 (0.807~2.463) 0.228 — —

 Stage (II/I) 2.443 (1.383~4.316) 0.002 2.071 (1.167~3.676) 0.013

 PC1a 0.263 (0.142~0.487) 2.241e-05 0.285 (0.153~0.532) 7.867e-05

GSE42172

 Age 1.043 (1.008~1.079) 0.015 1.037 (1.002~1.074) 0.039

 Sex (Male/Female) 1.814 (0.968~3.398) 0.063 — —

 Stage (II + III + IV/ I) 2.029 (1.115~3.694) 0.021 1.346 (0.711~2.546) 0.361

 PC1a 0.299 (0.150~0.596) 5.998e-04 0.321 (0.158~0.650) 0.002

GSE30219

 Age 1.038 (1.003~1.073) 0.030 1.050 (1.013~1.087) 0.007

 Sex (Male/Female) 1.023 (0.492~2.127) 0.951 — —

 Stage (II + III/I) 1.003 (0.414~2.427) 0.995 — —

 PC1a 2.436 (1.291~4.595) 0.006 2.829 (1.481~5.405) 0.002

GSE11969

 Age 1.004 (0.972~1.038) 0.788 — —

 Sex (Male/Female) 1.332 (0.714~2.486) 0.367 — —

 Stage (II + III/I) 2.691 (1.427~5.075) 0.002 2.677 (1.418~5.052) 0.002

 PC1a 2.156 (1.134~4.098) 0.019 2.140 (1.125~4.071) 0.020

GSE41271

 Age 1.018 (0.993~1.044) 0.154 — —

 Sex (Male/Female) 1.629 (1.004~2.643) 0.048 1.324 (0.802~2.185) 0.273

 Stage (II + III + IV/I) 2.3581 (1.453~3.828) 5.205e-4 2.014 (1.222~3.318) 0.006

 PC1a 0.459 (0.278~0.756) 0.002 0.579 (0.342~0.981) 0.042

GSE68465

 Age 1.026 (1.013~1.040) 1.172e-04 1.028 (1.015~1.042) 4.514e-05

 Sex (Male/Female) 1.425 (1.098~1.848) 0.008 1.336 (1.027~1.738) 0.031

 Grade (II + III/I) 1.181 (0.790~1.766) 0.418 — —

 PC1a 1.401 (1.081~1.817) 0.011 1.433 (1.100~1.867) 0.008

Table 1.  Univariate and multivariate analyses of LUAD patient’s survival (Cox proportional hazards regression 
model) in 7 testing cohorts. aBased on the median of the PC1 value to divide samples into two groups. 
Significant p values were in bold (p < 0.05). Abbreviations: HR, hazard ratio; CI, confidence interval.
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in metastatic stages were not as distinct as in normal-cancer transition (Fig. 4A), the down-regulated and 
up-regulated DEGs could generally clustered into two groups, indicating the validity of our identification meth-
odology. GSEA analysis indicated that DEGs in confined-lymphnode transition was significantly enriched in 
normal-cancer paired data, while lymphnode-metastasis DEGs were reversely enriched with a lower enrich-
ment score, suggesting expression differentiation status was generally consistent between normal-cancer 
and confined-lymphnode transitions (Fig. 4B). Moreover, the survival analysis further confirmed that both 
up-regulated and down-regulated DEGs during confined-lymphnode transition were significantly related 
to patient’s OS (Fig. 5). Based on our aforementioned findings, DEGs during confined-lymphnode transition 
showed similar molecular characteristics with normal-cancer transition, whereas contained much more prog-
nostic information, indicating confined-lymphnode transition model might be more helpful in potential clinical 
applications for cancer patients.

In order to identify the functional module undergoing tremendous expression differentiation during 
confined-lymphnode transition, the biggest connected component composed of DEGs in this transition was 
retrieved (n = 135, Fig. 6). In this connected module, these two groups of genes separately formed compact 
regulatory interactions, and many regulations existed between the two gene groups. As mentioned in previous 
study, dynamic modularity analysis based on this network might help identify core events during carcinogenesis 
and genes that predict prognosis39. Because interpatient and intratumour heterogeneity has an important role in 
affecting the robustness of gene signatures40, therefore we check the robustness of the prognosis signatures based 
on 9 independent GEO datasets. The result indicated that the expression of these 135 module DEGs were all sig-
nificantly associated with patient’s OS (Fig. 7). Therefore, this module, containing 102 up-regulated genes and 33 
down-regulated genes subject to strong expression alterations during the early stage of metastasis, may represent 
an important mechanism of tumor invasion and migration.

In summary, expression profiles of adjacent normal tissues and three types of primary tumor samples (con-
fined, lymphnode, and metastasis) of LUAD were downloaded to identify genes with prognostic value. Differential 
score was used in DEG identification, and the result indicated that significant DEGs during confined-lymphnode 
transition were most informative on the basis of patient’s prognosis. Taking advantage of public curated biolog-
ical network, the largest connected module were obtained, and the expression of its 135 genes was significantly 
associated with patients’ OS. Hopefully these DEGs might be helpful in the discovery of prognostic factors and 
therapeutic targets for LUAD patients. In future researches, we attempt to quantify and computationally dissect 
clones from tumors and conduct clone-based analysis, in order to decipher the evolutionary dynamics of tumor 
clonal networks during confined-lymphnode transition41, 42. Additionally, circulating tumor cells (CTCs) and 
cell-free DNAs (cfDNAs) in blood samples could also be used to discover the promising biomarkers and prom-
ising therapeutic targets43. The underlying molecular mechanism during confined-lymphnode transition might 
surprise us with its great value in cancer research.
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