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We identified abnormally methylated, differentially expressed genes (DEGs) and
pathogenic mechanisms in different immune cells of RA and SLE by comprehensive
bioinformatics analysis. Six microarray data sets of each immune cell (CD19+ B cells,
CD4+ T cells and CD14+ monocytes) were integrated to screen DEGs and differentially
methylated genes by using R package “limma.” Gene ontology annotations and KEGG
analysis of aberrant methylome of DEGs were done using DAVID online database. Protein-
protein interaction (PPI) network was generated to detect the hub genes and their
methylation levels were compared using DiseaseMeth 2.0 database. Aberrantly
methylated DEGs in CD19+ B cells (173 and 180), CD4+ T cells (184 and 417) and
CD14+ monocytes (193 and 392) of RA and SLE patients were identified. We detected 30
hub genes in different immune cells of RA and SLE and confirmed their expression using
FACS sorted immune cells by qPCR. Among them, 12 genes (BPTF, PHC2, JUN, KRAS,
PTEN, FGFR2, ALB, SERB-1, SKP2, TUBA1A, IMP3, and SMAD4) of RA and 12 genes
(OAS1, RSAD2, OASL, IFIT3, OAS2, IFIH1, CENPE, TOP2A, PBK, KIF11, IFIT1, and
ISG15) of SLE are proposed as potential biomarker genes based on receiver operating
curve analysis. Our study suggests that MAPK signaling pathway could potentially
differentiate the mechanisms affecting T- and B- cells in RA, whereas PI3K pathway
may be used for exploring common disease pathways between RA and SLE. Compared
to individual data analyses, more dependable and precise filtering of results can be
achieved by integrating several relevant data sets.
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INTRODUCTION

As immune mediated diseases, the pathogenesis of rheumatic
diseases, rheumatoid arthritis (RA) and systemic lupus
erythematosus (SLE) is closely related to different immune cells (1).
These cells secretemanypro-inflammatory factors andproteases that
could destroy cartilage and bone (2). Chronic inflammation in the
articular joints leads to joint and bone destruction in RA, whereas
uncontrolled production of autoantibodies against nuclear antigens
leads to systemic inflammation in SLE. Both of these diseases can
easily bedistinguishedbasedon their phenotypes.Although standard
diagnostic methods are available for RA and SLE, identifying sub-
populations of patients for personalized medicine and sub-
phenotypes of the disease, needs many different diagnostic
methods that can also distinguish different phases of the disease
activity. In this context it is of interest tomention thatRAandSLEare
considered as syndromes having a combination of different disease
phenotypes. In addition, earlier studies (3–5) have shown that
peripheral blood gene expression profiles and expression of a
unique set of genes can differentiate responders from non-
responders during biological therapy and also can help to predict
responsiveness of therapy to support the clinical decision-making
process. Although familial aggregation (6), genetic overlap (7–9),
shared locus (10) and common molecular mechanisms (11, 12)
between them have been reported, differences, especially in the
non-MHC gene regions were also documented (13, 14) suggesting
presence of shared and distinct loci and biological pathways among
them (15), including pleiotropic genes (13).

B cells have both antibody-dependent and -independent roles in
the pathogenesis of RA and SLE. Autoantibodies are not only
important for clinical diagnosis but also act as inflammatory
mediators together with complement and FcgR-expressing
immune cells as downstream mediators of inflammation at the
effector phase of disease development (16). Antibody-independent
mechanisms include antigen presentation, regulation of T- cell and
DC functions and, production of cytokines, which cause
development of diseases (17). B cell targeted therapies were
reported to be successful in the treatment of RA and SLE (18),
while CD4+ T cells also contribute to initiation and perpetuation of
diseases. A balance between T cell subgroups (Th1, Th2, Th17 and
Treg) is important for maintaining normal immune function (19)
and dysregulation of this balance was observed both in RA (20) and
SLE (21, 22). Apart fromB cells, targeting T cells has also proved to
be beneficial in the treatment of these diseases (23). Similarly,
monocyte contributes to the immune and inflammatory
responses by their antigen presenting capacity, which regulates T
celldifferentiationandphagocytosis ofpathogenicmicroorganisms.
After entering the synovium, monocytes get differentiated into
macrophages and produce pro-inflammatory factors, and they
can also further differentiate into osteoclasts, and participate in
bone destruction and resorption (24–26). Depletion of
macrophages proved to be beneficial in treating RA (27). Also,
defects in phagocytic functionmay be the basis for the pathogenesis
of SLE. Lupus is initiated inmice, when they lackmolecules related
to clearing apoptotic cells (28). In addition, monocytes play an
active role in accelerating inflammation and damage to
glomeruli (29).
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DNA methylation status is one of the critical parameters in
predicting RA and other immunemediated inflammatory diseases.
At present, many studies have proposed candidate genes that
undergo methylation changes from B-, T- and synovial cells as
well asmonocytes as clinicalmarkers inRApatients (30).However,
studying the changes in the methylation profile alone will only
reflect the methylation status at cellular level but will not take into
account other changes present in closely related environmental and
genetics factors.Moreover,methylation can also be easily altered by
other factors, thus posing strong reliability issues. Hence, if changes
in methylation profiles can be combined with other omics data, it
will have greater significance as clinical markers. Therefore, we
envisaged a combined analysis of methylation profile and
transcriptomics data might have a more clinical relevance. Such
aberrantly methylated genes in RA and SLE may be used as
biomarkers or predictors of disease progression, and severity (31).
Moreover, by analyzing the gene expression in RA and SLE, we can
get new insights into sex-bias in the inflammatory functions, gene
biotypes and co-expression patterns (32). However, until now, a
combined analysis of gene expression and methylation profiling
microarray in immune cells of RAandSLEhasnot beenperformed.
Therefore, we collected relevant microarray data sets for B- and T-
cells, as well as monocytes from these two diseases, and used a
variety of bioinformatics tools for integrated analysis to detect
exceptionally methylated differentially expressed genes (DEGs)
and pathogenic pathways. Protein–protein interaction (PPI)
networks were developed and hub genes were determined.
Validity of these hub genes were confirmed by analyzing their
expression by qPCRusing FACS sorted immune cells frompatients
and healthy volunteers. In addition, we proposed certain genes as
potential biomarkers for diagnosis based on receiver operating
characteristic curve (ROC) analysis that need to be verified using
large cohort of human samples. Moreover, distinct signaling
pathways operating at cellular level in both RA and SLE were
identified and discussed.
MATERIALS AND METHODS

Data Collection
We checked the GEO database (https://www.ncbi.nlm.nih.gov/
geo/) with several keywords to identify relevant data sets:
(“Rheumatoid arthritis” OR “RA” OR “Arthritis” OR
“Rheumatoid”) AND (“Systemic lupus erythematosus” OR
“SLE” OR “lupus” OR “Erythematosus”) AND (Immune cells)
AND (“B cell” OR “CD19+” OR “B lymphocyte”) AND (“T cell”
or “CD4+” OR “T lymphocyte”) AND (“Monocyte” OR “CD14+”
OR “Mononuclear cell” OR “Mononuclear leucocyte”). The
screening criteria were as follows: 1) all cell sources consistent
for pre-treatment status were selected; 2) arrays must have at least
five patients per group; 3) more than 5,000 genes should be
included in the GEO database; 4) the entry and organism were
limited to “series,” and “Homo sapiens,” respectively.

Detection of DEGs and DMGs
A series of matrix files from GEO data sets were used. After
background noise was corrected, the raw data were normalized
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by Robust Microarray Analysis (RMA) procedure. Standardized
procedures like filtering and log2-transformation, were
performed. For data normalization and, to identify
differentially expressed genes (DEGs) and differentially
methylation genes (DMGs), the R package-limma (33) was
used. The one-tailed p-value of each gene was used to identify
its ranking in the list of genes, and the genes having p < 0.05 were
taken as relevant DEGs or DMGs. We have used this p-value for
our combined data analysis to avoid type I and type II errors.

Function Enrichment Analysis
Gene Ontology (GO) annotations and Kyoto Encyclopedia of
Genes and Genomes (KEGG) analysis of aberrantly methylated
DEGs were done by using the database for annotation,
visualization, and integrated discovery (DAVID) or Pathview
(34) software. DAVID is an online free software, which provides
functional annotation tools to analyze and understand the
biological meaning behind the list of genes. Using this tool, we
identified enriched GO terms to describe the role of genes and
proteins in cells, and to fully describe their attributes in
organisms and visualize the genes on KEGG pathway maps to
study the metabolic pathways and gene functions within the cells.
The results in.txt files were applied for visual analysis using GO
Plot18 and ggplot2 packages in the R program.

Analysis of Protein-Protein Interaction
(PPI) Network
PPI networks for aberrantly methylated DEGs were created using
“Search Tool for the Retrieval of Interacting Genes/Proteins”
(STRING) database (http://stringdb.org/) for hypomethylated
highly expressed genes and hypermethylated low expressed
genes. The cutoff interaction score was set at 0.4 for visualizing
PPI. Next, the “Molecular Complex Detection” (MCODE) in
Cytoscape software 3.7.2 was performed to filter modules in the
PPI network having MCODE score and the number of nodes
more than 3. Cytoscape is an open-source software for not only
visualizing molecular interaction networks and biological
pathways but also it aids to integrate them with annotations
and gene expression profiles. This software contains the plug-in
MCODE, which we used to calculate the density of a node and its
surrounding nodes by selecting a largest score value, followed by
enrichment of the neighboring nodes to finally form a functional
module. The gene functional enrichment analysis in each module
was determined by using STRING having a p-value < 0.05. Top
10 hub genes were selected using Maximal Clique Centrality
(MCC) in Cytoscape software, which is based on centrality,
eccentricity and radiality. Moreover, Metascape was used to
predict the biological characteristics and analyze the biological
functions contained in the modules within PPI network (35).

Methylation Gene Analysis
The human disease methylation database (DiseaseMeth
2.0, http://bioinfo.hrbmu.edu.cn/disease meth/) contains
methylation modifications data derived from microarray
and sequencing analysis as well as annotated data for DNA
methylation status for several diseases (36). This resource
includes the methylation data from Gene Expression
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Omnibus (GEO) and has experimental methylation-associated
gene-disease associations, inferred methylation-associated gene-
disease associations and potential methylation-associated
gene-disease associations. We compared methylation levels of
both RA, SLE and healthy individual’s hub genes using this
web site.

ROC Analysis
To identify the candidate genes for RA and SLE diagnosis, we
used RStudio with pROC package to do ROC analysis (37). The
area under the curve (AUC) was used to evaluate the sensitivity
and specificity of each gene. The genes with AUC more than 0.7
and two-tailed p-value less than 0.05 were used to predict
relevant biomarkers.

Clinical Samples
The selection of RA patients is based on The 1987 ACR
guidelines (38) and SLE patients is based on The 2019 SLE
EULAR/ACR classification standards (39). In this study, we
included 10 RA and 10 SLE patients as well as 10 healthy
controls from first affiliated hospital of Jinan University. We
have also collected patient’s age, gender, DAS28 score (for RA),
SLEDAI score (for SLE) and other relevant clinical information
including clinical lab findings such as erythrocyte sedimentation
rate (ESR), levels of c-reactive peptide (CRP), anti-cyclic
citrullinated peptide (CCP) antibodies, circulating immune
complex (CIC), anti-ds-DNA and anti-Smith antibodies,
rheumatoid factor, etc (see Supplementary Table, ST1). All
the samples collected in this study were approved by the ethics
committee of first affiliated hospital of Jinan University,
Guangzhou, China (Ethical number (2017:17). All the blood
samples were collected after written informed consent from
individuals based on declaration of Helsinki. Procedures for
using patient samples were approved prior to start of this
study by the ethics committee of the first affiliated hospital of
Jinan University. The screening sample criteria were as follows:
1) All the sample sources were from one hospital; 2) Each group
contained a minimum of 10 patients; 3) Patients were newly
diagnosed with RA or SLE. They were admitted as in-patients
with a clear diagnosis having obvious clinical symptoms, and at
their initial stage of disease with no other reported diseases; 4)
Patient’s sample was collected immediately after the diagnosis
became clear. All the patients were not treated with any
medications before collecting the samples for this study.

Flow Cytometry
The blood samples were centrifuged to collect the plasma. White
blood cells were obtained after red blood cells were lysed and
centrifuged at 1000 rpm. After incubating with Fc receptor
blocking solution (Human TruStain FcX™, Biolegend,
California, USA) for 30 min., the cells were further incubated
with FITC anti-human CD19, APC anti-human CD4 and PE
anti-human CD14 (Biolegend, California, USA) for 30 min. Flow
cytometry analysis was done in FACS buffer containing PBS plus
2% FBS using BD LSRFortessa instrument. FlowJo v10.2 software
(Treestar) was used for data analysis. Cells were sorted using
BD FACSAria.
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ELISA
Five mg/ml peptides (CCP1 (NH2-HQC*HQEST-(cit)-
GRSRGRC*GRSGS-COOH (cyclic)), CEP-1 (NH2-C*KIHA-(cit)-
EIFDS-(cit)-GNPTVEC*-COOH (cyclic)), Fibrinogen 60-74 (NH2-
(cit) PAPPPISGGGY-(cit)-A-(cit)-COOH), or Vimentin 60–75
(NH2-VYAT-(cit)-SSAV-(cit)-L-(cit)-SSVP-COOH) from WuXi
AppTec (Beijing, China) in carbonate-bicarbonate buffer (pH 9.6)
or recombinant cit-PAD2/4 (produced in house) in PBS (pH 7.4)
were coated on ELISA plates (Corning, Corning, USA) overnight at
4°C. All the plates were blocked using 2% BSA (Sigma-Aldrich,
Steinheim, Germany) and 5% skimmed milk powder (Sigma-
Aldrich) dissolved in PBS. After washing three times with TBST
buffer, serial dilutions of sera (1:125 to 1:1000 dilution) were added
and incubated for 2 h at room temperature (RT). Goat anti-human
IgG-HRP (Yeasen, Shanghai, China) and TMB substrate solution
(Beyotime, Shanghai, China) were used for detection. Absorbance
was read using R&D plate reader (R&D Systems, Minneapolis, MO)
at 450 nm.
Extraction of RNA and qPCR
TRIzol reagent (Invitrogen, Carlsbad, USA) was used to extract
RNA from CD19+ B- and CD4+ T- cells, as well as CD14+

monocytes sorted from clinical samples by flow cytometry. The
first-strand cDNA was synthesized using q-PCR kit from Takara
Bio (Beijing, China). GAPDH expression was used as control.
The forward primers used were listed in Supplementary Table 2
(ST2). The reverse primers used were from the qPCR detection
kit. 2-DDCt method was used to calculate relative RNA
expression levels.
Statistical Analysis
The GraphPad Prism 8, R software version 3.6.3 (The University
of Auckland, New Zealand) and SPSS software, version 20.0
(SPSS, Chicago, IL) were used for statistical analysis. Data are
given as mean ± SD/SEM and unpaired Student’s t-test was used
to compare the data between groups. The p values less than 0.05
was considered as significant at 95% confidence interval.
RESULTS

Gene Chip Data
Threemicroarray data sets for each immune cell, including CD19+ B
cells (GSE4588, GSE100648 and GSE87095) in RA and (GSE4588,
GSE10325 and GSE59250) in SLE, CD4+ T cells (GSE4588,
GSE56649, and GSE71841) in RA and (GSE4588, GSE103760, and
GSE59250) in SLE and CD14+ monocytes (GSE71370, GSE38351,
and GSE131989) in RA and (GSE4588, GSE103760, and GSE59250)
in SLE were obtained from GEO database and used in this study.
Detailed information of these data sets is shown in Table 1.
Detection of Hub Genes
After analysis using cytohubba of Cytoscape software, top 10 hub
genes for each immune cell were identified (Table 2). More
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interestingly, certain common hub genes were found to be
present in different cell populations. For example, in RA
patients, DICER1 was identified in CD19+ B and CD4+ T cells,
SOCS3 and KRAS were identified in CD4+ T cells and CD14+

monocytes. Whereas, OAS1, RSAD2, MX1, OAS3, OAS2, and
IFIT3 were detected in CD19+ B cells and CD14+ monocytes
from SLE patients.

Immune Cells and Autoantibodies Present
in the Patient Samples
In order to confirm the validity of identified hub genes, we
analyzed the expression of these genes by qPCR using FACS
sorted cells. All the FACS sorting results are shown in Figure 1.
Both CD19+ B and CD4+ T cells were significantly reduced in
both RA and SLE samples, and all the cells in SLE were present
relatively less than in RA patients (Figures 1B, D). This result is
consistent with previously reported results. The total number of
peripheral blood B and T cells was reported to be reduced in RA
and SLE, probably because of the presence of anti-lymphocyte
antibodies (40, 41). In addition, no significant changes in CD14+

monocytes were observed in all the three groups (Figure 1F).
Moreover, the levels of anti–CCP1, anti–CEP-1, anti–Fib60-74,
anti–Vim60-75, and anti–cit-PAD2/4 IgG antibodies were
increased in both RA and SLE sera, compared to healthy
controls (Figure 1G). Further clinical laboratory diagnosis data
of patients’ samples are given in Supplementary Table, ST1.
Atypically Methylated DEGs in CD19+

B Cells of RA and SLE
Each microarray data set was analyzed separately by R package
“limma” to filter DEGs or DMGs with the threshold p-value of less
than0.05.After combiningDEGs andDMGsexpressed inCD19+B
cells, 61 hypomethylated-highly expressed genes and 112
hypermethylated-low expressed genes were acquired by
overlapping three microarrays (GSE4588, GSE100648 and
GSE87095) in RA (Figure 2A). On the other hand, 104
hypomethylated-highly expressed genes and 76 hypermethylated-
low expressed genes were obtained by overlapping three
microarrays (GSE4588, GSE10325, and GSE59250) in SLE
(Figure 2B). To identify top 10 hub genes, DiseaseMeth version
2.0 analysis was used. In CD19+ B cells, themeanmethylation levels
of BPTF, MRPS28, SF1, PSAP, and HNRNPC were significantly
higher, while ICT1 and ERBB2 methylation levels were lower in RA
compared to healthy controls (Figure 2C). In the case of SLE,
compared to healthy individuals, the mean methylation levels of
OAS1, XAF1, RSAD2, MX1, OASL, OAS3, and OAS2 were lower
(Figure 2D), while the methylation levels of other three genes were
not significant. The expression of top 10 hub geneswas confirmed by
qPCR using FACS sorted immune cells. BPTF, ICT1, and ERBB2
were significantly expressed at higher levels, while MRPS28, SF1,
PSAP, HNRNPC, PHC2, JARID2, and DICER1 were expressed
significantly lower in RA (Figure 2E). OAS1, XAF1, RSAD2, MX1,
STAT1, OASL, IFIT3, OAS3, and OAS2 but not IFIH1 were
significantly expressed at higher levels in SLE (Figure 2F).

All the differentially expressed and methylated genes from GO
enrichment analysis for CD19+ B cells are shown in the
May 2021 | Volume 12 | Article 668007
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supplementary Files, SF1A and SF1B, for RA and SLE, respectively.
Firstly, in the CD19+ B cells from RA, we detected enrichment of
aberrantly methylated DEGs related to “transcription,
DNA-templated,” “regulation of transcription, DNA-templated,”
“apoptotic DNA fragmentation,” “artery morphogenesis,” and
“liver development” for biological processes in terms of GO
(Figure 3A). For cellular component, “nucleus,” “nucleoplasm,”
“cytoplasm,” “nucleolus,” and “nuclear matrix” were the most
significantly enriched terms (Figure 3C). In addition, few
molecular functional terms, like “protein binding,” “DNA binding,”
sequence-specific DNA binding,” “poly(A) RNA binding,” “mRNA
3’-UTRbinding,”and “transcription factor activity,”were found tobe
Frontiers in Immunology | www.frontiersin.org 5
enriched (Figure 3E). Secondly, the aberrantly methylated DEGs
enrichment in SLE were found to be connected to “type I interferon
signaling pathway,” “interferon-gamma-mediated signaling
pathway,” “response to virus,” “defense response to virus,” and
“negative regulation of viral genome replication” GO terms for
biological processes (Figure 3B). For cellular components,
“cytosol,” “perinuclear region of cytoplasm,” “cytoplasm,”
“membrane,” and “lysosome” were the most significantly enriched
terms (Figure 3D). In addition, few molecular function terms, such
as “double-stranded RNA binding,” “2′-5′-oligoadenylate
synthetase activity,” “protein binding,” “protein homodimerization
activity,” and “GTP binding” were enriched for SLE (Figure 3F).
TABLE 1 | Details for GEO B cells, T cells and Monocytes data in RA and SLE.

Cell types Diseases Contributors Country Source Experiment type GEO Number of
samples

Platform

CD19+

B cells
RA Lauwerys BR. et al. (2006) Belgium Peripheral

Blood
Expression profiling by
array

GSE4588 RA: 7, HC: 9 GPL570

Thalayasingam N. et al.
(2018)

UK Peripheral
Blood

Expression profiling by
array

GSE100648 RA: 71, HC: 36 GPL10558

Julià A. et al. (2016) Barcelona Peripheral
Blood

Methylation profiling by
array

GSE87095 RA:49, HC: 73 GPL13534

SLE Lauwerys BR. et al. (2006) Belgium Peripheral
Blood

Expression profiling by
array

GSE4588 SLE: 7, HC: 9 GPL570

Davis Ll. et al. (2008) USA Peripheral
Blood

Expression profiling by
array

GSE10325 SLE: 14, HC: 9 GPL96

Absher DM. et al. (2014) USA Peripheral
Blood

Methylation profiling by
array

GSE59250 SLE: 48, HC: 56 GPL13534

CD4+

T cells
RA Lauwerys BR. et al. (2006) Belgium Peripheral

Blood
Expression profiling by
array

GSE4588 RA: 8, HC: 10 GPL570

Ye H. et al. (2014) China Peripheral
Blood

Expression profiling by
array

GSE56649 RA: 13, HC: 9 GPL570

Guo S. et al. (2015) China Peripheral
Blood

Methylation profiling by
array

GSE71841 RA: 12, HC: 12 GPL13534

SLE Lauwerys BR. et al. (2006) Belgium Peripheral
Blood

Expression profiling by
array

GSE4588 SLE: 8, HC: 10 GPL570

Lopez CM. et al. (2018) USA Peripheral
Blood

Expression profiling by
array

GSE103760 SLE: 8, HC: 8 GPL17585

Absher DM. et al. (2014) USA Peripheral
Blood

Methylation profiling by
array

GSE59250 SLE: 78, HC: 71 GPL13534

CD14+

Monocytes
RA Frederiksen KS. et al. (2015) Denmark Peripheral

Blood
Expression profiling by
array

GSE71370 RA: 9, HC: 8 GPL16268

Smiljanovic B. et al. (2012) Germany Peripheral
Blood

Expression profiling by
array

GSE38351 RA: 8, HC: 12 GPL96

Barcellos LF. et al. (2019) USA Peripheral
Blood

Methylation profiling by
array

GSE131989 RA: 59, HC: 31 GPL16304

SLE Rodriquez-Pla A. et al.
(2014)

USA Peripheral
Blood

Expression profiling by
array

GSE46907 SLE: 5, HC: 5 GPL96

Smiljanovic B. et al. (2012) Germany Peripheral
Blood

Expression profiling by
array

GSE38351 SLE: 14, HC: 12 GPL96

Absher DM. et al. (2014) USA Peripheral
Blood

Methylation profiling by
array

GSE59250 SLE: 27, HC: 28 GPL13534
May 20
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TABLE 2 | Top 10 hub gene of B cells, T cells and monocytes present in RA and SLE.

Cell types Diseases Top 10 hub genes

CD19+ B cells RA BPTF, MRPS28, SF1, PSAP, HNRNPC, ICT1, PHC2, JARID2, DICER1, ERBB2
SLE OAS1, XAF1, RSAD2, MX1, STAT1, OASL, IFIT3, OAS3, OAS2, IFIH1

CD4+ T cells RA STAT5B, SOCS3, JUN, STAT1, KRAS, PTEN, FGFR2, DICER1, ALB, CD44
SLE CENPE, MELK, NCAPG, AURKA, BUB1, TOP2A, CCNB1, KIF23, PBK, KIF11

CD14+ Monocytes RA RPL15, SOCS3, SIRT1, SERBP1, SKP2, TUBA1A, IMP3, EXOSC5, SMAD4, KRAS
SLE IFIT1, ISG15, MX1, OAS2, OASL, IFIT2, IFIT3, OAS1, RSAD2, OAS3
icle 668007
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The top five significant GO terms from DAVID were presented in
Supplementary Table, ST3.

In KEGG analysis of irregularly methylated DEGs of CD19+ B
cells, enrichment of mitogen-activated protein kinase (MAPK)
and measles signaling pathways were noted in RA and SLE,
respectively (Figures 4A, B). All the KEGG pathway enrichment
analyses of CD19+ B cells were shown in Supplementary Table,
ST4. PPI network for CD19+ B cells was presented in Figures 4C,
D for RA and SLE and all the modules were displayed in Figures
4E, F. The functional analysis of PPI network for aberrantly
Frontiers in Immunology | www.frontiersin.org 6
methylated DEGs was given in Supplementary Table, ST5 and
all the module analyses were presented in Supplementary
Table, ST6.

Identification of Anomalously Methylated-
DEGs Between RA and SLE in CD4+ T Cells
After combining DEGs and DMGs expressed in CD4+ T cells, 83
hypomethylated-highly expressed genes and 101 hypermethylated-
low expressed genes were identified by overlapping three
microarrays (GSE4588, GSE56649, and GSE71841) in RA
A B

D

E F

G

C

FIGURE 1 | Number of immune cells and level of anti-citrullinated peptide/protein antibodies in the sera of RA, SLE and healthy blood donors. (A, C, E) Flow
cytometry sorting results for CD19+ B- and CD4+ T- cells and, CD14+ monocytes in HC, RA and SLE. (B, D, F) Ratio of CD19+ B-, CD4+ T- cells and, CD14+

monocytes in HC, RA, and SLE. (G) The level of anti-CCP1, anti–CEP-1, anti–Fib60-74, anti–Vim60-75, anti-PAD2/4 IgG antibodies in HC, RA, and SLE sera.
ns, not significant. *p < 0.05; **p < 0.01; ***p < 0.001.
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(Figure5A). Similarly, 262hypomethylated-highly expressedgenes
and 155 hypermethylated-low expressed genes were identified by
overlapping three microarrays (GSE4588, GSE103760, and
GSE59250) in SLE (Figure 5B). To identify top 10 hub genes,
DiseaseMeth version 2.0 analysis for CD4+ T cells was used.
Significantly higher mean methylation levels of JUN, STAT1,
PTEN, and CD44 genes, and lower methylation levels of KRAS
and ALB genes were detected in RA compared to healthy samples
(Figure 5C). Whereas, significantly lower mean methylation levels
ofAURKAandCCNB1were identified in SLE compared to healthy
controls (Figure 5D), while methylation level of other genes were
insignificant. Expression level of top 10 hub genes was detected by
qPCR. Significantly high-level expression of STAT5B, SOCS3, JUN,
STAT1, KRAS, ALB, and CD44 were observed, whereas, lower
expression of PTEN, FGFR2 and DICER1 were noticed in RA
(Figure 5E). In SLE, higher level expression of CENPE, MELK,
Frontiers in Immunology | www.frontiersin.org 7
NCAPG, TOP2A, CCNB1, KIF23, and KIF11 genes and low-level
expression of AURKA were discovered (Figure 5F).

All the differentially expressed and methylated genes from GO
enrichment analysis for CD4+ T cells were shown in
Supplementary Figures, SF2A and SF2B for RA and SLE. Firstly,
for the CD4+ T cells in RA, we detected the aberrantly methylated
DEGs enrichment related to “angiogenesis,” “regulation of cell
shape,” “negative regulation of transcription from RNA polymerase
II promoter,” “negative regulation of cell migration,” and “cellular
response to cAMP”GOterms for biological processes (Figure 6A). In
termsof cellular components, “cytoplasm,” “nucleus,” “nucleoplasm,”
“axon,” and “Golgi apparatus” were the most significantly enriched
terms (Figure 6C). In addition, fewmolecular function terms, such as
“protein binding,” “poly(A) RNA binding,” “ATP binding,”
“nucleotide binding,” and “thyroid hormone receptor binding,”
were enriched (Figure 6E). Secondly, enrichment of the GO terms
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FIGURE 2 | Identification of abnormally methylated DEGs of CD19+ B cells in RA and SLE. (A) Unusually methylated DEGs of CD19+ B cells in RA and (B) SLE;
(C) Methylation level of top 10 hub genes in CD19+ B cells from RA and (D) SLE; (E) Expression levels of top 10 hub genes in CD19+ B cells from RA and (F) SLE.
ns, not significant. *p < 0.05; **p < 0.01; ***p < 0.001.
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for aberrantly methylated DEGs in SLE such as “chromosome
segregation,” “mitotic cell cycle,” “apoptotic process,” “regulation of
insulin secretion,” and “intracellular signal transduction” were most
significant in biological processes (Figure 6B). In the cellular
Frontiers in Immunology | www.frontiersin.org 8
components, “cytoplasm,” “cytosol,” “membrane,” “spindle,” and
“nucleoplasm” were the most significantly enriched terms (Figure
6D). In addition, few molecular functional terms, such as “protein
binding,” “enzyme binding,” “protein kinase binding,” “ATP
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FIGURE 3 | Chord plot depicting the relationship between aberrantly methylated DEGs of CD19+ B cells between RA and SLE. (A) Top 5 GO terms of biological process in
RA; and (B) SLE; (C) Top 5 GO terms of cellular components in RA and (D) SLE; (E) Top 5 GO terms of molecular functions in RA and (F) SLE. GO, Gene Ontology.
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binding,” and “metal-ion binding”were enriched for SLE (Figure
6F). The top five significantGO terms fromDAVIDwere given in
Supplementary Table, ST3. In KEGG pathway analysis of
aberrantly methylated DEGs of CD4+ T cells, proteoglycans in
cancer and primary immunodeficiency signaling pathways were
significantly enriched for RA and SLE (Figures 7A, B),
respectively. All the KEGG pathway enrichment analyses of
Frontiers in Immunology | www.frontiersin.org 9
CD4+ T cells were shown in Supplementary Table, ST4. PPI
network for CD4+ T cells was shown in Figures 7C, D for RA and
SLE, respectively, and all the modules were displayed in Figures
7E, F. The functional analysis of PPI network for unusually
methylated DEGs was given in Supplementary Table 5 (ST5),
and all themodule analyses were shown in Supplementary Table
6 (ST6).
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FIGURE 4 | The KEGG pathway analysis, PPI network and the most significant modules between RA and SLE in CD19+ B cells. (A, B) The KEGG pathway analysis
of RA and SLE; (C, D) PPI network of CD19+ B cells analyzed by String software between RA and SLE; (E, F) The significant modules of CD19+ B cells identified by
MCODE between RA and SLE. DEG, differentially expressed gene; PPI, protein-protein interaction.
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Exceptionally Methylated-DEGs Between
RA and SLE in CD14+ Monocytes
After combining DEGs and DMGs expressed in CD14+

monocytes, 77 hypomethylated-highly expressed genes and 116
hypermethylated-low expressed genes were identified by
overlapping three microarrays (GSE71370, GSE38351, and
GSE131989) in RA (Figure 8A), whereas 252 hypomethylated-
highly expressed genes and 140 hypermethylated-low expressed
genes were identified by overlapping three microarrays
(GSE46907, GSE38351, and GSE59250) in SLE (Figure 8B). To
identify top 10 hub genes in CD14+ monocytes, DiseaseMeth
version 2.0 analysis was performed, which showed significantly
higher mean methylation levels for SIRT1, SKP2, TUBA1A,
IMP3, EXOSC5, and SMAD4, while KRAS had significantly
lower methylation level in samples from RA patients compared
Frontiers in Immunology | www.frontiersin.org 10
to healthy individuals (Figure 8C). Similarly, IFIT1, MX1, OAS2,
OASL, OAS1, RSAD2, and OAS3 had significantly lower mean
methylation levels in SLE compared to healthy controls (Figure
8D), while for other three genes insignificant differences in
methylation level were observed. Expression levels of the top
10 hub genes were identified by qPCR. In RA, significantly high-
level expression of SERBP, SKP2, TUBA1A, SMAD4, and SOCS3
were observed, while low-level expression of RPL15 and IMP3
were found (Figure 8E). On the other hand, all the top 10 hub
genes IFIT1, ISG15, MX1, OAS2, OASL, IFIT2, IFIT3, OAS1,
RSAD2, and OAS3 were highly expressed in SLE (Figure 8F).

All the differentially expressed and methylated genes from GO
enrichment analysis for CD14+ monocytes were presented in
supplementary figures, SF3A and SF3B for RA and SLE,
respectively. Firstly, for the CD14+ monocytes in RA, we detected
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FIGURE 5 | Identification of aberrantly methylated DEGs of CD4+ T cells in RA and SLE. (A) Aberrantly methylated DEGs of CD4+ T cells in RA and (B) SLE; (C)Methylation
level of top 10 hub genes in CD4+ T cells from RA; (D) and SLE; (E) Expression levels of top 10 hub genes in CD4+ T cells from RA and (F) SLE. ns, not significant. *p < 0.05;
***p < 0.001.
May 2021 | Volume 12 | Article 668007

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Fang et al. Bioinformatics Analysis of DEGs
enrichment of abnormally methylated DEGs like “viral process,”
“cell proliferation,” “positive regulation of transcription from RNA
polymerase II promoter,” “energy reserve metabolic process,” and
“negative regulation of sequence-specific DNA binding
transcription factor activity” GO terms in biological processes
(Figure 9A). In the cellular components, “mitochondrion,”
“cytoplasm,” “PML body,” “nucleolus,” and “protein-DNA
Frontiers in Immunology | www.frontiersin.org 11
complex” were the most significantly enriched terms (Figure 9C).
In addition, few molecular function related terms, such as “protein
binding,” “poly(A) RNA binding,” “transcription factor binding,”
“repressing transcription factor binding,” and “RNA polymerase II
core promoter proximal region sequence-specific DNA binding”
were enriched (Figure 9E). Secondly, significant enrichment of GO
terms in SLE for the unusually methylated DEGs are “type I
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FIGURE 6 | Chord plot depicting the relationship between aberrantly methylated DEGs of CD4+ T cells between RA and SLE. (A) Top 5 GO terms of biological process in
RA and (B) SLE; (C) Top 5 GO terms of cellular components in RA and (D) SLE; (E) Top 5 GO terms of molecular functions in RA and (F) SLE. GO, gene ontology.
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interferon signaling pathway,” “interferon-gamma-mediated
signaling pathway,” “defense response to virus,” “response to
virus,” and “negative regulation of viral genome replication” for
biological processes (Figure 9B). In the cellular components,
“cytosol,” “cytoplasm,” “nucleoplasm,” “membrane,” and
“perinuclear region of cytoplasm” were the most significantly
enriched terms (Figure 9D). Furthermore, few molecular
functional terms, such as “protein binding,” “2′-5′-oligoadenylate
synthetase activity,” “poly(A) RNA binding,” “protein complex
binding,” and “double-stranded RNA binding” were enriched for
Frontiers in Immunology | www.frontiersin.org 12
SLE (Figure 9F). The top five GO terms enriched in DAVID were
presented in Supplementary Table 3 (ST3). In KEGG pathway
enrichment of abnormally methylated DEGs in CD14+ monocytes,
colorectal cancer and Influenza A signaling pathways were
significantly enriched in RA and SLE, respectively (Figures 10A,
B). All the KEGG pathway enrichment analysis of CD14+

monocytes were shown in Supplementary Table 4 (ST4).
PPI network for CD14+ monocytes was shown in Figures

10C, D for RA and SLE, respectively. All the modules were
displayed in Figures 10E, F. The functional analysis of PPI
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FIGURE 7 | The KEGG pathway analysis, PPI network and the most significant modules between RA and SLE in CD4+ T cells. (A, B) KEGG pathway analysis of RA
and SLE; (C, D) PPI network of CD4+ T cells analyzed by String software between RA and SLE; (E, F) The significant modules of CD4+ T cells identified by MCODE
between RA and SLE. DEG: differentially expressed gene; PPI: protein-protein interaction.
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network for unusually methylated DEGs was given in
Supplementary Table 5 (ST5), and all the module analyses
were shown in Supplementary Table 6 (ST6).

Evaluation of Hub Genes
Three immune cells and 30 hub genes filtered by MCODE in total
were used to differentiate RA patients from healthy individuals,
and thus deemed as biomarker genes. To substantiate the
expression of these 30 genes in blood cells from other patients,
we have chosen GSE17755 data set and did ROC analysis using R
Studio. Among the 30 hub genes, 12 genes (BPTF, PHC2, JUN,
KRAS, PTEN, FGFR2, ALB, SERB-1, SKP2, TUBA1A, IMP3, and
SMAD4), which had AUC above 0.70 were appraised as
biomarker genes, because they can distinguish RA patients in a
Frontiers in Immunology | www.frontiersin.org 13
more specific and sensitive manner (Figure 11). Similarly, among
the 30 hub genes in SLE, 12 genes (OAS1, RSAD2, OASL, IFIT3,
OAS2, IFIH1, CENPE, TOP2A, PBK, KIF11, IFIT1, and ISG15),
which had AUC above 0.70 were appraised as biomarker genes,
because they can be used to specifically diagnose SLE patients with
high sensitivity (Figure 12). Except for the ROC values of CENPE
(p = 0.006), TOP2A (p = 0.0208), PBK (p = 0.0019), and KIF11
(p = 0.0095) genes expressed in the T cells of SLE, all the other
genes in SLE and RA had p values < 0.0001.

DISCUSSION

Understanding various pathogenic mechanisms present in
immune cells of RA and SLE is indispensable to develop better
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FIGURE 8 | Identification of aberrantly methylated DEGs of CD14+ monocytes in RA and SLE. (A) Aberrantly methylated DEGs of CD14+ monocytes in RA and
(B) SLE; (C) Methylation level of top 10 hub genes in CD14+ monocytes from RA and (D) SLE; (E) Expression levels of top 10 hub genes in CD14+ Monocytes
from RA and (F) SLE. ns, not significant. *p < 0.05; **p < 0.01; ***p < 0.001.
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diagnosis and treatment strategies. We did a combined analysis
of epigenetics and genomics data, to dissect the abnormally
methylated DEGs present in the immune cells from RA and
SLE. Presence of exceptionally altered methylome of DEGs (173
and 180 in CD19+ B cells, 184 and 417 in CD4+ T cells and 193
and 392 in CD14+ monocytes) from RA and SLE patients were
Frontiers in Immunology | www.frontiersin.org 14
identified using several bioinformatics tools. Understanding the
pattern of expression of these enriched genes and their abnormal
methylation signature might contribute to identify new
biomarkers and confirm pathways operating in these
autoimmune diseases at cellular level that could facilitate
development of specific targeted therapies.
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FIGURE 9 | Chord plot showing a relationship between aberrantly methylated DEGs of CD14+ monocytes between RA and SLE. (A) Top 5 GO terms of biological
process in RA and (B) SLE; (C) Top 5 GO terms of cellular components in RA and (D) SLE; (E) Top 5 GO terms of molecular functions in RA and (F) SLE. GO,
Gene Ontology.
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In CD19+ B cells, as revealed by DAVID analysis, aberrantly
methylated DEGs were enriched in the biological processes of
DNA templated transcription and its regulation. In RA, both
central and peripheral B cell tolerance mechanisms are
compromised, resulting in an increased number of autoreactive
B cells (42) leading to an enhanced autoantibody synthesis and
Frontiers in Immunology | www.frontiersin.org 15
cellular metabolism (43). On the other hand, signaling cascades
involving type I interferon and anti-viral immune responses were
enriched in SLE. It is well known that lupus pathogenesis also
involves the interferon pathway and 2’5’-oligoadenylate
synthetase (OAS) (44, 45). This pinpoints to the prevailing
differences in B cell functions contributing to RA and SLE
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FIGURE 10 | The KEGG pathway analysis, PPI network and the most significant modules between RA and SLE in CD14+ monocytes. (A, B) The KEGG pathway
analysis of RA and SLE; (C, D) The PPI network of CD14+ monocytes was analyzed by String software between RA and SLE; (E, F) The significant modules of
CD14+ monocytes were identified by MCODE between RA and SLE. DEG, differentially expressed gene; PPI, protein-protein interaction.
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disease processes, though autoantibodies have a major
contribution to disease initiation and development in both
these diseases. In CD4+ T cells, exceptionally methylated DEGs
were enriched in the biological processes of angiogenesis, DNA-
templated transcription, transport, and regulation of cell shape in
RA. This indicates a prominent feature of biological functions of
T cells in RA (46). An association between RA and HLA-DRB1 is
the clear evidence available so far that strongly supports a
pathogenic role for CD4+ T cells in disease initiation and
perpetuation. In addition, RA associated allelic variants of
Frontiers in Immunology | www.frontiersin.org 16
several genes like PTPN22, CTLA4, ZAP70, and PADI4
encode molecules that are directly involved in T-cell activation
pathways. Synovial biopsies provide a convincing evidence for
the contribution of T cells in the chronic immune activation
pathways operating in RA patients (47). In SLE, CD4+ T cells are
mainly enriched in association with apoptosis. T cells are also
quite active in SLE, a disorder mainly caused by defects in
apoptosis leading to amplification of inflammatory responses.
In CD14+ monocytes, aberrantly methylated DEGs were
enriched in biological processes related to DNA-templated
FIGURE 11 | Confirmation of RA hub genes by ROC analysis. Out of 30 genes of immune cells filtered by MCODE, 12 genes having AUC > 0.70 were identified as
biomarker genes for RA.
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transcription and positively regulated RNA polymerase II
phosphorylation in RA. CD14+ monocytes are mainly located
in the capillaries and small arteries and veins, patrolling near
vascular endothelial cells (48). In RA, peripheral blood CD14+

monocytes pass through vascular endothelial cells into tissues
and get differentiated into macrophages that can secrete several
pro-inflammatory factors. In addition, monocytes can also
differentiate into dendritic cells (DCs) with a strong antigen
presenting ability (49). Therefore, its protein expression and
transcription levels are associated with high metabolic rate.
Frontiers in Immunology | www.frontiersin.org 17
Interestingly, decreased ser/thr kinase Akt pathway activation
in monocytes can contribute to the perpetuation of systemic
inflammation in RA (50). In SLE, type I interferon signaling
pathway, defense response to virus and OAS activity were mainly
enriched in CD14+ monocytes, similar to B cells, because virus
infection and interferon pathway are closely related to the
pathogenesis of SLE.

During initial stages of autoimmune disease development,
due to the decreased tolerance of immune cells (B cells and T
cells), activation of inflammatory factors and production of
FIGURE 12 | Confirmation of SLE hub genes by ROC analysis. Out of 30 genes of immune cells filtered by MCODE, 12 genes having AUC > 0.70 were identified as
biomarker genes for SLE.
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autoantibodies, immune cells will be damaged and the related
inflammatory pathways, such as MAPK or phosphatidylionsitol
3-kinase (PI3K) will get activated (51). KEGG analysis
demonstrated a significant enrichment of MAPK and measles
pathways in CD19+ B cells from RA and SLE, respectively. This
clearly suggests functional difference of B cells operating in both
RA and SLE. Thyroid hormone and estrogen signaling, hepatitis
B and MAPK pathways were enriched in CD4+ T cells from RA,
while primary immunodeficiency pathway was significantly
enriched in SLE. Recently, an enhanced prevalence and risk for
thyroid dysfunctions, especially overt hypothyroidism, in
arthritis patients were reported (52). Similarly, RA patients
have an increased risk for HBV infection than non-RA subjects
(53). Moreover, estrogen also modulates T-cell intrinsic signaling
pathways in RA (54). This observation is also consistent with the
frequent dysregulation in the MAPK signaling pathway observed
in RA patients (55). Interestingly, the MAPK pathway is enriched
in both CD19+ B- and CD4+ T-cells. However, we need more
experiments to ascertain whether the MAPK pathway is a
common regulatory pathway in both B cells and T cells, or
operating in other immune cells as well. Through “Pathview”
analysis of aberrantly methylated DEGs, we found certain
connection between the pathways operating in RA and SLE
(Supplementary Figure, SF4). In CD19+ B- and CD4+ T-cells,
MAPK and PI3K pathways were enriched in RA and SLE,
respectively (Figures 13A, B). More interestingly, enrichment
of PI3K pathway was found in CD14+ monocytes in both of these
autoimmune diseases (Figure 13C). In this context, it is of
interest to note that for therapeutic interventions, MAPK
regulators are increasingly being tested as inflammatory as well
as immune modulators (56). Similarly, both in humans and
animals affected by lupus, activity of PI3K was found to be
increased, and PI3K inhibitors have attenuated lupus
inflammation and disease manifestations (57). This
demonstrates prevailing clear differences in RA and SLE
pathogenesis at cellular level. However, in monocytes, PI3K
pathway is enriched in both these diseases, suggesting existence
of common pathways as well, which should be considered, while
prescribing drugs and designing treatments for these patients
(58) as well as during developmental stages of new drugs
(Supplementary Table, ST7).

PPI network and module analysis in CD19+ B cells from RA
and SLE suggested B cells in RA patients might be mainly related
to the production of pathogenic autoantibodies, while in SLE
patients, though autoantibody mediated disease manifestations
are quite prominent, they are also associated with the activation
of interferon pathway, which is consistent with our GO analysis.
In CD4+ T cells, RA but not SLE is related to the estrogen
signaling pathway. Fas and interferon signaling pathways were
enriched in CD14+ monocytes from RA and SLE, respectively.
Our findings highlight the significance of regulation in these
essential biological pathways by aberrant methylation, which
warrant further investigation. PPI network of abnormally
methylated DEGs demonstrates an overview of their functional
interactions. Among them, top 10 hub genes from each immune
cell were selected both in RA and SLE. Using methylation
database and qPCR, we confirmed the relation between top 10
Frontiers in Immunology | www.frontiersin.org 18
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FIGURE 13 | The KEGG pathway analysis of CD19+ B-, CD4+ T- cells and
CD14+ monocytes in RA and SLE. (A) In CD19+ B cells, MAPK and PI3K
signaling pathways were enriched in RA and SLE, respectively. (B) In CD4+ T
cells, MAPK and focal adhesion signaling pathways were enriched in RA and
SLE, respectively. (C) PI3K signaling pathway was enriched in CD14+

monocytes from both RA and SLE. Up-regulated, down-regulated and
unchanged genes are marked in red, green and gray colors, respectively.
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hub genes in each immune cell. Validation of RA and SLE
candidate hub genes by ROC analysis showed 12 genes (BPTF,
PHC2, JUN, KRAS, PTEN, FGFR2, ALB, SERB-1, SKP2,
TUBA1A, IMP3, and SMAD4) for RA and 12 genes (OAS1,
RSAD2, OASL, IFIT3, OAS2, IFIH1, CENPE, TOP2A, PBK,
KIF11, IFIT1, and ISG15) for SLE could be considered as
biomarker genes, for diagnosis. We have used data from blood
cells of RA and SLE patients as well as healthy controls from
another data set GSE17755 for validating the hub genes by ROC
analysis using RStudio. However, all the data sets used in our
study were coming from GEO database only. This is because
other databases available as of now (TCGA, GEPIA, ICGC, and
Oncomine) focus mainly on samples from cancer patients. So,
whether the proposed genes can be used for early diagnosis or
screening of general population for risk individuals involving
these diseases, along with other well-known genetic and
environmental factors remains to be investigated.

As we have mentioned earlier, MAPK and PI3K signaling
pathways play a crucial role in the RA development that was
further substantiated by functional studies attributed to some of
the identified hub genes in this study. Among the potential
biomarker genes, in RA patients, deletion of BPTF specifically in
Treg cells decreased the expression of Foxp3 and increased the
infiltration of lymphocytes in different organs causing systemic
autoimmunity, showing the importance of this gene in T cell
function and immune homeostasis (59). Knockout of the BPTF
gene down-regulated the expression of phosphorylated Erk1/2,
PI3K, and Akt proteins, and induced the cleavage of caspase-8,
caspase-7, and PARP proteins, thereby inhibited MAPK and
PI3K/AKT signal transduction and activation pathways (60).
Though BPTF is crucial in T cell development, its role in B cells is
yet to be clarified. In our analysis, initiation of RA seems to be
closely related to the activation of the MAPK pathway, so the
expression and activation of the BPTF gene may be used as a
specific marker for the activation of MAPK pathway. Besides,
another proposed gene JUN encodes C-Jun that can activate the
MAPK pathway and regulate the expression of inflammatory
response-related genes, and affect cell proliferation and cell cycle
as well (61). Similarly, the KRAS gene encoding the K-Ras
protein is part of the RAS/MAPK pathway. Another gene,
PTEN is the main contributor to Treg function and for
differential regulation of Th17 functions (62) and PTEN
deficiency inhibited MAPK signal transduction pathway and
the expression of inflammatory cytokines IL-12/23, IL-6, and
TNF-a (63). FGFR2 signaling activates multiple downstream
pathways, including RAS/MAPK and PI3K/AKT pathways (64).
SKP2 is associated with the activation of the AKT/mTOR and
Ras/MAPK pathways (65). IMP3 activates IGF-2, thereby
involved in the regulation and activation of PI3K and MAPK
pathway (66), whereas SMAD4 is the mediator of the TGFb
signaling pathway, which can regulate the activation of the
MAPK pathway (67). Hence, appropriate use of MAPK and
PI3K inhibitors can inhibit immune cell-related pro-
inflammatory pathways operating in RA and reverse the
ongoing inflammatory responses (68). Similar to RA, the
activation of PI3K pathway is significantly important in SLE
Frontiers in Immunology | www.frontiersin.org 19
patients, and the therapeutic drugs targeting PI3K pathway was
shown to be useful in SLE (69). Earlier reports also showed a
correlation between the expression levels of OAS1, OASL, ISG15,
IFIH1, IFIT1, and OAS2 genes and disease activity and/or
clinical symptoms in SLE patients (70, 71). Both JAK3 and
PI3K inhibitors inhibited the expression of ISG15 and OAS1
(72). Similarly, IFIT1 and RSAD2 also have a critical function in
lupus development (73). IFIT3 can be targeted to block type I
IFN and inflammatory cytokine synthesis by cGAS/STING
pathway in lupus affected individuals (74). Most importantly,
over expression of IFIT1 or IFIT3 increased EGFR and AKT
expression, which is closely related to the activation of the PI3K
pathway (75). TOP2A can also activate the PI3K/AKT signaling
pathway leading to cell migration (76), whereas an increased
expression of KIF11 inhibited the activation of PI3K/AKT
signaling pathway (77). In summary, the potential biomarker
genes proposed for SLE diagnosis are closely related to PI3K
pathway, and the use of PI3K inhibitors reversed the changes
associated with ISG15, OAS1, OASL, and IFIT1 (72, 78, 79).
However, not all the identified biomarker genes are well
connected yet with RA and SLE disease process, which also
needs further research.

Many labs currently focus on the changes present in gene
methylation profiles, especially in lymphocytes. CD4+ T cells
from SLE patients have hypomethylation in the promoter and
enhancer regions of ITGAL and TNFSF7 (80, 81). Similarly, the
changes in the methylation status of CD40L, FOXP3, RFX1, and
CREM led to changes in the expression of downstream signals
affecting disease progression in SLE (82–85). Interestingly, many
changes in methylation profiles of B cells observed in RA and
SLE were also closely related to disease manifestations (86). In
addition, alterations in the methylation profile of CD1C,
TNFSF10, PARVG, NID1, DHRS12, ITPK1, ACSF3, and
TNFRSF13C in RA patients can also predict the progression of
RA (86). Furthermore, monocytes also have an important
contribution to local and systemic inflammation and, many
studies have shown a relation between changes in the
monocyte methylation profile of RA and SLE patients with an
increase in the level of pro-inflammatory factors (87). However,
earlier studies mainly focused on the changes present only in cell
methylation profile, hence, there are differences between the
clinical markers we are proposing here from the previously
reported ones. This is mainly due to our combined analysis of
transcriptomics data with methylome profiles, which should be
more reliable in predicting biomarker genes for diagnosis. Our
data also show the prevailing inverse relationship between
methylation status and transcription levels. If only the
transcriptome data is used for analysis, the DEGs obtained will
be related to the transcriptome only, which could be different
from the results obtained by a combined analysis with
methylome data. Therefore, we did this combined analysis by
merging data to mainly increase the accuracy of the hub genes
and its persuasiveness.

Both RA and SLE are polygenic and multifactorial in nature,
therefore predictions based on a combined analysis of data might
be more accurate and advantageous in predicting these diseases.
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Because of the paucity of the data, in this study, we only
combined methylation profiles with transcriptomics data,
hence we propose more such combined analyses of
methylation pattern with other omics data may be required for
predicting and treating diseases at personal level in the near
future. At the same time, we would like to mention presence of
few impediments in our investigation. Due to the lack of chip
data, it is difficult to perform a complete comparative analysis of
several autoimmune diseases at present. Therefore, we have
selected RA and SLE, which are the most common,
autoimmune rheumatic diseases, as the research objects for a
combined analysis of genomic and epigenetic data sets. However,
patients used in the gene-chip analysis were neither from
homogenized disease sub-group nor belong to one geographic
area. Furthermore, more immune cells like CD8+ T cells,
neutrophils, NK cells, macrophages and other granulocytes
were excluded from our study due to lack of open data sets
available at present. Still, our study is expected to facilitate many
such studies in the future involving different cells and data sets.
Besides, it is important to mention that we validated abnormal
methylome of gene expression by using DiseaseMeth 2.0
database only. Furthermore, we have collected patients’
samples from early phase of the disease before treatments were
initiated, though it would be interesting to test samples from
different phases of disease as well. In addition, due to small
sample size, we did not observe any correlation between the
proposed genes and clinical laboratory findings in the patients.
So, to ascertain the usefulness of proposed genes as biomarkers
more experiments are required using large cohort of patients at
various phases of disease activity and treatment, and also to
design drugs for targeting specific and distinct pathways
operating in RA and SLE.
CONCLUSIONS

Our study demonstrates unusually methylated DEGs and disease
mechanisms of immune cells involved in RA and SLE using an
extensive bioinformatics analysis by combining data from
microarray analysis of gene expression and methylation, and
found plausible molecular pathways involved in the development
of RA and SLE at cellular level. We found 30 hub genes in
different immune cell populations from RA and SLE data sets.
We confirmed the expression of these hub genes using FACS
sorted patients’ immune cells. Among them, 12 genes (BPTF,
PHC2, JUN, KRAS, PTEN, FGFR2, ALB, SERB-1, SKP2,
TUBA1A, IMP3, and SMAD4) of RA and 12 genes (OAS1,
RSAD2, OASL, IFIT3, OAS2, IFIH1, CENPE, TOP2A, PBK,
Frontiers in Immunology | www.frontiersin.org 20
KIF11, IFIT1, and ISG15) of SLE were proposed as potential
biomarkers based on ROC analysis for diagnosis. In addition, our
analysis suggests that MAPK signaling pathway could potentially
differentiate the mechanisms affecting T- and B- cells in RA,
whereas, PI3K pathway may act as a common disease pathway
affecting immune cells between RA and SLE. Compared to
individual investigations and analysis, this study provides a
more dependable and precise filtering of results by integrating
appropriate data sets. However, more experiments are required
to validate our inferences.
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