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Abstract

In the study of the human connectome, the vertices and the edges of the network of the

human brain are analyzed: the vertices of the graphs are the anatomically identified gray

matter areas of the subjects; this set is exactly the same for all the subjects. The edges of

the graphs correspond to the axonal fibers, connecting these areas. In the biological applica-

tions of graph theory, it happens very rarely that scientists examine numerous large graphs

on the very same, labeled vertex set. Exactly this is the case in the study of the connec-

tomes. Because of the particularity of these sets of graphs, novel, robust methods need to

be developed for their analysis. Here we introduce the new method of the Frequent Network

Neighborhood Mapping for the connectome, which serves as a robust identification of the

neighborhoods of given vertices of special interest in the graph. We apply the novel method

for mapping the neighborhoods of the human hippocampus and discover strong statistical

asymmetries between the connectomes of the sexes, computed from the Human Connec-

tome Project. We analyze 413 braingraphs, each with 463 nodes. We show that the hippo-

campi of men have much more significantly frequent neighbor sets than women; therefore,

in a sense, the connections of the hippocampi are more regularly distributed in men and

more varied in women. Our results are in contrast to the volumetric studies of the human hip-

pocampus, where it was shown that the relative volume of the hippocampus is the same in

men and women.

Introduction

While it seems to be clear for all brain scientists that the complex connection patterns of the

neurons play a fundamental role in brain function [1–3], when the large-scale, macroscopic

description of these connections has become available by the development of diffusion MRI

techniques, it turned out that novel methods are needed to handle these large graphs [1, 2].

MRI-mapped human connectomes have only several hundred or at most one thousand verti-

ces today [4], and, therefore, more complex, more refined graph theoretical algorithms [5–7]
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can be applied for their analysis than the widely followed network science approach, originally

developed for tens of millions of vertices of the web graph [8].

The need for robust analytical methods

In the mathematical analysis of the large biological graphs, it is necessary to apply methods

that are capable of dealing with the frequently erroneous networks, computed from high-devi-

ation experimental data [9–11]. Our research group has developed several fault-tolerant ana-

lytical methods for biological graphs, based on a well-known robust network measure:

Google’s PageRank [12–15].

Today, one of the main challenges in brain science is the detailed mapping of the brain cir-

cuitry with reliable methods. While diffusion MRI yields a relatively reliable set of tools for

brain imaging, the workflow of identifying the common, human brain areas across different

subjects and the tractography phase of the processing have numerous difficulties [16–18].

Human braingraphs, or connectomes are very focused structures for the description of the

cerebral connections: the nodes of these graphs are the anatomically identified small (1-1.5

cm2) areas of the gray matter (called ROIs, Regions of Interests), and two nodes, correspond-

ing to two ROIs, are connected by an edge if in the tractography phase an axonal fiber is

found, connecting these two ROIs. These connectomes describe the macroscopical scale set of

connections between hundreds of brain areas. Before the era of diffusion MR imaging, only

very fractional knowledge was available on these connections [1]; today tens of thousands of

connections can be identified and examined.

Previous work

Perhaps the most straightforward robust approach to be considered is the study of the fre-

quently appearing cerebral connections. In work [19] we have mapped the differences in the

individual variability of the connections within the lobes and some smaller brain areas.

We have constructed the Budapest Reference Connectome Server [20, 21] at the address

http://pitgroup.org/connectome/, which is capable of generating consensus connectomes from

the data of 477 subjects, consisting of k-frequent edges (i.e., edges that are present in at least k
braingraphs), with user-selected k and other parameters.

The Budapest Reference Connectome Server is an excellent tool for generating a robust

human connectome, and, additionally, its construction has led to the discovery of the phenom-

enon of the Consensus Connectome Dynamics (CCD) [6, 22–24], mirroring the development

of the axonal connections within the human brain.

The global, or general approaches for describing the frequent (and, therefore, robust) cere-

bral connections are not always detailed enough for the study of specific brain regions. Addi-

tionally, the frequently appearing connections (e.g., in the Budapest Reference Connectome

Server [20, 21]) may describe the frequent neighbors of the individual vertices of these graphs,

but not the frequently appearing neighbor-sets of important vertices. The description of these

neighbor-sets is the goal of the present work.

Our contribution: The Frequent Network Neighborhood Mapping

First, let us introduce some basic terminology. A graph G(V, E) consists of a vertex-set V and

an edge-set E. Edges are formed from some (un-ordered) pairs of the vertices V. Let u and v be

vertices, then we say that u is a neighbor of v if the un-ordered pair {u, v} is an edge of the

graph.

In braingraphs, the elements of V correspond to anatomically identified areas of the gray

matter of the brain. If we have N braingraphs, corresponding to the connectomes of N human

The Frequent Network Neighborhood Mapping of the human hippocampus
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study we have used exclusively the 463-node

resolution graphs. S1 and S2 Tables contain the

one, two three and four-element subsets of the

neighbor-sets of the left- and the right hippocampi,

respectively, with a minimum frequency of 0.9. The

S3 Table lists those neighbor-sets of the left

hippocampus, which are significantly more

frequent in female connectomes; while S4 Table

lists those, which are significantly more frequent in

male connectomes. Similarly, S5 and S6 Tables

contain the analogous data for the right

hippocampus. S7 Table contains the data,

analogous with Table 3 in the main text, with equal

men- and women cohort sizes. The supplementary

tables can be downloaded in a compressed MS

Excel format from http://uratim.com/hpc/

supplementary_HCP_neighbors.zip.
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subjects, then in all of them, the vertex-set V is the same. However, the edge-set is typically dif-

fer from graph to graph. That is, we have N graphs on the very same vertex set V.

Let us consider an important small area, corresponding to a vertex in the connectome

(called ROI, region of interest) of the brain, say the left hippocampus. It is an important ques-

tion to describe those ROIs, which are directly connected to the left hippocampus since all the

connections to and from the other cerebral areas go through these edges and these neighbors

of the important ROI (in our case the hippocampus). It is a very interesting question whether

almost all the subjects have the same neighbors of the hippocampus, or there is a considerable

variability among the subjects.

If there were no any variability among the connectomes of the individual subjects, then in

each connectome, the left hippocampus would be connected to the very same set of other

nodes or ROIs. However, there is a considerable variability of these connections between dis-

tinct subjects [19–21]. Therefore, no such common neighbor-set exists for any vertex in the

braingraphs.

Instead of the non-existent single, universal neighbor-set (with the frequency of 100%),

which would have been present in the connectome of all the subjects, we can still identify at

least the frequently appearing neighbor-sets of the left hippocampus (or any other given vertex

of interest in the graph), with a cut-off value of, say, 80% or 90%. The formal definition is as

follows:

Definition 1. Suppose we have N graphs on the same vertex set V. Let v 2 V, and let 0�

c� 1. Then the vertex-set W is a c-frequent neighbor set of vertex v, if, in at least cN graphs, all
the vertices of W are connected to v.

Simple examples on Figs 1 and 2 demonstrate and clarify frequent neighbor sets.

The identification of frequent neighbor sets is a completely different task than identifying

the frequently appearing edges of the connectome, which are mapped by the Budapest Refer-

ence Connectome Server at http://pitgroup.org/connectome. As an example, let us consider a

vertex u, and two other vertices v and w. Suppose, that both edges {u, v} and {u, w} are present

in 90% of all connectomes, but it may happen that the vertex-set {v, w} appears only in the 80%

of the graphs as the neighbors of vertex v: if the connectomes are indexed from 1 through 100,

Fig 1. The visualization of the frequent neighbor sets. Suppose we have four braingraphs from four subjects. Blue

vertices a, b, c and d denote the same, interesting vertex in the braingraphs of four subjects, say the left hippocampus.

Then all the red vertices of the set X are connected to a, b and c; that is, the frequency of X is 3/4. See Fig 2 for further

explanation.

https://doi.org/10.1371/journal.pone.0227910.g001
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it may happen that in connectomes 1 through 90 {u, v} is an edge; in connectomes 11 through

100 {u, w} is an edge; so both of them are present in 90% of the connectomes, but the set {v, w}

is neighboring with u from connectomes 11 through 90, i.e., only 80 connectomes, i.e., 80%.

In the present contribution, we map the frequently appearing neighbor-sets of the left and

the right hippocampi of the human connectome, and we make comparisons between the lat-

eral and sex-differences in the frequent neighbor-sets of the left- and right hippocampi. The

neighbor set sizes are bounded by 4 in our present study, since if we considered larger sets

than 4, the numbers of the sets would be increased considerably. Our braingraphs have 463

vertices for all subjects.

Our results show strong differences in the neighbor-sets of the hippocampi between the

sexes: we mapped the neighbor-sets, which have significant differences in frequency in men

and women (we call these vertex sets “significant neighbor-sets”), and we have found that

• the number of the significant neighbor-sets of the left hippocampus is 65 times higher in

males than in females;

• the number of the significant neighbor-sets of the right hippocampus is 16 times higher in

males than in females;

In a sense, these results show that the neighbor sets of the hippocampus of the women are

more varied between individuals, while these sets are more regular, that is, less varied in the

case of men’s connectomes. These results complement our general studies of the deep graph-

theoretical parameters of the connectomes of men and women [5, 7, 25], where it was proven

that women’s connectomes are better “connected”, in precisely defined mathematical and

computer engineering terms.

Methods

The primary data source of the present study is Human Connectome Project’s website at

http://www.humanconnectome.org/documentation/S500 [26], containing the HARDI MRI

Fig 2. This figure contains a small change, relative to Fig 1. In Fig 1, X was a frequent neighbor set, with a frequency

of 3/4 = 0.75. Here, set Y with red nodes is a frequent neighbor set with a frequency of 3/4 = 0.75, but X is not, because

no three-vertex subset of {a, b, c, d} are connected to all of the elements of X this time: the green vertex is connected to

d instead of a. Note, that the degrees of the vertices of X are all equal to 3, both on Figs 1 and 2; therefore, the simple

degree-counting does not help in the identification of frequent neighbor sets.

https://doi.org/10.1371/journal.pone.0227910.g002
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data of 413 healthy human subjects between 22 and 35 years of age. From the subjects, there

were 238 women and 175 men.

We have analyzed the data of these 238 women and 175 men. Since the male and female

subjects were present in different numbers in the set, and we have made comparisons between

the results of the sexes below, we needed to analyze the possible effects of these differences.

The details of this analysis are given in the subsection “Handling the different set sizes”, below.

Construction of the graphs

The workflow for generating the connectomes has applied the CMTK toolkit [27], including

the FreeSurfer tool and the MRtrix tractography processing tool [28] with randomized seeding

and with the deterministic streamline method, with 1 million streamlines. For the present

study we have applied the 463-vertex graph resolution.

The parcellation data (containing the ROI labels) is listed in the CMTK nypipe GitHub

repository https://github.com/LTS5/cmp_nipype/blob/master/cmtklib/data/parcellation/

lausanne2008/ParcellationLausanne2008.xls.

The further details of braingraph-constructions are given in [29].

The braingraphs can be downloaded from the http://braingraph.org/cms/download-pit-

group-connectomes/ site. In the present study we have used the 463-node resolution graphs.

The apriori algorithm

The apriori algorithm [30] is a well-known tool in data mining for selecting the frequent item

sets from a large collection of subsets of a big item set. In constructing association rules [30,

31] the selection of frequent subsets is a basic step of the rule construction. In general, an n ele-

ment set has 2n subsets, therefore for not-too-small n’s it is not feasible to review all the 2n

subsets. However, if we want to identify only the subsets with high enough frequency (or “sup-

port”, in data mining terms [32]), then we can make use of the following observation: Suppose

that the set A has frequency α� 0. Then all subsets of A has a frequency at least α. Therefore,

first, we identify those 1-element subsets, which has a frequency at least α, it is an easy task.

Then, for identifying all the 2-element subsets of frequency α we need to screen only the pairs

of the frequent 1-element subsets. Next, for identifying the frequent 3-element subsets, we take

all the frequent 2-element subset appears with exactly one common element, and verify if their

union is frequent or not. The algorithm is continued in a similar way, and usually, it finishes

quickly.

Here we have applied an adaptation of the apriori code from the website http://adataanalyst.

com/machine-learning/apriori-algorithm-python-3-0/ with small modifications.

Statistical analysis

The identification of the frequent neighbor sets of the hippocampus was done by a two-step

method: first we partitioned the set of the graphs into two disjoint sets, and next, the frequent

neighbor sets were identified separately for each set. Only those neighbor sets were used for

the study, which were frequent for both sets. Technically, the 238 female graphs were parti-

tioned into a 130 and a 108-member set; the 175 male graphs were partitioned into two sets of

size 91 and 84. The partitioning was done by the parity of the second rightmost digit of their

ID (this partitioning can be considered quasi-random).

For a chosen frequent neighbor set F, we have counted its occurrences in the male dataset

by count1(F) and in the female dataset by count2(F). The support was calculated as

suppiðFÞ ¼
countiðFÞ

Si
, where Si, for i = 1, 2, is the number of male and female braingraphs,

The Frequent Network Neighborhood Mapping of the human hippocampus
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respectively. For each set F we need to determine whether supp1(F) and supp2(F) significantly

differ. For this goal we used the chi-squared test for categorical data:

Then the test is calculated as

w2 ¼
ðcount1ðFÞ � ðS2 � count2ðFÞÞ � count2ðFÞ � ðS1 � count1ðFÞÞÞ

2
� ðS1 þ S2Þ

S1 � S2 � ðcount1ðFÞ þ count2ðFÞÞ � ðS1 þ S2 � count1ðFÞ � count2ðFÞÞ

The degree of freedom for this test is one because it is the number of samples minus one

times the number of categories minus one.

Holm-Bonferroni correction [33]: After computing the p value for every frequent set, we

ordered these p-values p1� p2� p3� . . .� pm. With a significance level α = 0.01 let the

Holm-Bonferroni value for kth frequent set be p0k ¼
a

mþ1� k. Then let t be the minimal index such

that pt > p0t : we have to reject the null hypotheses for i indices i� t. If t = 1, then we do not

reject any null hypotheses thus the difference in supports is significant.

Handling the different set sizes

Our source contains the data of 413 healthy human subjects between 22 and 35 years of age.

From the subjects, there were 238 women and 175 men. Since we have identified structures,

which are present in 80% or 90% of the subjects of each sex, this condition is less restrictive for

the men, since their cardinality is less than that of the women. In order to handle this possible

problem, we have also checked our results with subsets of 175 women and the same set of 175

men. For choosing which female subjects to include, we follow a randomized choice strategy.

We have taken 10 randomly chosen 175-element subsets of the 238-element female data set

(i.e., we have examined 175 males and 175 females in each run), and computed the frequent

neighbors for these 175-element sets, then take the average for these 10 random subsets of the

female subjects.

The results are given in the S7 Table. Comparing the results with Table 1 of the main text,

one may conclude that the numbers do not differ considerably. Therefore, the male-female dif-

ferences we have found are due to sex, and not data-set size differences.

Discussion and results

Mapping the frequent graph-theoretical structures in the human braingraph makes possible

the robust analysis of the possibly noisy data. If the frequency count is set to a high enough

value, (say, the structure in question needs to be present in 80% or 90% of the connectomes

of the subjects in the group analyzed), then image acquisition artifacts, data processing

errors and small, random individual variabilities in the connectomes could be counter-

measured.

Here we consider the hippocampus and its neighbors of the human brain. The hippocam-

pus plays an important role in numerous brain functions, like the processing of short-time

memory and turning it into long-time memory, in spatial memory and orientation [34–37].

Today, the hippocampus is perhaps the most widely studied functional and structural entity of

contains F does not contain F total

1st sample count1(F) S1 − count1(F) S1

2nd sample count2(F) S2 − count2(F) S2

total count1(F) + count2(F) S1 + S2 − count1(F) − count2(F) S1 + S2

The Frequent Network Neighborhood Mapping of the human hippocampus
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the human brain, and, consequently, the detailed study of its neighbor sets is a relevant area.

Additionally, the detailed study of the cerebral circuitry is an emphasized research topic today:

describing the direct neighbors of one of the most important brain areas in this sense is also a

crucial question.

In our present study, we have discovered and analyzed frequent 1,2,3 and 4 element neigh-

bor-sets of the left and the right human hippocampi.

Frequent Network Neighborhood Mapping of the hippocampus

From now on, we refer to the brain areas, or ROIs, by their resolution-250 parcellation labels,

based on the Lausanne 2008 brain atlas [38] and computed by using FreeSurfer [39] and

CMTK [27, 40], listed at https://github.com/LTS5/cmp_nipype/blob/master/cmtklib/data/

parcellation/lausanne2008/ParcellationLausanne2008.xls. The “lh” and the “rh” prefixes abbre-

viate the “left-hemisphere” and “right-hemisphere” localizations.

Table 1. The most frequent subsets of the neighbors of the left hippocampus (cut frequency value: 0.995). 413 subjects from the Human Connectome Project public

release were examined. In all the subjects, the left hippocampus is connected to the following three ROIs: the Left-Putamen, Left-Thalamus-Proper and the lh.isthmuscin-

gulate_3, and, therefore, to all 7 (= 23 − 1) non-empty subsets of those (the first 7 lines of the table). The lh.superiortemporal_2 ROI is connected to the left hippocampus in

all, but one subjects, so its frequency is 412/413 = 0.99758. Note that no subset, containing lh.superiortemporal_2, may have a higher frequency than the frequency of lh.

superiortemporal_2 alone, i.e., 0.99758. Indeed, all the 8 (empty and non-empty) subsets of the Left-Putamen, Left-Thalamus-Proper and the lh.isthmuscingulate_3,

together with the lh.superiortemporal_2 is present in 412 out of 413 subjects, i.e., with 0.99517 frequency. The ROI lh.insula_2 is connected to the left hippocampus in 411

subjects out of the 413 subjects, therefore its frequency is 411/413 = 0.99517. Similarly, all the 8 subsets of the ROIs Left-Putamen, Left-Thalamus-Proper, and the lh.isth-

muscingulate_3, together with lh.insula_2 have the same 411/413 = 0.99517 frequency. Theoretically, lh.insula_2, together with the lh.superiortemporal_2 may have the

same frequency as lh.insula_2 alone (if the subject, where the left hippocampus—lh.superiortemporal_2 edge is missing is one of the two subjects where the left hippocam-

pus—lh.insula_2 edge is missing), but this is not the case: the frequency of the neighbor set {lh.superiortemporal_2,lh.insula_2} is below the cut frequency value for

Table 2, i.e., 0.995.

Frequency Subset

1 (Left-Putamen)

1 (Left-Thalamus-Proper)

1 (lh.isthmuscingulate_3)

1 (Left-Putamen)(Left-Thalamus-Proper)

1 (Left-Putamen)(lh.isthmuscingulate_3)

1 (Left-Thalamus-Proper)(lh.isthmuscingulate_3)

1 (Left-Putamen)(Left-Thalamus-Proper)(lh.isthmuscingulate_3)

. ...........................................................

0.99758 (lh.superiortemporal_2)

0.99758 (Left-Putamen)(lh.superiortemporal_2)

0.99758 (Left-Thalamus-Proper)(lh.superiortemporal_2)

0.99758 (lh.isthmuscingulate_3)(lh.superiortemporal_2)

0.99758 (Left-Putamen)(Left-Thalamus-Proper)(lh.superiortemporal_2)

0.99758 (Left-Putamen)(lh.isthmuscingulate_3)(lh.superiortemporal_2)

0.99758 (Left-Thalamus-Proper)(lh.isthmuscingulate_3)(lh.superiortemporal_2)

0.99758 (Left-Putamen)(Left-Thalamus-Proper)(lh.isthmuscingulate_3)(lh.superiortemporal_2)

....... ...................................................................................

0.99517 (lh.insula_2)

0.99517 (Left-Putamen)(lh.insula_2)

0.99517 (Left-Thalamus-Proper)(lh.insula_2)

0.99517 (lh.insula_2)(lh.isthmuscingulate_3)

0.99517 (Left-Putamen)(Left-Thalamus-Proper)(lh.insula_2)

0.99517 (Left-Putamen)(lh.insula_2)(lh.isthmuscingulate_3)

0.99517 (Left-Thalamus-Proper)(lh.insula_2)(lh.isthmuscingulate_3)

0.99517 (Left-Putamen)(Left-Thalamus-Proper)(lh.insula_2)(lh.isthmuscingulate_3)

https://doi.org/10.1371/journal.pone.0227910.t001
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We have mapped separately the direct neighbor sets of the left- and the right hippocampi.

We need to recall an important property of the frequencies of the neighbor sets of a given

vertex, in our case the left- or the right hippocampus. We say that a set U is a subset of set V, if

every element of U is, at the same time, the element of V. V is called the superset of U. We

denote this relation as follows: U� V or, equivalently, V� U.

Let us consider the left hippocampus. For every neighbor-set U of the left hippocampus, we

assign a frequency value as follows: we count the graphs of the subjects, where every element

of set U is connected to the left hippocampus, and divide this number by the number of all the

graphs. Let us denote this frequency value by ϕ(U). Clearly, if V is a superset of U, then the fre-

quency of V cannot be larger than the frequency of U: ϕ(U)� ϕ(V).

This observation concerning the frequencies, of course, holds for the neighbor-sets of any

vertex of our graphs.

Table 2 lists the neighbor-sets of the left hippocampus with a minimum frequency of 0.995.

Three ROIs (the Left-Putamen, Left-Thalamus-Proper and the lh.isthmuscingulate_3) are con-

nected to the left hippocampus in all braingraphs, while several other ROI (such as the lh.

superiortemporal_2 and the lh.insula_2), together with some subsets of the first three ROIs

form the remaining neighbor sets with a minimum frequency of 0.995.

The S1 and S2 Tables contain the one, two three and four-element subsets of the neighbor-

sets of the left- and the right hippocampi, respectively, with a minimum frequency of 0.9.

Sex differences

In what follows we compare the neighbor sets of the left- and right hippocampi in braingraphs,

computed from the male and female subjects of the dataset of the Human Connectome Project

[26]. We identify those neighbor sets of the hippocampus that are significantly more frequent

in male- and in female connectomes. We will see that male connectomes have much more fre-

quent hippocampal neighbor sets than female connectomes.

By our knowledge, this is the first observed significant sex difference in the connections of

the hippocampus in the literature.

Table 2. The summary of the results for sex differences. The first column list the minimum support, or, in other words, the frequency cut-off values: there are two values:

0.8 or 0.9, i.e., 80% 90%. The second column denotes the righ-, left- or both hippocampi; the abbreviation HPC stands for the word “hippocampus”. In the third column

the sex is given; the next four columns contain the number size 1, 2, 3 and 4 frequent neighbor-sets of the hippocampus considered. The next column gives the number of

the neighbor-sets, which have significantly different frequencies (p = 0.001) in male and female connectomes. The last, ninth column gives the number of neighbor-sets,

which are significantly more frequent in male or in female connectomes: the sum of the two numbers in the ninth column is equal to the number in the eighth column.

For example, in the first row, we can see that in males, the left hippocampus has 45 frequent 1-element neighbor sets; 844 frequent 2-element neighbor sets, 9102 3-element

neighbor sets and 65150 frequent 4-element neighbor sets, where the frequency cut-off is 0.8. Moreover, one can see that there are 15732 sets, differing significantly in fre-

quency in males and in females; and the last column says that from these 15732 sets, 15497 are present in the braingraph of males and only 235 in the braingraphs of

females.

Size Size Size Size # significant Sign. diff.

Support Node sex 1 2 3 4 differences for whom

0.8 HPC left male 45 844 9102 65150 15732 15497

0.8 HPC left female 38 679 7128 48717 235

0.8 HPC right male 50 1023 11989 91498 1762 1659

0.8 HPC right female 50 997 10725 73424 103

0.9 HPC male 64 1781 28823 309659 19828 17688

0.9 HPC female 62 1406 17976 150167 2140

0.8 HPC left all 43 759 7863 54861

0.8 HPC right all 52 1059 11963 85624

0.9 HPC all 68 1728 24741 233548

https://doi.org/10.1371/journal.pone.0227910.t002
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Anatomical sex differences in the volume of the hippocampus were studied in [41]: it was

found that males have larger absolute hippocampus volumes, but the relative hippocampus

volume, compared to both the total brain volume or the intracranial volume, are the same in

the two sexes. Here we demonstrate statistically significant differences in the number of the

frequent neighbor-sets of the hippocampus in males and females.

Here we show that there are 65 times more frequent neighbor sets of size at most 4 of the

left hippocampus in males than in females; and there are 16 times more frequent neighbor sets

of size at most 4 of the right hippocampus in males than in females. These results show that the

variability of the neighbor sets of the hippocampus is smaller in the case of males than in

females: in males there are much more frequent neighbor sets than in females. In other words,

the variability of the neighbor sets of the hippocampus in the connectomes of women is greater

than in the case of men.

Table 1 summarizes the results for the sex differences in the frequent neighbor sets of the

hippocampus. In size 1, 2, 3 and 4 neighbor-sets, males have more frequent sets than females.

The only exception is the 1-element frequent neighbors of the right hippocampus, where both

males and females have 50 frequent singleton sets. Since all the elements of the frequent 2,3

and 4 element subsets need to be present also as a frequent 1-element set, it is surprising that

there is such a big difference in the 4 element frequent neighbors of the right hippocampus in

males (91498 sets) and females (73424 sets).

The following observation is much more surprising: There is a definitive, but not too large

difference between the numbers of the frequent size-1,2,3 and 4 neighbor sets of the left and

the right hippocampi between the sexes. If we consider, however, the number of neighbor

sets with frequencies statistically significantly differing (with p = 0.001) between the two sexes,

we have got that 15732 sets differ, and from these, 15497 is significantly more frequent in

male-, and 235 is significantly more frequent in female connectomes, in the case of the neigh-

bors of the left hippocampus. Neighbor sets of the right hippocampus have 1762 significant

differences, from which 1659 is significantly more frequent in males, and 103 in female

connectomes.

If we take the union of the neighbor sets of the left- and right hippocampi, then the number

of the neighbor-sets with significant differences is 19828, from which 17688 are more frequent

in male connectomes, and 2140 in female connectomes (p = 0.001).

Table 3 lists 10 neighbor-sets of the left hippocampus with the most significantly different

frequencies in the sexes, where the higher frequency appears at the male (5 sets) and also at the

female subjects (5 sets). The S3 Table lists those neighbor-sets of the left hippocampus, which

are significantly more frequent in female connectomes; while S4 Table lists those, which are

significantly more frequent in male connectomes.

Table 4 lists 10 neighbor-sets of the right hippocampus with the most significantly different

frequencies in the sexes, where the higher frequency appears at the male (5 sets) and also at the

female subjects (5 sets). The S5 Table lists those neighbor-sets of the right hippocampus, which

are significantly more frequent in female connectomes; while S6 Table lists those, which are

significantly more frequent in male connectomes. The significance threshold is p = 0.01 (cor-

rected by the Holm-Bonferroni method).

As we can see in Table 1, there is not a large difference between the frequent 1-element

neighbors of the hippocampus in men and women. However, there is a very significant differ-

ence in neighbor-set frequencies of higher cardinality, as it is described in the last two columns

of Table 1. One possible reason for this could be that the neighbor sets of the hippocampus in

general and the left hippocampus, in particular, have less variability in the case of men than in

the case of women: men have the more regularly appearing neighbor-sets, while women have

more varied neighbor-sets.
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Conclusions

First in the literature, we have mapped the frequent neighbor sets of the human hippocampus,

by applying the Frequent Network Neighborhood Mapping method. We have identified the

frequent neighbor sets of the human hippocampus, and we have also compared the data of

healthy young men and women in respect to the neighborhood of the hippocampus. We have

found that men have much more significantly more frequent neighbor sets of the hippocam-

pus than women. We have repeated the computations for equal numbers of men and women

(c.f. S7 Table), and have found almost the same results. Our results are in contrast with the

generally much better connection properties of the braingraphs of women than of men, as

reported in [5, 7, 25]. Our results also need to be compared to the volumetric studies [41],

where it was shown that hippocampal volumes, relative to the intracranial volume and also to

Table 3. Several neighbor-sets of the left hippocampus with the most significant differences in the frequencies

between the sexes. The first five rows list five subsets, which are more frequent in the braingraphs of men than of

women. It is interesting that the lh.fusiform_4 ROI is present in the five sets. The next five are the most significant sets

with frequencies higher in females than in males. The lh.bankssts_2 and the Brain-Stem ROIs are present in all five

sets. The S3 Table lists those neighbor-sets of the left hippocampus, which are significantly more frequent in female

connectomes; while S4 Table lists those, which are significantly more frequent in male connectomes, p� 0.01. Simi-

larly, S5 and S6 Tables contain the analogous data for the right hippocampus.

frequency frequency name

male female

0.823 0.556 (lh.fusiform_4)(lh.precuneus_10)(lh.precuneus_11)(lh.superiortemporal_6)

0.823 0.561 (lh.fusiform_4)(lh.isthmuscingulate_2)(lh.precuneus_6)(lh.superiortemporal_6)

0.823 0.561 (lh.fusiform_4)(lh.lingual_6)(lh.precuneus_10)(lh.superiortemporal_6)

0.823 0.561 (lh.fusiform_4)(lh.lingual_8)(lh.precuneus_10)(lh.superiortemporal_6)

0.823 0.561 (lh.fusiform_4)(lh.isthmuscingulate_2)(lh.precuneus_10)(lh.superiortemporal_6)

0.880 0.967 (Brain-Stem)(lh.bankssts_2)

0.880 0.967 (Brain-Stem)(Left-Thalamus-Proper)(lh.bankssts_2)(lh.isthmuscingulate_3)

0.880 0.967 (Brain-Stem)(Left-Putamen)(lh.bankssts_2)(lh.isthmuscingulate_3)

0.880 0.967 (Brain-Stem)(Left-Thalamus-Proper)(lh.bankssts_2)

0.880 0.967 (Brain-Stem)(lh.bankssts_2)(lh.isthmuscingulate_3)

https://doi.org/10.1371/journal.pone.0227910.t003

Table 4. Several neighbor-sets of the right hippocampus with the most significant differences in the frequencies between the sexes. The first five rows list five subsets,

which are more frequent in the braingraphs of men than of women. It is interesting that the rh.precuneus_4 ROI is present in all five sets. The next five sets are the most

significant with frequencies higher in females than in males. The rh.fusiform_8 and the rh.middletemporal_9 ROIs are present in all five sets. The S5 Table lists those

neighbor-sets of the right hippocampus, which are significantly more frequent in female connectomes; while S6 Table lists those, which are significantly more frequent in

male connectomes, p� 0.01.

frequency frequency name

male female

0.840 0.682 (rh.entorhinal_1)(rh.parahippocampal_2)(rh.precuneus_4)(rh.transversetemporal_1)

0.909 0.774 (rh.entorhinal_1)(rh.parahippocampal_2)(rh.precuneus_2)(rh.precuneus_4)

0.914 0.782 (Brain-Stem)(rh.entorhinal_1)(rh.parahippocampal_2)(rh.precuneus_4)

0.914 0.787 (Brain-Stem)(rh.entorhinal_1)(rh.precuneus_2)(rh.precuneus_4)

0.914 0.787 (rh.bankssts_2)(rh.entorhinal_1)(rh.parahippocampal_2)(rh.precuneus_4)

0.736 0.862 (rh.fusiform_8)(rh.inferiortemporal_1)(rh.middletemporal_9)

0.769 0.887 (rh.fusiform_8)(rh.inferiorparietal_4)(rh.lingual_7)(rh.middletemporal_9)

0.769 0.887 (rh.fusiform_8)(rh.middletemporal_9)(rh.supramarginal_9)

0.791 0.900 (rh.fusiform_8)(rh.lingual_7)(rh.middletemporal_9)

0.791 0.900 (Right-Amygdala)(rh.fusiform_8)(rh.middletemporal_9)

https://doi.org/10.1371/journal.pone.0227910.t004
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the total brain volume are the same in the two sexes. Therefore, we have shown that the neigh-

bors of the human hippocampus significantly differ in men and women, while there are no rel-

ative volumetric differences in the hippocampus.
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