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Background
Breast cancer is the most common cancer among women 
worldwide.1 It remains one of the most prevalent health prob-
lems in the United States, with an annual incidence of 266,000 
and 5-year mortality rate of 11.4%.2 There has been consistent 
effort throughout the past few decades to characterize the het-
erogeneity of disease and identify factors that contribute to 
treatment response and survival. Guidelines such as Nottingham 
Prognostic Index (NPI) based on clinicopathological features 
and prognostic panels based on gene markers such as Oncotype 
DX and MammaPrint have proven instrumental in guiding 
clinical decisions.3–6

With the development of economical sequencing technolo-
gies and computational methods to facilitate the analysis of big 
data, these prognostic tools may be refined at the present for 
precision and accuracy. While machine learning methods such 
as decision tree (DT), support vector machine (SVM), and 
artificial neural network (ANN) have been used in cancer 

research for the past two decades,7–9 they have gained traction 
in recent years as effective methods of generating predictive 
models that can delineate important factors in cancer hetero-
geneity, response, and survival.10 Ensemble methods such as 
Gradient Boosting and Random Forest, which aggregate mul-
tiple DTs to lower bias and variance, have also been successful 
in cancer classification.11 For feature preprocessing, dimen-
sionality reduction methods, such as principal components 
analysis on known gene signatures and self-organizing map for 
clinicopathological features, have been found to improve the 
prediction of breast cancer survival.12,13 However, to our knowl-
edge, there has yet to be a study that combines the predictive 
power of clinicopathological features and genomic features 
with dimension reduction methods, such as K-means cluster-
ing, to systematically examine performance across various 
machine learning models.

The goals of this study were to construct predictive models on 
5-year breast cancer survival using four major nonlinear machine 

Machine Learning With K-Means Dimensional  
Reduction for Predicting Survival Outcomes in  
Patients With Breast Cancer

Melissa Zhao1 , Yushi Tang1, Hyunkyung Kim1 and Kohei Hasegawa1,2

1Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA. 
2Department of Emergency Medicine, Massachusetts General Hospital, Harvard Medical School, 
Boston, MA, USA.

ABSTRACT

OBjeCTive: Despite existing prognostic markers, breast cancer prognosis remains a difficult subject due to the complex relationships 
between many contributing factors and survival. This study seeks to integrate multiple clinicopathological and genomic factors with dimen-
sional reduction across machine learning algorithms to compare survival predictions.

MeThODS: This is a secondary analysis of the data from a prospective cohort study of female patients with breast cancer enrolled in the 
Molecular Taxonomy of Breast Cancer International Consortium (METABRIC). We constructed a series of predictive models: ensemble mod-
els (Gradient Boosting and Random Forest), support vector machine (SVM), and artificial neural networks (ANN) for 5-year survival based 
on clinicopathological and gene expression data after K-means clustering with K-nearest-neighbor (KNN) classification. Model performance 
was evaluated by receiver operating characteristic (ROC) curve, accuracy, and calibration slope (CS). Model stability was assessed over 10 
random runs in terms of ROC, accuracy, CS, and variable importance.

ReSuLTS: The analytic cohort is composed of 1874 patients with breast cancer. Overall, the median age was 62 years; the 5-year survival 
rate was 75%. ROC and accuracy were not significantly different between models (ROC and accuracy around 0.67 and 0.72 across models, 
respectively). However, ensemble methods resulted in better fit (CS) with stable measures of variable importance across 10 random training/
validation splits. K-means clustering of gene expression profiles on training data points along with KNN classification of validation data 
points was a robust method of dimensional reduction. Furthermore, the gene expression cluster with the highest mortality risk was an influ-
ential factor in model prediction.

COnCLuSiOnS: Using machine learning methods to construct predictive models for 5-year survival in patients with breast cancer, we dem-
onstrated discrimination ability across models with new insight into the stability and utility of dimensional reduction on genomic features in 
breast cancer survival prediction.

KeyWORDS: Breast cancer, survival, machine learning methods, prediction

ReCeiveD: September 28, 2018. ACCePTeD: October 3, 2018.

TyPe: Original Research

FunDing: The author(s) received no financial support for the research, authorship, and/or 
publication of this article.

DeCLARATiOn OF COnFLiCTing inTeReSTS: The author(s) declared no potential 
conflicts of interest with respect to the research, authorship, and/or publication of this 
article.

CORReSPOnDing AuThOR: Melissa Zhao, Harvard T.H. Chan School of Public Health, 
677 Huntington Avenue Boston, MA 02115, USA.  Email: mzhao@hsph.harvard.edu

810215 CIX0010.1177/1176935118810215Cancer InformaticsZhao et al
research-article2018

https://uk.sagepub.com/en-gb/journals-permissions
mailto:mzhao@hsph.harvard.edu


2 Cancer Informatics 

learning methods (Gradient Boosting, Random Forest, SVM, 
and ANN) and examine the utility of these models for incorpo-
rating different types of clinicopathological and genomic-based 
variables. We integrated clinicopathological data with gene 
expression data of a well-characterized prospective cohort 
(Molecular Taxonomy of Breast Cancer International Consortium 
(METABRIC))14 using a K-nearest-neighbor (KNN) classifier 
on genomic clusters determined by K-means. We compared the 
models in terms of classification accuracy, receiver operating 
characteristic (ROC) curves, goodness-of-fit by calibration slope 
(CS), and internal stability across 10 runs. Our secondary aims 
were to assess important contributors to survival, examine the 
utility of dimensional reduction for genomic data in survival pre-
diction, and identify any subgroups of patients with higher mor-
tality risks based on K-means clusters from dimensional reduction 
on gene expression profiles.

Methods
Study design

This is a secondary analysis of 2509 adult female participants 
with breast cancer in a prospective cohort study— METABRIC 
accessed from cBioPortal.15,16 The study setting comprises five 
academic centers within Canada and the United Kingdom. 
Detailed clinical information for a median 10-year follow-up 
period was measured, along with genomic data (copy number 
aberrations and gene expression) from fresh frozen tumor tissue. 
Original dataset includes study in 201214 and study in 2016.17 It 
contains a merged sample of 2509 patients, including 2506 breast 
cancer cases and 3 breast sarcoma cases. For METABRIC 2012, 
researchers collected a discovery set of 997 primary tumors and a 
validation set of 995 tumors from tumor banks in both Canada 
and the United Kingdom. For METABRIC 2016, researchers 
sequenced a total of 2433 primary tumors and 650 normal 

non-cancerous samples (including normal adjacent breast tissue 
(n = 532) and peripheral blood cells (n = 127)). In the current anal-
ysis, we excluded samples with either incomplete clinical or 
genomic data as we assume that the data are missing completely 
at random for this large cohort study. Genomic data in the form 
of copy number alteration (CNA) and gene expression levels were 
examined. After excluding 336 patients without complete 
genomic measurement results, 30 patients with incomplete CNA 
data and 269 patients without gene expression measurement data, 
1874 patients were included in the following analysis (see Figure 
1 for study scheme).

Predictors and outcomes

We combined both clinicopathological features and genomic 
features to generate potential predictors for our models. 
Eighteen clinical and pathological features, including age at 
diagnosis, NPI, testing for estrogen receptor (ER), progester-
one receptor (PR), human epidermal growth factor receptor 
(HER2) status, menopausal status, three-gene classifier sub-
type, degree of abnormality of cancer cells, primary tumor lat-
erality, cellularity of tumor content, tumor size, tumor stage, 
breast surgery status, chemotherapy status, and hormone ther-
apy status were included in the analysis.

Genomic predictors were processed through dimensionality 
reduction method in a supervised fashion using K-means, with 
clustering based on expression data of all targeted genes in the 
training set. For the validation set, we determined the cluster 
information for each individual based on nearest neighbors by 
applying KNN method to the training set with the number of 
neighbors set as 7. To assess for the stability of these clusters, 
we ran K-means using 10 random samples of training set and 
KNN classification on the respective validation sets from an 
80-20 training/validation splits. The number of centroids in 

Figure 1. Study scheme. KNN indicates K-nearest-neighbor; METABRIC, Molecular Taxonomy of Breast Cancer International Consortium; ROC, receiver 

operating characteristic; SVM, support vector machine.
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K-means was selected as k = 10 to emulate the number of 
genomic clusters found in METABRIC. The K-means cluster 
found to be most correlated with survival in the training set 
was then included as an indicator variable in the final set of 
predictors. The primary outcome was 5-year survival. Secondary 
outcome was overall survival (measured using the overall sur-
vival metric, median 10-year follow-up).

Statistical analysis

To predict survival outcome, a total of 27 features (including 
indicator variables) from the 18 clinicopathological features 
mentioned above and 1 genomic feature were used to construct 
the models. We trained a series of nonlinear machine learning 
methods with 10-fold cross-validation of the training set upon 
10 random training/validation splits using Gradient Boosting 
(R package xgboost), Random Forest (R package randomForest), 
SVM with a radial basis (SVM, R package svm), and ANN (R 
package nnet). The 10 random training/validation splits 
included the same patients in each set as those for K-means 
clustering above. For each split, 80% of the analytic cohort were 
randomly selected as our training dataset. Model performance 
was examined in the remaining 20% validation dataset, by esti-
mating ROC, accuracy, and CS.

Variable importance, computed by taking the difference 
between whole model accuracy and model accuracy after per-
muting each predictor variable, is calculated and scaled to a 
maximum value of 100 for the strongest predictor (R package 
caret). Confidence intervals for ROCs were measured using 
Delong method (R package pROC). CSs were calculated and 
graphed (R package gbm). Survival analysis was performed 
using Cox regression models to examine the association 
between derived clusters and survival outcome (R package sur-
vival). The log-rank test was performed to determine the sig-
nificance of inter-cluster differences in survival.

Linear models for microarray data (LIMMA) with false dis-
covery rate (FDR) correction was used to identify differentially 
expressed genes between a derived cluster with the worst survival 
and all other clusters. Pathway enrichment analysis using 
DAVID18 and co-expression network analysis was then per-
formed to elucidate differentiating features in this high-risk clus-
ter. We constructed a co-expression network at gene-level using 
GeneMANIA.19 The institutional review board of Massachusetts 
General Hospital waived review of the current analysis.

Results
The analysis cohort consisted of 1874 breast cancer patients 
with median age of 62 years (interquartile range (IQR) 51-71) 
and median NPI of 4. ER, PR, and HER2 status were positive 
in 76.6%, 53.0%, and 12.4% of patients, respectively. The over-
all 5-year survival rate was 75.2% (Table 1).

Correlation plot of K-means clusters with INTCLUST5 
and survival for one random run shows one K-means cluster 
more positively correlated with INTCLUST5 and negatively 

correlated with survival compared with other clusters (Figure 
2A). K-means clustering with KNN classification results in 
largely stable and reproducible grouping of patients, particu-
larly in the group with worst survival (Figure 2B).

Among the machine learning methods constructed, no model 
performed significantly better than others as all 95% confidence 
intervals of ROC and accuracy across models overlapped (Table 
2, Figure 3A, C, and D). CSs showed that Gradient Boosting 
consistently had good model fit compared with other models 
across runs (Figure 3B and Supplementary Figure 1).

NPI, age, tumor stage and size, ER/PR/HER2 status, breast 
surgery status were important contributors to the models 
(Figure 4A to D shows the sum of variable importance for each 

Table 1. Summary of patient characteristics.

PATIENT CHARACTERISTICS OVERAll (N = 1874)

Age (year), median (IQR) 62 (51-71)

NPI, median 4

Menopause 78.3%

ER positive status 76.6%

PR positive status 53.0%

HER2-positive status 12.4%

Three genes status, mode (%)a 3 (32.3%)

Claudin subtypes, mode (%)b 3 (35.7%)

Chemotherapy 20.8%

Hormonal therapy 61.7%

Radiotherapy 60.3%

Surgery, mode (%) 1 (59.1%)

Tumor size (mm), median (IQR) 51.0 (30.3-63.0)

Tumor grade, median 2

Tumor stage, median 3

laterality, mode (%) −1 (49.3%)

Cellularity, median 2

Oncotree code, mode (%)c 4 (79.1%)

Outcomes

 5-year survival 75.2%

 10-year survival 47.7%

 15-year survival 26.4%

Table includes all clinicopathological features used in machine learning models.
Abbreviations: ER, estrogen receptor; HER2, human epidermal growth factor 
receptor; IQR, interquartile range; METABRIC, Molecular Taxonomy of Breast 
Cancer International Consortium; NPI, Nottingham Prognostic Index; PR, 
progesterone receptor.
aThree genes status: ER, HER2, and Aurora kinase A (AURKA) activity.
bClaudin (PAM50) subtypes: luminal A, luminal B, HER2-enriched, basal-like, 
and Claudin-low.
cOncotree code: tumor types based on Oncotree reported in METABRIC dataset.
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variable across runs by model). NPI was the most important 
variable across all runs for Gradient Boosting, Random Forest, 
and SVM models. Genomic cluster by K-means was a moder-
ately important factor for most models except ANN. ANN 
variables were the least stable across runs and resulted in less 
pronounced differences in the magnitudes of variable impor-
tance compared with the other models. Ensemble methods 
(Gradient Boosting and Random Forest) were more stable in 
the assignment of variable importance values across runs than 
SVM and ANN (see Supplementary Table 1 for individual 
variable importance values across runs for all four models).

Survival analysis on one training/validation run revealed 
that the patterns of survival are significantly different between 
the derived clusters (Plog-rank < .0001) (Figure 5B). Cluster 1, 
which correlated with INTCLUST5 as mentioned above, had 
highest mortality risk (Figure 5A). Several other unique differ-
ences were found between derived genomic clusters. For exam-
ple, compared with other clusters, patients in cluster 1 were 
younger with worse NPI and more HER2 positivity. LIMMA 
analysis further revealed 476 genes that are differentially 
expressed between cluster 1 and all other clusters, including the 
overexpression of both HER2 and CLCA2 within the top 11 
differentially expressed genes (all FDR <.0001; Figure 5C).

Pathway analysis of the 476 differentially expressed genes 
showed an enrichment of metabolic pathways, including stim-
ulation of steroid hormone biosynthesis and peroxisome prolif-
erator-activated receptor (PPAR) signaling pathway, in cluster 
1. Gene ontology revealed upregulation of genes involved in 
cadherin binding in cell-cell adhesion, fibroblast growth factor 
receptor activity, and vascular endothelial growth factor recep-
tor (VEGF-R) activity (Figure 5C).

Finally, network analysis demonstrated that HER2 and 
CLCA2 are both independent hubs within the network of the 
top 100 differentially expressed genes, suggesting that sepa-
rately relevant pathways co-occur within the cluster of patients 
with highest mortality risk and involve the upregulation of 
both HER2 and CLCA2 (Figure 5D).

Discussion
In this analysis of machine learning methods with dimen-
sionality reduction in breast cancer survival prediction, we 
found that no model significantly outperformed others, 
although all models performed significantly better than null 
(ROC with 95% CI >0.50 across all runs). Gradient Boosting, 
in particular, produced stable models with similar variable 
importance values assigned to each variable, as well as good 

Figure 2. (A) Correlation plot of K-means clusters for one random run with INTClUST5 and 5-year survival. (B) Heatmap K-means clustering of training set 

and KNN classification of validation set over 10 random runs. Colors indicate group number across runs. Cluster groups are stable, particular for the group 

with worst survival (Group 1 in Run 1), as most patients classified into one particular group will be clustered into the same group for across repeated runs.

Table 2. Summary of model performances in terms of discrimination ability and accuracy for one run.

MOdElS ROC (95% CI) ACCURACY (95% CI)

Gradient boosting 0.669 (0.608, 0.730) 0.697 (0.648, 0.743)

Random forest 0.677 (0.617, 0.736) 0.729 (0.681, 0.773)

SVM 0.658 (0.596, 0.720) 0.729 (0.681, 0.773)

ANN 0.673 (0.611, 0.735) 0.721 (0.672, 0.765)

All models performed similarly across ROC and accuracy measures. See Supplementary Table 1 for performance across all runs.
Abbreviations: ANN, artificial neural network; CI, confidence interval; ROC, receiver operating characteristic; SVM, support vector machine.
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performance in terms of ROC, accuracy, and CS across 10 
random runs. We found that NPI index, age, tumor stage and 
size, ER/PR/HER2 status, breast surgery status are clinical 
factors that consistently and strongly influence 5-year sur-
vival across repeated runs and across models. It has been well 
studied that the risk factors for cancer survival is a combina-
tion of genetic, epigenetic, and environmental factors.20,21 
Indeed, these clinical features are already used as prognostic 
markers in breast cancer survival.22

Furthermore, we have provided a proof-of-concept that the 
method of using dimensionality reduction to generate clusters 
based on gene expression can represent genomic contributors 
with influence on survival in lower dimensions. Specifically, the 
method demonstrated in this study involves the construction of 
K-means clusters based on training set only, followed by KNN 
classification of validation set into the same clusters. Across 
repeated runs, K-means clustering is stable, with K-means/
KNN algorithm consistently aggregating the same patients 
into groups. Moreover, among the 10 K-means clusters, we 
have found a cluster of patients who are significantly associated 
with worse 5-year-survival outcomes and with the worst sur-
vival cluster (INTCLUST5) from the initial METABRIC 
study. Subgroup-defining features for these patients involve an 
overexpression of HER2 and CLCA2.

The subject of machine learning methods comparison has 
been explored in the past few years. Delen et al23 have found 

that DTs can perform better than ANN for binary breast can-
cer survival prediction using clinicopathological variables, 
with accuracy of 93.6% compared for 91.2%. Montazeri 
et al24 have examined the performance of a variety of machine 
learning methods, including ANN, DT, Random Forest, and 
SVM, and have found that Random Forest technique per-
formed the best using eight clinical predictors. Another study 
by Vanneschi et  al25 examined machine learning techniques 
for breast cancer survival using gene signatures alone. Our 
study contributes to this landscape by systematically compar-
ing machine learning methods using both clinicopathological 
and K-means clustering of genomic data in a large cohort 
study. Our findings suggest that while Ensemble methods 
(Gradient Boosting and Random Forest) do not significantly 
outperform other methods in terms of ROC and accuracy, 
they resulted in relatively good model fit (CS) across runs 
with more stable variable importance measures.

The finding that CLCA2 is overexpressed in the context of 
HER2 overexpression within the highest risk cluster suggests an 
interesting genetic phenotype. HER2 is a well characteristic 
breast cancer oncogene with targetable action by Trastuzumab,26 
while CLCA2 is a chloride channel targeted by TP53 and is usu-
ally downregulated in the context of tumor proliferation.27 As 
both HER2 and CLCA2 function centrally within distinct net-
work hubs, there may be benefits for further investigation into the 
molecular interactions between CLCA2 and HER2 pathways.

Figure 3. (A) Area under ROC curve of all prediction models based on clinicopathological features and genomic clusters from gene expression data from 

one run. (B) Calibration slopes (CSs) of all models from one run. See Supplementary Figure 1 for CS graphs for all nine other runs. (C) ROC curve (with 

95% CI in lighter colors) and (d) accuracy (with 95% CI in lighter colors) of all models for 10 random training/validation splits. All models performed 

similarly in terms of ROC and accuracy. Performance measures were stable over 10 random runs, with all methods predicting 5-year survival better than 

random. ROC indicates receiver operating characteristic.
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Our study has several potential limitations. First, the cohort 
study was initiated within years prior to the approval of 
Trastuzumab in 1998;28 thus, we saw within our dataset that 
HER2 was a negative prognostic factor. New survival data from 
more recent cohorts would likely be different, with HER2 hav-
ing less impact on breast cancer survival. Second, as our study 
only included complete cases across all variables (ie, those with-
out missing genomic information), there may be potential for 
selection bias. However, we do not believe this to be impactful 
as our analytic and nonanalytic cohorts displayed similar clin-
icopathological characteristics. Compared with previous studies 
using clinicopathological features to predict survival, our study 
has fewer sample sizes (on the order of thousands rather than 
hundred thousand). This disparity in sample size reduces the 
power of our study and may partly explain the lower ROCs 
achieved in this study compared with others (eg, ROC greater 
than 0.90). Finally, as we did not have normal tissue controls in 
this study, gene expression data could not be measured  
against baseline, which limits our understanding of the differ-
ential genes that are involved in the development of breast  
cancer between clusters. Despite this, the current analysis of  

between-cluster comparisons yielded a number of interesting 
differentially expressed genes for downstream analysis.

In this analysis of a well-characterized prospective cohort of 
1874 patients with breast cancer, we found that nonlinear 
machine learning models (Gradient Boosting, Random Forest, 
SVM, and ANN) performed similarly well in breast cancer sur-
vival prediction, although Ensemble methods may offer more 
internal stability. Further analysis suggested that the influential 
variables contributing to prediction include NPI score, age, 
tumor stage and size, ER/PR/HER2 status, and breast surgery 
status. Gene expression cluster by K-means was a moderately 
influential factor. Within clusters, we found that one cluster 
with HER2 and CLCA2 overexpression was associated with the 
worst 5-year survival outcome. Our findings promote further 
investigation into the use of clinicopathological and genomic 
factors to identify high-risk patients, as well as exploration into 
the role of CLCA2 gene in high-risk HER2-positive patients.
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hub of the top 100 differentially expressed genes for highlighting ERB2 hub (left) and CLCA2 hub (right). Red dot indicates ERB2 (left) and CLCA2 (right); 
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