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Proper functioning of the visual system depends on maturation of both excitatory and inhibitory synapses within the visual cortex.
Considering that perisomatic inhibition is one of the key factors that control the critical period in visual cortex, it is pertinent to
understand its regulation by visual experience. To do this, we developed an immunohistochemical method that allows three-
dimensional (3D) analysis of the glutamic acid decarboxylase (GAD) 65-positive inhibitory terminals in the visual cortex. Using
this method on transgenic mice expressing yellow fluorescence protein (YFP) in a subset of neurons, we found that the number of
somatic GAD65-puncta on individual layer 2/3 pyramidal neurons is reduced when mice are dark-reared from birth and reverted
to normal levels by re-exposure to light. There was no change in GAD65-puncta volume or intensity. These results support the
reorganization of inhibitory circuitry within layer 2/3 of visual cortex in response to changes in visual experience.
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1. Introduction

Proper development and function of cortical circuitry crit-
ically depends on maturation of inhibition. The majority
of GABAergic inhibitory neurons are parvalbumin-positive
basket cells [1], which form perisomatic synapses on exci-
tatory neurons to exert powerful regulation of neuronal
firing [2, 3]. In visual cortex, the maturation of inhibition,
especially perisomatic inhibition, is regulated by visual expe-
rience [4, 5]. Throughout development, basket interneurons
extend their axonal branches and form synapses all around
the soma of the postsynaptic pyramidal cell, which can be
visualized as GAD65-positive puncta rings [6, 7]. Previous
studies have shown that visual deprivation from birth retards
the developmental maturation of inhibitory circuitry [4,
8-10]. For example, dark-rearing from birth prevents the
normal developmental increase in the maximal inhibitory
postsynaptic current (max IPSC) onto layer 2/3 neurons of
rat visual cortex [4, 8], and decreases the responsiveness to
uncaged GABA at perisomatic locations [5]. Changes in inhi-
bition are thought to underlie the increase in spontaneous
action potential frequency and the degradation of receptive
field properties of visual cortical neurons following dark-

rearing [11]. Interestingly, the effects of visual deprivation
can be readily reversed by exposure to light [4, 12] (but see
[13]), and to some extent by overexpression of brain-derived
neurotrophic factor (BDNF) [8].

The functional changes in inhibition by visual depri-
vation have anatomical correlates. For example, visual
deprivation by intraocular tetrodotoxin (TTX) injection
decreased the number of terminal boutons of parvalbumin-
positive basket cells synapsing onto pyramidal neurons in
layer 5/6 of mouse visual cortex [10]. While this result is
consistent with a decrease in total inhibitory function by
visual deprivation, there has been no direct demonstration
of experience-dependent regulation of the total number of
somatic inhibitory synapses, especially in layer 2/3 where
the effect of dark-rearing is known to regulate inhibitory
function [4, 5, 8]. Furthermore, previous studies examining
GADG5 positive terminal density in layer 2/3 have reported
no real change with dark-rearing [14], as well as with
monocular deprivation [15], in cats. These results are
inconsistent not only with the physiological findings, but
also with reports of a reduction in GABAergic neurons
following visual deprivation paradigms in rodents [9] as
well as primates [16, 17]. This may be due to differences
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in species or due to limitations in the previous 2 dimen-
sional analysis of GAD65 immunohistochemical staining. To
determine anatomical changes in somatic inhibition of layer
2/3 neurons by visual deprivation, we performed a 3 dimen-
sional analysis of somatic inhibitory synapses visualized by
GAD65 immunohistochemistry. In order to quantify somatic
inhibition specifically onto layer 2/3 pyramidal neurons, we
used a line of transgenic mice expressing yellow fluorescence
protein (YFP) in a subset of pyramidal neurons in the cortex.
Here we report that the total number of GAD65-positive
puncta contacting a YFP expressing soma is reduced in dark-
reared mice, and is increased back to normal levels by re-
exposure to 3 days of light.

2. Materials and Methods

2.1. Animals. Experiments were carried out using transgenic
mice expressing yellow fluorescence protein (YFP) in a
subset of layer 2/3 pyramidal neurons in visual cortex
(YFP-16] line, Jackson Laboratory). Normal-reared (NR)
animals were exposed to 12-hour light/12-hour dark cycles
beginning at birth, and sacrificed via transcardial perfusion
at postnatal day 35 (P35). In order to ensure minimal light
exposure, pregnant females were placed into the dark room
a few days before giving birth to the dark-reared (DR) and
dark-reared followed by light exposure (LE) litters. Mice
were anesthetized by halothane vapors supplied within a
lightproof container and sacrificed via transcardial perfusion
at P35. LE animals were kept in the dark room until
P35, and then light exposed on a 12-hour dark/12-hour
light schedule for 3 days before being perfused at P38. All
animal procedures were carried out in accordance with the
National Institute of Health Guide for the Care and Use
of Laboratory Animals, and approved by the University of
Maryland Institutional Animal Care and Use Committee
(IACUC). Every measure was taken to minimize the number
of animals used and their suffering.

2.2. Transcardial Perfusion. Mice were deeply anesthetized
with halothane and underwent transcardial perfusion with
4% paraformaldehyde solution in sodium phosphate buffer
(composition in mM: 30 mM NaH, POy, 120 mM Na, HPOy,
pH 7.4). A total of four mice were sacrificed for each
experimental group (NR, DR, and LE). Brains were kept
shielded from light at 4°C first in 4% paraformaldehyde
solution (pH 7.4) for at least overnight up to 2 months until
used for experiment. The day before sectioning, the brains
were placed in 30% sucrose (in phosphate buffered saline
[PBS], composition in mM: 137 NaCl, 2.7 KCl, 8 Na,HPOy,
2 KH,PO4, pH 7.4) at 4°C to sink overnight. Visual cortex
was sectioned into 20um coronal slices using a freezing
sliding microtome (Leica), and stored in cryoprotectant
(20% sucrose, 30% ethylene glycol, 0.02% sodium azide, in
sodium phosphate buffer, pH 7.4) at —20°C away from light
(less than 2 months) until antibody incubation.

2.3. Immunohistochemical Labeling of GAD65 Positive Termi-
nals. At least 4 visual cortex sections from each mouse were
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used per incubation, and a set of experimental conditions
(NR, DR and LE) was run each time. In addition, a second
set of sections from the same animals were run again
on a different day to control for possible variability in
staining across different incubations. All incubations were
done shielded from light to prevent possible bleaching of
YFP. On the day of the experiment, 4 sections from each
animal were removed from cryoprotectant, washed 4 times
(5 minutes each) in PBS (pH 7.4), and frozen overnight
at —80°C in 30% sucrose (in PBS, pH 7.4). The following
day, brain sections were defrosted at room temperature and
rinsed 4 times (5 minutes each) in PBS (pH 7.4). The
sections were then incubated in —20°C methanol for 10
minutes, and rinsed 4 more times (5 min each) in PBS (pH
7.4). The brain sections were then incubated in blocking
solution (10% normal donkey serum [NDS], 4% bovine
serum albumin [BSA], and 1% Triton in PBS, pH 7.4) for
1 hour at room temperature. After blocking, the sections
were incubated in GADG65 antibody (rabbit antiglutamate
decarboxylase GAD65 polyclonal antibody from Chemicon)
diluted 1 : 500 in blocking solution for 7 days at 4°C on
a rotator. The primary antibody specificity was confirmed
by a detection of a single band corresponding to GAD65
on an immunoblot (data not shown). After the 7-day
primary antibody incubation, sections were rinsed in PBS
(pH 7.4) 4 times (5min each). Brain sections were then
incubated for 2 hours in secondary antibody (Alexa Fluor
633 goat antirabbit IgG from Molecular Probes-Invitrogen
was diluted 1 : 200 in PBS containing 1.5% NDS). The
secondary antibody specificity was assessed and confirmed
by no Alexa 633 signal when incubating brain sections in
only secondary antibody without prior primary antibody
incubation (data not shown). Sections were then mounted
on superfrost VWR microslides, dried over night in the dark,
and coverslipped using Prolong Gold Antifade Kit mounting
solution (Molecular Probes-Invitrogen).

2.4. Confocal Imaging and Quantification of Fluorescence
Signals. YFP expressing layer 2/3 pyramidal neurons within
the visual cortex were identified and imaged using a Zeiss
LSM510 confocal microscope with a 100x oil emersion
objective lens. Area of imaging was selected solely on the
basis of the YFP channel, hence the experimenter was blind
to the GADG5 staining. Images were taken using a dual scan
mode, one for YFP (emission filter: BP505-550) and the
other for Alexa633 (emission filter: LP650). The confocal
microscope settings for the Alexa633 channel were held
constant across all the sections used in this study, and was
based on a pilot experiment run to optimize the imaging
conditions for GAD65 staining. The confocal microscope
settings for the YFP channel were adjusted for each cell to
produce saturating signals within the soma with clear cut-off
boundaries. These adjustments were necessary to account for
differences in YFP expression level across different cells and
different animals. To obtain 3 dimensional (3D) information,
20 images were captured through the z-axis at 1 ym steps
to encompass the whole section thickness (20 ym). The
acquired images were analyzed using the Volocity image
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analysis software (Improvision), which generates a 3D image
of the acquired stacks. Image stacks were acquired from at
least 4 brain sections per animal per experimental group.
One to three intact YFP labeled neuronal soma were selected
and cropped from each image stack for a 3D analysis. Both
YFP and Alexa633 signals were processed using the Volocity
software by setting a threshold to eliminate background.
The threshold was kept constant across each set. Only
the GADG65 puncta with at least 1 voxel overlap with the
YFP channel were taken as synapses contacting the YFP
neuron, and the others were removed using the Volocity
software. Number, volume, and fluorescence intensity of
GADG65 puncta contacting each YFP labeled pyramidal cell
body were then quantified. A total of 96 neuronal soma
and associated GADG65 staining were analyzed from the 3
experimental groups (32 cells per group) each from 4 mice.

For 2 dimensional (2D) analysis of images, a single
section in the middle of the stack (the 10th section from
the top) was used. Images with prominent blood vessels
were excluded as they showed high fluorescence. Using the
Volocity software, the whole field intensity of the GAD65
signal and the number of GAD65 puncta were measured.
The latter was measured after thresholding to remove
background staining. The threshold was kept constant for
all images. GADG65 puncta density was calculated by dividing
the number of puncta measured with the area of the image
field.

Statistical comparison of each measurement was made
using a one-way ANOVA, and P < .05 were taken as
indicating statistically significant difference across groups.
Fisher’s PLSD posthoc test was run to determine further
which group(s) differed from each other.

3. Results

3.1. Visual Deprivation Decreases the Number of Somatic
GADG65 Puncta on Layer 2/3 Pyramidal Neurons. To deter-
mine the effect of visual experience on inhibitory synaptic
connections onto pyramidal neurons in layer 2/3 of primary
visual cortex, we used a line of transgenic mice that
express YFP in a few of these neurons (YFP16] line) and
immunohistochemically labeled inhibitory terminals using
an antibody against GAD65. By isolating GAD65 synaptic
puncta contacting the soma of YFP expressing neurons, we
were able to measure GAD65 puncta number per neuronal
soma, the volume of each synaptic puncta, and the intensity
of GAD65 puncta across three different conditions: normal
reared (NR), dark reared from birth to 5 weeks of age (DR),
and dark reared from birth followed by 3 days of light
exposure (LE). A total of 4 mice were used per experimental
group. One subject from each of the three groups (NR, DR,
and LE) was run in parallel, and immunohistochemistry was
performed in duplicate using sections from each mouse to
account for possible variability across antibody incubations.
Two sections from each animal per run were imaged with
confocal microscopy, and on average two intact YEP labeled
neurons in layer 2/3 of each section were imaged. Therefore,
we imaged a total of 96 YFP expressing neurons from a total

Light exposed

Normal reared Dark reared

(a)

(c)

FIGURE 1: Representative examples of GAD65 immunohistochem-
istry in layer 2/3 of visual cortex obtained from YFP expressing mice
that are reared under different experimental conditions. Confocal
images obtained from mice that were normal reared for 5 weeks
(A1-A4), dark reared from birth until 5 weeks old (B1-B4), and
dark reared from birth for 5 weeks that were subsequently exposed
to 3 days of light (C1-C4) are shown. Single section images of
staining in layer 2/3 of visual cortex are shown in Al, Bl, and
Cl. GAD65 immunoreactivity (Alexa633 conjugated secondary
antibody) is shown in red, and YFP expression in a subset of
pyramidal neurons is shown in green. A2, B2, and C2 show the
x-z plane of each image section. Note GAD65 staining throughout
the thickness of the sections. The total thickness of each section
was 20 yum. White arrows point to a neuron in each image field
that was used for 3 dimensional (3D) reconstructions as shown
in A4, B4, and C4. Single plane cropped images of the soma of
selected neurons are shown in A3, B3, and C3. A stack of 20
single plane cropped sections were reconstructed to generate a 3D
image using the image analysis program Volocity (Improvision).
A constant threshold was applied to all images to get rid of the
background in both GAD65 and YFP channels. GAD65 puncta
not contacting the soma of YFP neuron were discarded using the
image analysis software Volocity (Improvision) to obtain the final
3D images as shown in A4, B4, and C4. These final images were
used for quantification.

of 12 mice. Representative examples of GAD65 staining and
YFP signal from a visual cortex layer 2/3 from each group
is shown in Figure 1. Quantification of a total of 32 cells
(from 4 mice) per group showed a significant decrease in
GADG65 puncta number in dark reared mice compared to
normal reared and light exposed animals (NR = 22.5 + 2.2
GADG65 puncta/soma, DR = 13.6 = 1.5 GADG65 puncta/soma,
LE = 19.5 + 1.5 GAD65 puncta/soma, n = 32 cells from
4 mice each group; one-way ANOVA: F(2, 93) = 6.724,
P < .002; Figure 2(a)).
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FIGURE 2: Visual experience bidirectionally changes the number of GAD65 puncta contacting the soma of pyramidal neurons in layer 2/3 of
visual cortex without altering the size or intensity of GAD65 puncta. (a) Dark rearing from birth for 5 weeks (DR) significantly decreased
the number of GAD65 puncta contacting neuronal soma compared to normal reared mice of equivalent age (NR). Exposing the dark reared
mice to light for 3 days (LE) increased the number of GAD65 puncta close to NR levels. Asterisks indicate statistical significance of P < .02
using a Fisher’s PLSD posthoc analysis following a one-way ANOVA. (b) The soma volume of YFP expression neurons in layer 2/3 used for
measuring GAD65 puncta number. There was a statistically significant decrease in soma volume of DR mice compared to NR and LE groups.
Asterisks: P < .01 using a Fisher’s PLSD posthoc analysis following a one-way ANOVA. (c) Visual experience did not significantly alter the
size of GAD65 puncta contacting the soma of layer 2/3 pyramidal cells. (d) There was no statistically significant difference in the intensity of
GADG65 puncta contacting the soma of layer 2/3 pyramidal cells across the three groups.

3.2. Visual Deprivation Decreases the Soma Size of Layer
2/3 Pyramidal Neurons. During the course of our analysis,
we unexpectedly found changes in the average volume of
YFP expressing layer 2/3 neuron soma by visual experience.
Specifically, we found that the average soma volume in
dark reared mice was significantly smaller than that of
normal reared and dark reared exposed to light (NR =
758.1 = 38.3um?, DR = 584.2 + 29.4um?, LE = 824.5 +
47.8um?, n = 32 cells from 4 mice each group; one-way
ANOVA: F(2,93) = 9.880, P < .002; Figure 2(b)). Our
measurement of the cell volume utilized YFP expression
driven by a Thy-1 promoter. Differences in YFP expression
levels could affect cell size measurements, because of the
use of fluorescence intensity threshold for delineating the
cell’s boundary. However, we did not find any significant
difference in average YFP intensity across the three groups

(in arbitrary units of YFP fluorescence intensity: NR = 3342
+ 80, DR = 3159 + 98, LE = 3394 + 66; n = 32 cells each;
ANOVA: F(2,93) = 2.321, P > .1). While there was a trend,
visual manipulation did not significantly alter the cell surface
area (NR = 6774 + 2177 ym?, DR = 5255 + 2007 yum?, LE =
7318 + 2831 um?, n = 32 cells from 4 mice each group; one-
way ANOVA: F(2,93) = 0.205, P > .8).

The difference in GAD65 puncta number between
normal reared and dark reared was not solely due to
alterations in cell size, because it was still evident when
puncta number was normalized to cell volume. However, the
difference between dark reared and light exposure was no
longer significant (NR = 0.032 + 0.004 GAD65 puncta/ym?,
DR = 0.023 + 0.002 GAD65 puncta/um?®, LE = 0.024 +
0.002 GAD65 puncta/um?®, n = 32 cells from 4 mice each
group; one-way ANOVA: F(2,93) = 3.519, P < .03).
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FiGure 3: Two dimensional analysis of total GAD65 intensity and
puncta density. (a) The total GAD65 staining intensity in a single
focal plane was decreased in the DR group when compared to NR
and LE (normalized total GAD65 intensity: NR = 100 + 9.3%,
n = 20 sections from 4 mice; DR = 45 + 6.8% of average NR,
n = 17 sections from 4 mice; LE = 82 + 15.7% of average NR,
n = 18 sections from 4 mice; ANOVA: F(2,52) = 7.341, P < .01).
Asterisks: P < .05 using Fisher’s PLSD posthoc analysis. (b) The
measurement of GAD65 puncta per area decreased on average in the
DR group, but did not show a significant reversal with a subsequent
light exposure (GAD65 puncta number per ym?: NR = 0.48 + 0.08,
n = 20 sections from 4 mice; DR =0.13 + 0.04, n = 17 sections from
4 mice; LE = 0.30 + 0.06, n = 18 sections from 4 mice; ANOVA:
F(2,52) = 6.030, P < .01). Asterisks: P < .03 using Fisher’s PLSD
posthoc test.

3.3. Visual Experience Does Not Alter the Size or Intensity of
GADG65 Puncta. Next, we determined whether the different
rearing conditions affect GAD65 puncta size or intensity.
To do this, GAD65 puncta volume and intensity were com-
pared across normal-reared, dark-reared, and light exposure
conditions. There was no significant difference across the
three conditions (Average GAD65 puncta volume: NR = 2.32
+ 0.19um?, DR = 2.56 + 0.19um’, LE = 2.92 + 0.2um’,
n = 32 cells from 4 mice each group; one-way ANOVA:

F(2, 93) = 2.122, P > .1; Average GADG65 puncta intensity
[measured in arbitrary units of fluorescence intensity]: NR =
2746 + 16, DR =2759 + 13, LE: 2776 + 7, n = 32 cells from
4 mice each group; one-way ANOVA: F(2, 93) = 1.424,
P > .2; Figures 2(c), and 2(d). These results collectively
suggest that visual experience bidirectionally alters GAD65
positive terminal number, but not the size or GAD65 content
of individual inhibitory terminals.

4. Discussion

We found that depriving mice of vision for 5 weeks from
birth by dark rearing decreases the number of GADG65
positive terminals contacting the soma of visual cortex layer
2/3 pyramidal neurons. The number of GAD65 puncta
returned to normal levels when dark-reared mice were
exposed to light for 3 days. Unexpectedly, we also found that
the size of neuronal soma of layer 2/3 neurons in dark-reared
mice was significantly smaller than that of normal-reared
counterparts and the light exposed group. The decrease in
GADG65 puncta by dark rearing is not likely a consequence
of smaller soma size in the dark-reared mice, because the
difference remained even when GAD65 puncta number was
normalized to soma size. Interestingly, changes in GAD65
puncta number occurred without changes in the size or the
average intensity of GAD65 puncta. These results suggest that
dark rearing from birth decreases inhibitory input onto layer
2/3 pyramidal neurons primarily by decreasing the number
of inhibitory synapses, which could be readily reversed by
only 3 days of light.

4.1. Reversible Changes in Inhibitory Synapse Number by
Visual Experience. Previous results strongly suggest that dark
rearing from birth attenuates the development of inhibitory
networks [4, 9-11], and that exposure to light can initiate
the maturation process [4, 12]. Most studies that employed
GADG65 staining methods so far have relied on 2 dimensional
analyses of either the GAD65 puncta number per given area
[14] or average GADG65 staining intensity [15], both of which
failed to detect changes with visual deprivation, or number
of GADG65 puncta rings [6, 10]. We believe this is likely due
to differences in either the methodology or species, because
when we performed 2 dimensional analysis of our images, we
saw significant decreases in both the total GAD65 intensity
and the GAD65 puncta density with dark-rearing (Figure 3).

To our knowledge, our study is the first to quantify the
total number of inhibitory synapses that impinge onto a
single pyramidal neuron soma in an intact mouse visual
cortex. Our result showing on average about 22 GADG65
positive puncta per soma of individual layer 2/3 pyramidal
neuron in normal-reared mice, and about 13 GADG65 positive
puncta per soma in dark-reared mice are in agreement with
previous measurements. Mower and Guo (2001) reported
approximately 30 GAD65 positive puncta per 400 um? area
in layers 2/3 of normal-reared cat visual cortex. When
this information is used to calculate a theoretical number
in 3D by assuming a spherical cell with a diameter of
about 10um, the result is a prediction of approximately



20 inhibitory synapses. This is in close agreement with a
recent 3D analysis of somatic GAD65 puncta in organotypic
slice cultures derived from mouse cortex, which measured
on average about 21 [18]. Our anatomical measurements
are also consistent with physiological measure of inhibition.
Morales et al. (2002) quantified the maximal inhibitory
postsynaptic current (max IPSC) on individual pyramidal
cells within layer 2/3 of the visual cortex of rats, and also
the average miniature IPSC (mIPSC), which is produced by
a single inhibitory terminal bouton onto these pyramidal
cells. By dividing the max IPSC value by the value of
average mIPSC, the data from Morales et al. (2002) suggest
approximately 21 inhibitory connections onto pyramidal
cells in NR animals, and about 10 inhibitory connections
onto neurons in DR animals. When these numbers are
taken in context with a study exploring the number of
inhibitory connections a single interneuron makes onto one
pyramidal cell within layer 5/6 cells of mouse visual cortex
[10], an interesting scenario is revealed. This study showed
that a single parvalbumin-positive interneuron makes on
average 11 inhibitory connections onto the soma of a single
pyramidal cell. A similar number is reported for a basket cell
making synapses onto a layer 2/3 neuron in area 18 of cat
visual cortex [2]. If each interneuron creates approximately
10 synaptic contacts, and there are a total of about 20
GADG65 positive synapses on the soma of a pyramidal cell
in normal-reared animals as our data indicate, this suggests
that only 2 interneurons influence somatic integration in
pyramidal cells. Whether layer 2/3 neurons also receive about
10 synapses from a single interneuron is unclear, but in any
case this suggests that a single inhibitory neuron can have a
profound effect on controlling the function of a pyramidal
neuron.

Interestingly, we show that the decrease in GAD65 puncta
number by dark rearing is rather rapidly reversed by only
3 days of light exposure. This corresponds well with elec-
trophysiological measures showing that the decrease in max
IPSC by dark rearing is reversed by 2 days of light exposure
[4]. Despite changes in the number of somatic GAD65
puncta, we did not find a significant change in GADG65
puncta size and intensity with visual manipulations. These
results suggest that the major determinant of inhibitory
strength is by regulation of the number of synaptic contacts.

4.2. Alterations in Neuronal Soma Size by Visual Expe-
rience. Unexpectedly, we also found a reduction in the
soma size of layer 2/3 pyramidal cells in the dark-reared
group, which was reversed by exposure to light for 3 days.
However, we did not find a significant change in the cell
surface area by visual manipulation. This suggests that
the observed change in soma volume is likely due to cell
shrinkage. However, we cannot make firm conclusions as
the soma surface area measurements showed large variability
within each group. In any case, to date there is only
one other report of a reduction in cell size in visual
cortex following visual deprivation. Guimaraes et al. (1990)
reported a reduction in cell size in cat visual cortex (area
17) by dark-rearing using a monoclonal antibody that
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labels putative cell surface-associated proteoglycan on a
subset of neurons [19]. However, proteoglycan comprising
extracellular matrix is a known target for regulation by
visual experience [20], hence whether this truly reflects
cell size change is unclear. The smaller soma size of layer
2/3 neurons in mice dark-reared from birth may be due
to reduced availability of neurotrophins. It is known that
neurotrophins can regulate cell size, which seems to be
specific for distinct neuronal types. For example, NT-
4 application is known to accelerate the developmental
increase in soma size of lateral geniculate nucleus (LGN)
neurons [21], and reverses monocular deprivation-induced
cell shrinkage in the LGN [22]. On the other hand, BDNF
application increases the soma size of neurons in the visual
cortex [21], including layer 2/3 pyramidal neurons [23].
Dark-rearing is known to down-regulate BDNF-induced
activation of TrkB receptors [24], despite increased BDNF
protein expression [25]. Therefore, the smaller soma size
in layer 2/3 visual cortex of dark-reared mice may reflect
the reduction in BDNF signaling. The reduction in TrkB
activation by dark-rearing is reported to reverse by 2
hours of light [24], hence could explain the recovery of
soma size changes observed in our study. Considering
that BDNF is implicated in the maturation of inhibitory
synapses [6, 8, 26], it may also be responsible for the
changes in GAD65 puncta number. Whether the soma size
and/or the GAD65 puncta number changes observed in our
study are indeed due to BDNF regulation awaits further
examination.

5. Conclusions

We demonstrate that visual deprivation alters the number
of somatic inhibitory synapses on pyramidal neurons in the
superficial layers of visual cortex, which can be reversed by a
brief exposure to light. Therefore, our results underscore the
importance of experience in sculpting inhibitory connectiv-
ity in the cortex.
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