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Extending conventional surface 
roughness ISO parameters using 
topological data analysis for shot 
peened surfaces
Jan F. Senge1, Asghar Heydari Astaraee2, Pawel Dłotko3, Sara Bagherifard2 & 
Wolfram A. Bosbach4*

The roughness of material surfaces is of greatest relevance for applications. These include wear, 
friction, fatigue, cytocompatibility, or corrosion resistance. Today’s descriptors of the International 
Organization for Standardization show varying performance in discriminating surface roughness 
patterns. We introduce here a set of surface parameters which are extracted from the appropriate 
persistence diagram with enhanced discrimination power. Using the finite element method 
implemented in Abaqus Explicit 2019, we modelled American Rolling Mill Company pure iron 
specimens (volume 1.5 × 1.5 × 1.0 mm3) exposed to a shot peening procedure. Surface roughness 
evaluation after each shot impact and single indents were controlled numerically. Conventional 
and persistence-based evaluation is implemented in Python code and available as open access 
supplement. Topological techniques prove helpful in the comparison of different shot peened surface 
samples. Conventional surface area roughness parameters might struggle in distinguishing different 
shot peening surface topographies, in particular for coverage values > 69%. Above that range, the 
calculation of conventional parameters leads to overlapping descriptor values. In contrast, lifetime 
entropy of persistence diagrams and Betti curves provide novel, discriminative one-dimensional 
descriptors at all coverage ranges. We compare how conventional parameters and persistence 
parameters describe surface roughness. Conventional parameters are outperformed. These results 
highlight how topological techniques might be a promising extension of surface roughness methods.
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ISO	� International Organization for Standardization
0D	� Zero-dimensional, dimension zero
1D	� One-dimensional; dimension one
Armco	� American Rolling Mill Company
BC	� Persistence Betti curve
DIN	� German Institue for Standarization
DT	� Decision trees
FE	� Finite element method
GUDHI	� Geometry understanding in higher dimensions
JIS	� Japanese Standards Association
KN	� K-nearest neighbours vote
LDA	� Linear discriminant analysis
LS	� Persistence landscape
MLP	� Multi-layer perceptron
PCA	� Principal component analysis
RF	� Random forests
Sa	� Arithmetical mean height (µm)
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Sdq	� Root mean square gradient
Sdr	� Developed interfacial area ratio
Si	� Silhouettes
Sku	� Kurtosis
Sq	� Root mean square height (µm)
Ssk	� Skewness
SVM	� Support vector machine
Sz	� Maximum peak to valley height (µm)
TDA	� Topological data analysis
ToMATo	� Topological mode analysis tool

The quantification of surface roughness by appropriate mathematical description methods is of mandatory 
importance for a wide range of technical and medical applications. This is true for any surface modification 
procedure aimed at surface functionalization. For example, in the medical field, bacterial adhesion and the 
interaction of human cells with surfaces can be modulated by altering surface topography1,2 Surface roughness 
has an important role in defining the mechanical performance of material under cyclic loading. Wear, scratch 
and corrosion resistance are also substantially affected by surface roughness parameters3,4. It is worth mentioning 
that these properties are not isolated from each other and interdependencies between them exist5.

Standardized surface roughness parameters exist and describe a surface by its roughness and wider topog-
raphy as indicated in standards like 251786 and 42877 by the International Organization for Standardization 
(ISO), Japanese Industrial Standards (JIS) B 06018 or the German Institute for Standardization (DIN) 47629. 
Those standards provide a plethora of different surface texture parameters defined on profile-and area-based 
surfaces10. Among these, conventional surface roughness parameters assessing the properties of the whole meas-
ured surface are the most commonly used, in particular in the field of impact-based surface treatments. They 
focus on summaries such as the arithmetical mean deviation (Ra, Sa) as well as the root mean square deviation 
of the surfaces (Rq, Sq). While these two parameters are undoubtedly useful, they are shown to be inappropri-
ate to highlight dissimilarities in topographies obtained by e.g. impact based surface treatments such as shot 
peening2,11; in addition they neglect spatial information about peaks and valleys. While the standards define 
other parameters exploiting the spatial information, these rely either on the choice of the evaluation length 
or area, or -in the case of feature-based characterisation- on appropriate use of segmentation of the surface12. 
Area-based topographical characterization has gathered attention in recent years. Either summary statistics are 
calculated for a surface area or the spatial information is exploited to improve surface characterisation13. There 
exist techniques to extend profile-based parameters to area-based surfaces: Averaging parameter values of all 
profiles in horizontal and vertical direction, calculating average values over a growing number of directions14 or 
creating surface roughness signatures through hierarchically organized regions15. In the analysis, we will focus 
on the conventional area-based parameters.

Shot peening is an established surface modification procedure during which shots are accelerated by a com-
pressed air flow. It is commonly used for enhancing fatigue properties of metallic materials. The shots create 
multiple impacts on the target surface causing inhomogeneous plastic deformation and thus generating com-
pressive residual stresses that delay crack propagation16. Numerical analysis by finite element (FE) method is 
able to complement experimental research in optimizing the process parameters17. In general, peening involves 
a competition between the beneficial effects on the component’s performance in terms of subsurface compres-
sive residual stresses, surface work-hardening, and surface nanocrytallization versus the side effect of surface 
roughening (that is not always desired)18.

Topological data analysis (TDA) is a field in mathematics interested in quantifying and finding out more about 
the shape of structures19. It provides tools for multi-scale analysis of the geometric and topological properties of 
an object and has proved helpful in a plethora of different applications20. Persistent homology21 is one of the most 
prominent techniques of TDA. It is based on the idea that for a suitable real-valued function f : X → R describ-
ing the height of the surface X we can track the evolution of connected components and holes of f  . This evolution 
is given by the homology groups of dimension 0 and 1 of the sublevel sets f −1((−∞, a]) = {x ∈ X|f (x) ≤ a} . 
In other words, the sublevel sets of f  give a nested sequence of subspaces, ∅ = X0 ⊆ X1 ⊆ ... ⊆ Xn = X , called 
filtration. Keeping track of homology of these subspaces gives the persistence diagram of the surface X with the 
height function f  . Suitable vectorizations22–24 of the persistence diagram provide machine learning algorithms 
with an additional information about the surface X.

In this present study we use TDA that is complementary in nature to existing characterizations of surface 
topography. In particular, based on recent work25, we introduce the TDA pipeline for characterizing surface 
roughness and a novel collection of roughness descriptors. More precisely, we define several persistence-based 
surface roughness parameters and compare their performance to the conventional parameters. The study inputs are 
modelled surfaces of American Rolling Mill Company (Armco) pure iron (99.89%) samples. The input surfaces 
are obtained through a set of FE simulations26. Impacts by the peening material lead to dents (or dimples) on 
the material surface. Peening coverage or coverage percentage is defined as the percentage of a given surface area 
impacted by the peening media27. Coverage percentage can be extended to values beyond 100% (full coverage), 
but it is not part of the present study. The numerical FE simulation provides samples of surfaces of increasing 
shot peening coverage.
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Materials and methods
Shot peened surfaces are generated by FE28 and postprocessed for obtaining the roughness surface, defined by 
ISO 25178. We calculate surface roughness parameters from the roughness surface. For performance comparison, 
we add classification and clustering evaluations.

FE generated dataset and postprocessing.  The dataset used for this study consists of a total of 92 sam-
ples, Table 1. Each sample is a surface representation obtained under the shot peening treatment; Armco pure 
iron, sample volume 1.5 × 1.5 × 1.0 mm3. The FE model has been published and experimentally validated in28 for 
carburizing steel. It has been applied in25 for Armco pure iron. Each run of the FE model produces one sequence 
of sample surfaces, Fig. 1. A sequence starts with an untreated plane surface and adds shot peening impacts. Each 
sequence yields between 6 and 7 surface samples of increasing shot peening coverage. Each surface sample is a 
surface snapshot during the FE run labelled by one of 6 stages.

The stages at which surface snapshots are taken by the FE code correspond to ranges of impact numbers, 
Table 1. Based on the impacts, we calculate the shot peening coverage of the surface. In this calculation, we locate 
the local surface minima on the height displacement map which represent an estimation of shot impact centres. 
Each shot is estimated to shot peen a surface circle of diameter 0.055 mm. To estimate the coverage percentage, 
the macro circle of diameter 0.2 mm is considered. We assign each of the 92 samples, according to estimated 
sample coverage, to one of 6 bins. Bins 0 to 4 contain 15 samples each. The 5th bin contains 17 samples. The bins 
are labelled using the mean coverage percentages of each bin, this will be the class label for the analysis.

Each individual FE surface sample is given on a regular, unevenly spaced 74 × 74 surface grid, but different 
grids may be slightly shifted with respect to each other. Hence, for comparison purposes, all the values are inter-
polated on a common 74 × 74 grid being the input for further analysis. For calculating the ISO 25178 parameters, 
the interpolated FE surfaces are postprocessed to give a roughness surface by applying a low-pass Gaussian filter 
as L-filter (utilizing Fast Fourier transformation) for the cut-off wavelength of 0.8 mm, see ISO 16610:6129. Due 
to the construction of the numerical model used, applying an S-filter is not required.

Persistent homology.  As mentioned above, persistent homology is one of the most prominent techniques 
used in TDA19,21. It captures the changes in homology, that is how connected components and holes of a filtra-
tion evolves. In the following we explain the pipeline shown in Fig. 2 for computing persistence diagrams in the 
case of the surfaces we encounter in this study.

Given data points as height values of a surface, we transform it to a digital grayscale image by interpolation 
to an evenly spaced grid.

Table 1.   Dataset obtained from the FE code28, class labels assigned by coverage percentage.

Stage 1 2 3 4 5 6 7 Total

Range for the number of impacts 4–5 9–10 14–15 19–20 24–25 27–30 32–33 –

Number of samples 15 15 15 15 15 15 2 92

Minimum coverage 30.49% 63.33% 84.16% 94.02% 99.02% 99.87% –

Mean coverage 36.75% 68.95% 88,27% 96.48% 99.43% 99.99% –

Maximum coverage 37.97% 71.63% 90.70% 97.82% 99.84% 100% –

Bin 0 1 2 3 4 5 –

Class labels 37% 69% 88% 96% 99% 100% –

Figure 1.   Numerical surface samples, colouring by height of the associated surface, for two sequences with 
number of impacts and estimated coverage percentages per sample.
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A suitable underlying combinatorial structure of the image allowing for efficient representation and computa-
tion of homology are cubical complexes30 described below.

A two-dimensional cubical complex consists of elementary d-cubes σ ⊂ R
2 for d ∈ {0, 1, 2} which are prod-

ucts of two elementary intervals σ = e1 × e2 of the form [k, l] for l ∈ {k, k + 1} and integers k . Hence, a two-
dimensional cubical complex consists of vertices represented as [k, k] × [l, l] , edges being either of the form 
[ k, k + 1] × [l, l] or [k, k] × [l, l + 1] and squares [k, k + 1] × [l, l + 1] for integers k , l  . Having constructed a 
cubical complex for the image, we now need to assign the values of the pixels to the elementary cubes of the cubi-
cal complex. There are two main constructions which differ in their assignment of the pixels. The pixel value of 
an image is assigned to either the vertices or the top-dimensional cubes, which in the case of a two-dimensional 
cubical complex are squares31. In this present study, we follow the second approach, and use the library of the 
Geometry Understanding in Higher Dimensions (GUDHI) project32 for the efficient computation of cubical 
complexes and their persistent homology.

Having constructed the associated cubical complex for the image, we now consider its sublevel set filtration 
obtained from values of the top-dimensional cells and its corresponding persistence diagrams. A point (bα , dα) 
of a diagram in dimension k is characterized by the birth time bα and death time dα for a k-dimensional homol-
ogy class α . A persistence diagram consists of a multiset of points in the extended plane19 i.e. a set of tuples in 
R ∪ {∞} where the same tuple can occur multiple times.

The value dα − bα is called persistence of the homology class α . Due to the process of computing the persis-
tence diagrams from digital images, there will only be a finite number of points in the output diagram. In the 
following analysis we will only consider persistence diagrams in dimension zero (0D) and one (1D).

We can define several different distances between persistence diagrams. Most common are the bottleneck 
and Wasserstein distance33. Diagrams, with those distances, are stable with respect to bounded perturbation of 
the input surface. Hence, the space of diagrams is a metric space. On the other hand, using statistical analysis on 
persistence diagrams is challenging as, for example, they do not have a unique mean34. Certain vectorizations and 
summaries of persistence diagrams have been developed to overcome these shortcomings22. These vectorizations 
are used to construct surface descriptors. We call them persistence-based roughness parameters and will specify 
them in the next section. Further analyses of the persistence diagram are possible35.

Surface roughness parameters.  Implemented surface roughness parameters of this present study are 
shown in Tables 2 and 3. In the analysis of surface roughness, we focus on area-based surface roughness param-
eters corresponding to the surface texture and topography specification provided in ISO 25178. We select the 
most prominent parameters for the comparison following the assessment in25. The selection includes area height 

Figure 2.   Pipeline for the calculation of persistent diagrams and Betti curves (BC) in dimension 0 and 1: the 
result of the FE simulation is interpolated on a regular grid to obtain a digital image; the pixels of which are 
converted to top-dimensional cells of a two-dimensional cubical complex. We do a sweep of the sublevel sets 
of this complex keeping track at which height values the connected components and holes change. As a result, 
we obtain the birth and death values of points in the persistent diagram in dimension 0 and 1. Counting the 
number of connected components and holes for different thresholds in the filtration gives us the BC.
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parameters focusing on the vertical distances to a reference plane of the shot peened surfaces as well as hybrid 
parameters.

The ordinate value z(x, y) is defined in ISO 25178 as the height of the roughness surface at a specified position 
(x, y) according to the reference surface. For the calculation of the parameters, the reference surface is chosen to 
be the mean height plane ie the plane of constant z-value equal to the mean height of the input surface.

Persistent homology offers several enhancements to the above conventional parameters, like stability prop-
erties as well as the ability to extract persistence diagrams by using different filtrations. We extract the features 
from a persistence diagram in dimension k of the form Dk = {(bi, di)} for j ∈ 1, ..., m . Dk is a multiset and can 
contain the same persistence pair multiple times. As shown in Table 3, persistent entropy23 follows the definition 
of entropy introduced by Shannon38. Shannon entropy is defined by −

∑n
i=1pilog

(

pi
)

 where pi are values in the 
interval [0, 1] , and give the average level of information or surprise of the possible outcomes of a random variable. 
For persistent entropy, we use the lifetime entropy pi = li/L and the natural logarithm.

k-dimensional Betti curves (BC)36 are 1D functions counting the k-dimensional Betti numbers at different 
levels of filtration. BC and persistence diagrams are higher dimensional descriptors that can be transformed into 
1D descriptors by calculating an appropriate mathematical norm of them. The norm can be understood in this 
context as the distance of the descriptor of the surface to the descriptor of a roughness surface with constant 
amplitude of 0.

Persistence landscapes are, like BC, functional summaries of persistence diagrams. A landscape is a sequence 
of functions �m for m = 0, 1, ... as defined in22. The persistence silhouette37 is a smoothed version of the landscape. 
It transforms a persistence diagram into the vector space of continuous real-valued functions on R by combining 
all landscapes of different orders into a weighted average function. See Table 3 for the formulas.

Since the surfaces are covered with dimples and the characteristics we want to extract are related to coverage, 
the 0D persistent diagram encodes most of the relevant information for the current data. Therefore, we limit 
ourselves to the case of 0D homology in the following analysis.

Table 2.   Overview of implemented conventional surface roughness parameters for ordinate values z(x, y ) 
within a definition area (A), equations as in ISO 25178.

Name Symbol Equation

Arithmetical mean height (µm) Sa 1
A

∫∫

A|z(x, y)|dxdy

Root mean square height (µm) Sq
√

1
A

∫∫

Az
2(x, y)dxdy

Skewness Ssk
1
S3q

1
A

∫∫

Az
3(x, y)dxdy

Kurtosis Sku
1
S4q

1
A

∫∫

Az
4(x, y)dxdy

Maximum peak to valley height (µm) Sz max
x,y∈A

z(x, y)− min
x,y∈A

z(x, y)

Root mean square gradient Sdq

√

1
A

∫∫

A

[

(

∂z(x,y)
∂x

)2
+

(

∂z(x,y)
∂y

)2
]

dxdy

Developed interfacial area ratio Sdr
1
A

[

∫∫

A

(
√

[

1+
(

∂z(x,y)
∂x

)2
+

(

∂z(x,y)
∂y

)2
]

− 1

)

dxdy

]

Table 3.   Persistent parameters for a k-dimensional diagram Dk = {(bi , di)} for i = 1, ...,m. Since the 
persistence diagram is a multiset, the same persistence pair can occur several times in summations and sets. 
For simplicity sake, we often drop the index k . The death time of the infinite persistence pair in dimension 0 is 
changed to the maximum height value of the roughness surface.

Name Symbol Equation

Number of (off-diagonal) points n = nDk
cardinality{(b, d) ∈ Dk |b < d}

Persistence of a pair (bi , di) li = li
Dk di − bi

Sum of persistence L = LDk

∑n
i=1(di − bi)

Average persistence L = LDk
1
n

∑n
i=1(di − bi)

Persistence entropy23 E(Dk) −
∑n

i=1
li
L log

(

li
L

)

Persistence Betti curve (BC)36 βk(s) = βDk
(s) βDk (s) : R → N, s �→ cardinality{(b, d) ∈ Dk |b ≤ s < d}

Persistence landscape (LS)22 �
� : N× R → [0,∞], �(m, t) = m-largest value of {fi(t)}ni=1

for fi(t) = max
{

min{t − bi , di − t}, 0
}

Persistence silhouette (Si)37 S S : R → R , S(t) =
∑n

i=1 wi fi(t)
∑n

i=1 wi
 forwi = |di − bi |
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Classification and clustering.  The two main comparisons for the performance of the conventional and 
persistence-based parameters are a supervised classification task and an unsupervised clustering task.

For the classification task, the multi-class accuracy under different classifiers is evaluated. Multi-class 
accuracy39 in the context of machine learning is based on the confusion matrix for the classifier and computes 
the proportion of correctly classified samples to those that are not correctly assigned. In addition to accuracy, 
the macro-averaged F1 score40, which is the mean of precision and recall score for each class, is calculated. We 
execute a 50/50 split into training set and test set of the 15 shot peening sequences and a tenfold cross-validation.

The clustering relies on a TDA clustering algorithm called ToMATo (Topological Mode Analysis Tool)41, 
implemented in the GUDHI library. This clustering procedure enhances a graph-based hill climbing algorithm 
with persistence diagrams. It can obtain clustering results without prior knowledge of the number of coverage 
labels in the data. The clustering is evaluated by a confusion matrix.

Depending on the kind of input, we combine different classifiers with different hyperparameters, see Table 4. 
We choose the best performing of these hyperparameters for each type of classifier. For the case of scalar features 
like the conventional roughness parameters and scalar persistence-based parameters, we consider either mul-
tiple features or individual parameters as the sole feature. The classifiers used in these cases are Support Vector 
Machine (SVM) for polynomial, radial basis function and sigmoid kernel, Decision Trees (DT), Random Forests 
(RF), Multi-layer Perceptron (MLP), as well as a k-nearest neighbours vote (KN) as implemented in42.

To use persistence diagrams as the input for classification, we consider higher order vectorizations of the 
diagrams, namely BC, persistence landscapes, and silhouettes sampled on 100 or 200 points. The classifiers used 
in these cases are RF and SVM.

Normalizing or standardizing of parameters ensures compatibility of different features when they are com-
bined. In the case of the multiple scalar features, Principal Component Analysis (PCA) or Linear Discriminant 
Analysis (LDA) lead to improvements in the analyses43.

Results and discussion
In the following, we compare the conventional roughness parameters and the persistence-based parameters for 
the dataset of 92 samples of the FE modelling processed and postprocessed as described in the “Method” section.

Figure 3 shows the conventional surface roughness parameters plotted over the six coverage classes. The 
arithmetic mean height (Sa) and the square root mean height (Sq) fail to distinguish between samples from 
different coverage classes due to overlap of y-values for coverage above 69%. Furthermore, there is a consider-
able y-spread. The developed interfacial area ratio (Sdr) shows a slightly better result in terms of y-spread and 

Table 4.   Classification pipeline for different inputs.

Input type Input features Number features Scaling Dimension reduction Classifiers

Collection of scalar features

All conventional parameters, Table 2 8

Standard-scaling
Min–max-scaling 
to [0,1]

None
PCA
LDA

Support Vector Machine (SVM) with 
polynomial, radial basis function, 
sigmoid kernel
Decision tree (DT)
Random forest (RF)
Multi-layer perceptron (MLP)
k-nearest neighbours vote (KN)

Skewness and developed interfacial 
area ratio 2

0D entropy, maximum 0D persis-
tence, and L2-norm of 0D BD, LS, Si 5

Single scalar feature A conventional or persistence-based 
parameter 1

Persistence diagrams

Betti curve (BC) 100 None None
SVM
RFPersistence landscapes (LS) 100, 200 None None

Silhouettes (Si) 100, 200 None None

Figure 3.   The conventional surface roughness parameters over coverage, colouring by impact sequence. Points 
marginally shifted in x-direction for better visibility.
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y-overlap for coverage up to 88%. However, y-value ranges still overlap for greater coverage classes. Skewness 
(Ssk) shows the best performance of all conventional parameters which we consider in this present study. Only 
small overlap of the y-ranges is obtained. For increasing coverage, a clear trend is visible.

Figure 4 shows scatterplots for the 0D persistence entropy and the L2-norm of 0D BC, as well as 0D BC. In 
both scatterplots, we obtained a good approximation of a linear relationship over coverage up to 100% compared 
to the clearly non-linear trends for the other descriptors. Y-spread is greatest in both cases for 100% coverage. 
There is a small y-overlap in the results for the L2-norm values between coverage classes; in the case of the 0D 
persistence entropy, there is no y-overlap. The lines plotted in the vectorization of the 0D BC are the mean of 
each coverage class. In addition, shading is done to visualize the minimal and maximal function values for each 
threshold considering all BC belonging to the same coverage class. The curves thus symbolize the evolution of 
the number of connected components during the increase of the height threshold. In the beginning the number 
of components increases when the threshold reaches the lowest points of each dimple. During this phase may 
be regarded as a single, separated pit. Exceptions can occur depending on the height of the ridges separating the 
different pits. The Betti numbers increase until we reach a threshold where connected components are joined 
together. This starts at roughly −0.002. This value represents in this case the best threshold for separating the 
classes and could be used for a further analysis. In our case we use the Betti curves whole. From the threshold 
value 0 onwards the Betti numbers increase a second time. This happens due to the fact, that connected compo-
nents are created at the borders of the numerical surface samples at that point which are still separated from the 
large, connected component for the pits in the center by higher ridges on the outside which were not influenced 
by other shots hitting the vicinity. As mentioned, the value of the 0D BC for x < 0 reaches one plateau or maxima 
in the case of each coverage class. These plateaus show a clear separation of the different coverage classes.

Figure 5 shows the results for the classification of the test sets of the conventional parameters; Fig. 6 for the 
persistence-based parameters. For a direct comparison of the scalar-based conventional and persistence-based 
parameters, we use each feature individually for classification. In addition, the results for the training data and 
for the test data are shown in Table 5. It only lists the result of the best performing classifier for each parameter 
according to the accuracy on the test set. These classifiers are listed in the last column. Skewness shows the 
greatest accuracy (0.93) and F1 score (0.93) of all conventional parameters. The persistence-based parameters 
on the other hand show even greater accuracy (up to 1.00) in classification as well as greater F1 scores (up to 
1.00). Overall, accuracy and F1 score exhibit similar rankings when considering only the scores for the test set. 
An indication of overfitting exists only for the root mean square gradient (Sdq) and the decision tree classifier 
which exhibits exceptional performance for the train set but substantially worse on the test set.

To investigate possible improvements provided by a multiple feature setting, we form different input sets as 
specified in Table 4. Accuracy of the single feature classification in Fig. 5 decreases slightly for the collection of all 
conventional parameters and increases slightly for Ssk and Sdr compared to when only Ssk is applied. Persistence-
based parameters shown in Fig. 6 outperform the conventional ones. Interestingly, the 0D persistence entropy 
shows the best accuracy when used as the sole feature during classification. This holds true for all classifiers.

The upper right plot in Fig. 6 shows the performance of persistence diagrams and their higher-dimensional 
vectorizations as inputs for the classification task. BC have higher accuracy (mean 0.98) compared to LS and Si 
as well as its L2-norm. Hence, the higher dimensional TDA-based descriptors perform only slightly worse than 
0D persistence entropy while containing even more relevant information about the considered surface. In the 
case of landscapes and silhouettes, the accuracy is worse than obtained for BC but comparable to the accuracy 
of all classifiers except SVM for skewness as a single feature. 0D entropy shows the overall best performance.

In engineering application, shot peening coverage can be unknown. It is of great practical interest to distin-
guish automatically surface samples of different coverages. This is achievable with clustering algorithms. The 
ToMATo clustering described in the Methods is applied to the two best performing parameters for the single 
feature classification; for conventional parameters those are Ssk and Sdr; for persistence-based parameters it 
is 0D entropy and the L2-norm of the BC. In both cases, ToMATo can recover six different clusters. For the 

Figure 4.   The persistence-based surface roughness parameters over coverage, colouring by impact sequence. 
Points marginally shifted in x-direction for better visibility. In addition, 0D BC over threshold value 
(lines = mean, shading = minimal and maximal function values).
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conventional parameters, we need to specify the number of clusters. For persistence-based parameters the six 
clusters are detected automatically. The confusion matrices for the detected labels opposed to the true labels are 
shown in Fig. 7. The applied clustering algorithm returns the six clusters of Table 2. In the case of the conventional 
parameters, seven samples are mislabelled; with incorrect labels assigned to the true 96, 99, or 100% coverage 
class. In the case of the persistence-based parameters, two samples from the true 100% class are mislabelled to 
the 99% class. The clustering results exhibit a similar pattern as before, the persistence-based parameters out-
perform the conventional parameters.

Conclusions
As shown in this exploratory work, TDA techniques are a valuable extension to the toolkit given by conventional 
ISO surface roughness parameters. They are applied in this study for describing the evolution of surface topog-
raphy in a dataset under mechanical surface treatment, Table 1. Inputs are generated based on experimentally 
validated code25,28. In our analysis, we found that persistent methods (Table 3) are outperforming standard rough-
ness parameters (Table 2) in the task we considered even if we limit ourselves to 0D persistent parameters like 
entropy and BC. These two parameters are performing best at highlighting the information content of a sample 
as they show differences between surfaces of different coverage percentages. The vectorizations and different 
representations of the persistence diagrams combined with powerful and diverse machine learning algorithms, 
Table 4, provide a new and effective way to describe and capture a surface’s roughness in a more exhaustive way 
compared to the classic roughness parameters.

Using the different parameters, we use ToMATo for an unsupervised clustering task for the different param-
eters. While the persistence-based parameters show a better result than the conventional parameters, it should 
be noted that this algorithm performs well in both cases. Most importantly, this shows how TDA techniques can 
be built on top of existing pipelines for surface roughness.

The novelty of the work lies in proposing techniques rooted in TDA to surface roughness and showing 
advantages of using persistence-based parameters alongside existing conventional surface roughness parameters. 
Furthermore, using the unsupervised ToMATo-clustering it is highlighted how TDA can be using in conjunction 
with existing techniques. It should be stressed that we consider the proposed pipeline an extension of existing 
techniques—now formulated in the language of algebraic topology- and not a replacement of the methods 
highlighted in the literature for surface topography.

Figure 5.   Conventional parameters and classification accuracy obtained for classifiers SVM, DT, RF, MLP, and 
KN after hyperparameter optimisation (input: all 7 conventional roughness parameters, skewness and developed 
interfacial ratio, only skewness, only arithmetic mean height). Mean values as red circles. Note the different 
y-limits for the accuracy values for the arithmetic mean height plot.
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Future work
In this study, we considered only conventional surface roughness parameters for a single L-filration method, 
namely Gaussian filtration for a particular numerical dataset of a shot peened surface. While the parameters 
proposed show advantages in this setting, the next steps include work to show the interconnections of TDA 
and existing methods for analysing surfaces topographies and the logical extension of the latter using TDA 
in a unified framework—both theoretically and experimentally. In the theoretical setting this includes using 

Figure 6.   Persistence-based parameters and classification accuracy obtained for classifiers SVM, DT, RF, MLP, 
and KN after hyperparameter optimisation (input: all 0D persistence-based parameters, 0D entropy, L2-norm 
of Betti curve). In addition, performance of 3 vectorizations of persistence diagrams in the upper right subplot. 
Mean values as red circles. Note the different y-limits for the accuracy values for the higher order vectorizations 
of the persistence diagrams.

Table 5.   Mean accuracy and mean F1 for the best performing classifier on either conventional parameters or 
scalar persistent-based parameters in a single feature classification.

Feature

Accuracy F1

Obtained under classifierTest Train Test Train

Sa 0.62 0.67 0.60 0.66 MLP

Sdq 0.63 1.00 0.62 1.00 DT

Sdr 0.64 0.71 0.63 0.69 SVM

Sku 0.57 0.61 0.55 0.57 SVM

Sq 0.59 0.65 0.55 0.62 MLP

Ssk 0.93 0.89 0.93 0.89 SVM

Sz 0.49 0.57 0.47 0.56 SVM

L2-Norm 0D BC 0.95 0.95 0.95 0.95 SVM

0D entropy 1.00 1.00 1.00 1.00 DT

L2-Norm 0D LS 0.49 0.58 0.46 0.56 SVM

L2-Norm 0D Si 0.90 0.91 0.90 0.91 SVM
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segmentation techniques based on Morse-Smale complexes44 to capture information in the merge tree45and 
combine these algorithms with the existing surface roughness parameters to give an even more comprehensive 
descriptor. Experimentally, performances of a wider variety of surface roughness parameters from the standards 
as well higher-dimensional TDA parameters should be compared and possibilities for combinations assessed. 
There are multiple different techniques and invariants used in TDA which led to the question of extending these 
to shot peened surfaces in more diverse settings and possibly to surface roughness in the context of other sur-
face treatments. Examples are pattern recognition for the identification of materials or surface manufacturing 
procedures. Another advantage of considering persistent homology will be the possibility to extend the new 
presented framework into a more general case.

The greater precision in describing surface topography and roughness after surface treatment paves the way 
for more accurate engineering solutions. It will be of great interest to see results about cytocompatibility of steel 
surfaces2 and whether there is a direct relationship between cell on-growth and persistence-based roughness 
description. In an ideal case, these findings will translate into a better understanding of cell growth on macro 
3D scaffolds46.

The relationship between other hyperparameters such as shot sizes and persistence-based parameters can be 
understood more easily using a more detailed summary provided in the persistence diagram. Incorporating such 
data in a persistence diagram and the persistent homology classes during construction results in an even finer 
comparison and is ongoing research, see47. In general, getting combinations of several roughness parameters 
in a more unified framework including TDA techniques will help to gather more insights on different surfaces. 
While the present study focused on the 0D persistence diagrams, 1D persistent diagrams might gain greater 
importance when changing other hyper parameters to consider also greater impact overlap.

Code availability
The calculations were made using Python code and rely on the GUDHI software package32. The code establishes a 
pipeline for the computations of surface roughness parameters and persistence-based parameters. It implements 
the procedure and steps demanded by ISO 25178. The analysis done in this study and the samples produced by 
the numerical simulation are also part of the code. The code and additional documentation can be found in the 
Git-Hub repository: https://​github.​com/​janfs​enge/​tda_​shotp​eening.​git.
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