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Abstract: Forced expression of core cardiogenic transcription factors can directly reprogram fibrob-
lasts to induced cardiomyocyte-like cells (iCMs) in vitro and in vivo. This cardiac reprogramming
approach provides a proof of concept for induced heart regeneration by converting a fibroblast fate
to a cardiomyocyte fate. However, it remains elusive whether chamber-specific cardiomyocytes can
be generated by cardiac reprogramming. Therefore, we assessed the ability of the cardiac repro-
gramming approach for chamber specification in vitro and in vivo. We found that in vivo cardiac
reprogramming post-myocardial infarction exclusively induces a ventricular-like phenotype, while
a major fraction of iCMs generated in vitro failed to determine their chamber identities. Our re-
sults suggest that in vivo cardiac reprogramming may have an inherent advantage of generating
chamber-matched new cardiomyocytes as a potential heart regenerative approach.
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1. Introduction

Heart disease is the leading cause of morbidity and mortality worldwide. A central
problem of heart diseases is that cardiomyocytes are irreversibly lost and replaced by
cardiac fibrosis. Thus, the cardiac reprogramming approach is particularly attractive in
that it directly targets a major source of cardiac fibrosis, cardiac fibroblasts, to induce new
cardiomyocytes. It has been shown that the forced expression of core cardiogenic tran-
scription factors (i.e., Gata4, Mef2c, and Tbx5 with or without Hand2) is able to reprogram
fibroblasts into induced cardiomyocyte-like cells (iCMs) in vitro and in vivo [1-3]. These
initial studies provide irrefutable evidence that new cardiomyocytes can be generated by
fibroblast to cardiomyocyte fate conversion, proposing an entirely new potential heart
regenerative strategy.

There are two different types of working cardiomyocytes in the heart (i.e., atrial and
ventricular), each of which are anatomically confined to respective chambers with dis-
tinctive functional properties. Atrial and ventricular cardiomyocytes differ significantly
in electrophysiological and contractile properties [4]. Ventricular cardiomyocytes have a
higher amplitude, longer duration of action potentials and more negative resting mem-
brane potential than atrial cardiomyocytes. These differences in action potentials allow
ventricular cardiomyocytes to generate greater contractile force than atrial cardiomyocytes,
which have a higher shortening rate than ventricular cardiomyocytes. Thus, ventricles
are able to pump out blood against a relatively high-pressure gradient, while atria rather
passively send blood to ventricles. Highly orchestrated contraction of these two indepen-
dent and distinctive types of cardiomyocytes is essential for effective blood circulation.
Therefore, a viable heart regenerative strategy should be able to generate chamber-matched
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working cardiomyocytes in their respective anatomical locations. Otherwise, chamber mis-
matched cardiomyocytes may provide a substrate for arrhythmogenesis. For example, after
myocardial infarction (MI), which mainly affects the ventricles, ventricular cardiomyocytes
need to be regenerated in the affected ventricle(s). However, the ability of the cardiac
reprogramming approach to generate a specific type of working cardiomyocytes has not
been carefully determined.

In this study, we sought to determine chamber identities of the iCMs generated
by either in vitro or in vivo cardiac reprogramming. Using multi-channel high-content
imaging, we simultaneously analyzed the induction of ventricular and atrial phenotypes
following in vitro cardiac reprogramming. We found that a significant fraction of pan-
cardiac marker-expressing cells express both atrial and ventricular markers in vitro. In
contrast, in vivo cardiac reprogramming post-MI exclusively induced ventricular-like iCMs
in the ventricle. Our results showed successful chamber specification of iCMs by in vivo
cardiac reprogramming, in contrast to stochastic and non-exclusive atrial and ventricular
specification of iCMs by in vitro cardiac reprogramming. These findings point to an important
advantage of in vivo cardiac reprogramming as a potential heart regenerative approach.

2. Materials and Methods
2.1. In Vitro Cardiac Reprogramming

Retroviruses were generated using the quad-cistronic retroviral vector encoding
mouse Mef2c, Gata4, Tbx5 and Hand2 as described previously [5,6]. Briefly, Platinum
E cells (Cell Biolabs, San Diego, CA, USA) were transfected with pBabe-X-MGTH construct
using Fugene 6 (Promega, Madison, WI, USA). The growth medium (DMEM with 10%
FBS and 1% penicillin/streptomycin) on transfected Platinum E cells was changed with
the fresh growth medium 16 to 20 h after transfection. The medium containing viruses
was filtered through a 0.45 um polyethersulfone (PES) filter. Polybrene was added to the
viral medium at a concentration of 6 pug/mL. MEFs were isolated from wild type mice, and
then counted and frozen as described previously [6,7]. After thawing, pre-counted MEFs
(5-7 x 10* cells/well) were seeded into a 24-well black clear-bottom plate (Greiner, Monroe,
NC, USA, cat# 662892) 16 to 20 h prior to infection. Following removal of fibroblast growth
medium, the viral medium was transferred into the cell culture plate containing MEFs. An-
other transfection was independently performed for generating the second viral medium
24 h after the first transfection. The second viral medium replaced the first viral medium in
the culture plate containing MEFs 24 h after the first infection. Twenty-four hours after the
second infection, the viral medium was removed from the culture plate containing MEFs,
and then replaced with the cardiac induction medium, composed of DMEM /199 (4:1),
10% FBS, 5% horse serum, 1% penicillin/streptomycin, 1% non-essential amino acids, 1%
essential amino acids, 1% B-27, 1% insulin-selenium-transferrin, 1% vitamin mixture, 1%
sodium pyruvate (Invitrogen), 1 uM SB431542 (Sigma, Darmstadt, Germany), and 0.5 pm
A83-01 (Tocris, Bristol, UK) as described previously [6,7]. The induction medium was
changed every three days until cells were fixed for immunocytochemistry.

2.2. Immunocytochemistry of Reprogrammed Cells In Vitro

Immunocytochemistry was directly performed on a 24-well plate as described previ-
ously [5-7]. Cells were fixed with 2% paraformaldehyde for 15 min, and then permeabilized
with permeabilization buffer (0.05% Triton-X in PBS) for 5 min three times at room tem-
perature. After incubating with blocking buffer (universal blocking buffer, BiogeneX, cat#
HKO083-50K) for ~45 min at room temperature, cells were incubated with primary anti-
bodies against Troponin I (goat polyclonal, Abcam, Cambridge, MA, USA, cat# 188877,
1:400 dilution), MLC-2v (rabbit polyclonal, Proteintech, Rosemont, IL, USA, cat# 10906-
1-AP, 1:200 dilution), and MLC-2a (mouse monoclonal, Synaptic Systems, Goettingen,
Germany, cat# 311 011, 1:400 dilution) overnight at 4 °C. Following three 5-min washes
with permeabilization buffer, cells were incubated with respective Alexa fluorogenic sec-
ondary antibodies (Invitrogen, Waltham, MA, USA) at 1:400 dilution at room temperature
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for 1 h. Cells were washed again with permeabilization buffer for 5 min three times. During
the third wash, DAPI solution at 300 nM (Invitrogen) was added at 1:100 concentration.

2.3. High-Content Imaging and Analysis

High-content imaging analysis was performed as described previously [5-7]. Briefly,
the immunostained cells were analyzed with ImageXpress Micro XL Automated Cell
Imaging system (Molecular Devices, San Jose, CA, USA). Cell images were acquired with
a 10x objective at 36 fields per each channel per well. DAPI, FITC, Texas Red, Cy5 filter
sets were used to detect DAPI, Troponin I, MLC-2v, and MLC-2a, respectively. Thirty-six
captured images per each channel per well (a total of 144 images) were analyzed with
MetaXpress software (Molecular Devices) to quantify the number of Texas Red, FITC
and/or Cy5 fluorescent positive cells among DAPI positive cells. The local background
intensity was set to the intensity of a dim cell. The intensity above the local background for
each channel was set separately.

2.4. Quantitative Real Time PCR (qPCR)

Total RNA was extracted from reprogrammed or uninfected MEFs using a NucleoSpin
RNA Kit (Macherey-Nagel, Duren, Germany). cDNA was synthesized by reverse tran-
scription qPCR using a high-capacity cDNA reverse transcription kit (Applied Biosystems,
Waltham, MA, USA). qPCR was performed on a Bio-Rad CFX96 system (Bio-Rad, Hercules,
CA, USA) using SYBR probes and iTaq Universal SYBR Green Supermix (Bio-Rad).

2.5. In Vivo Cardiac Reprogramming

For in vivo reprogramming, retroviruses harboring MGTH or pBabe-X empty vector
were generated as described above for in vitro cardiac reprogramming without changing
growth media 16 to 20 h post-transfection. The viral medium was collected and filtered
through a 0.45 um polyethersulfone (PES) filter 48 h post-transfection. The viral medium
was concentrated with retrovirus precipitation reagent (Alstem, Richmond, CA, USA)
as per the manufacturer’s protocol. The concentrated retroviruses were stored at 4 °C
and used within two days. Tamoxifen dissolved in corn o0il (90%) and ethanol (10%) at
a concentration of 50 mg/mL was administered to 10- to 14-week-old Tcf21-MerCreMer
(iCre):R26R-tdTomato mice via intraperitoneal injection for five consecutive days. Five
days after the last dose of tamoxifen, permanent ligation of the left anterior descending
coronary artery (LAD) was performed in Tcf21-iCre: R26R-tdTomato mice to induce MI
as described previously [8]. The mice were anesthetized with continuous inhalation of
isoflurane without ventilation. A minimal size of left thoracotomy over the left chest was
performed. A small skin cut was made over the left chest. After dissecting and retracting
pectoral major and minor muscles, a small hole was made at the fourth intercostal space
to open the pleural membrane and pericardium. By slightly opening the clamp, the heart
was temporarily displaced. The ligation was made at ~3 mm below the origin of the LAD
using 6.0 silk. Immediately after LAD ligation, 30 uL of concentrated virus solution was
directly injected to a single spot in the border zone of the infarcted left ventricle using a
gastight syringe (Hamilton, Reno, NV, USA, cat# 7637-01) and 34-gauge needle (Hamilton,
cat# 207434). Intramyocardial infiltration of virus solution was confirmed by observing
swelling of the entire anterior wall of the left ventricle. Then, the heart was replaced
immediately into the thoracic cavity. After manual evacuation of air, the chest was closed.
Buprenorphine (0.05 mg/kg) was subcutaneously injected once before surgery and six
times after surgery every 12 h for pain control.

2.6. Immunohistochemistry on Heart Sections

After euthanizing the mice by CO, inhalation and cervical dislocation three weeks
post-reprogramming, the frozen heart sections were processed. After washing with ice-cold
PBS, the dissected hearts were fixed with pre-chilled 4% paraformaldehyde in PBS for
30 min, and then incubated in 30% sucrose in PBS overnight at 4 °C. The fixed hearts
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were embedded in O.C.T compound and frozen in pre-chilled isopentane. The frozen
hearts were sectioned at 8-pum thickness. After 5 min of air drying, the heart sections were
washed with PBS three times, and fixed again with pre-chilled 4% paraformaldehyde in
PBS on ice for 20 min, followed by PBS washing three times. The fixed heart sections
were permeabilized in 0.1% Triton X-100 in PBS for 20 min. Following PBS washing three
times, the heart sections were blocked with M.O.M mouse IgG blocking reagent (Vector
Labs, Burlingame, CA, USA) for 1 h and 5% goat serum in M.O.M protein diluent (Vector
Labs) for 30 min at room temperature. The heart sections were incubated with primary
antibodies against Troponin I (goat polyclonal, Abcam, cat# ab56357, 1:400 dilution) and
MLC-2v (rabbit polyclonal, proteintech, cat# 10906-1-AP, 1:200 dilution), or MLC-2a (rabbit
polyclonal, Proteintech cat# 17283-1-AP, 1:200 dilution) overnight at 4 °C. After washing
with PBS three times, the heart sections were incubated with respective Alexa fluorogenic
secondary antibodies (Invitrogen) at 1:400 dilution at room temperature for 1 h. tdTomato
was visualized without immunostaining. Images were captured using an Olympus IX81
epifluorescent microscope.

2.7. Isolation of Cardiomyocytes

Adult mouse cardiomyocytes were isolated from Tcf21-iCre:R26R-tdTomato mice four
weeks post-reprogramming using Langendorff perfusion as described previously [9]. The
mouse hearts were perfused retrogradely via aortic cannulation in a Langendorff apparatus
with three types of buffer solutions: (1) perfusion buffer (NaCl 120.4 mM, KCI 14.7 mM,
NapHPOy4 0.6 mM, KapHPO4 0.6 mM, MgSO4 1.2 mM, Na-HEPES 10 mM, NaHCO;
4.6 mM, Taurine 30 mM, BDM 10 mM, Glucose 5.5 mM, pH 7.0), (2) digestion buffer
without CaCl, (Collagenase II 2.4 mg/mL in perfusion buffer), and (3) digestion buffer
with CaCl, (Collagenase II 2.4 mg/mL, and CaCl, 40 uM in perfusion buffer) [9]. After
removing the hearts from the Langendorff apparatus, ventricular cardiomyocytes were
mechanically dissociated and triturated using a fine scalpel and scissors and resuspended
in stopping buffer (CaCl, 11.7 uM in calf serum 2 mL plus perfusion buffer 18 mL). After
centrifuging cells at low speed, the pellet was collected for cardiomyocytes. The isolated
cardiomyocytes were fixed with fixation buffer (BD Biooscience, Franklin Lakes, NJ, USA,
cat# 554655) for 20 min on ice followed by washing with Perm/Wash buffer (BD Biooscience,
cat# 554723) once. The fixed cells were incubated with primary antibodies against MLC-
2v (rabbit polyclonal, proteintech, cat# 10906-1-AP, 1:200 dilution) and MLC-2a (mouse
monoclonal, Synaptic Systems cat# 311 011, 1:400 dilution) overnight at 4 °C. Following
washing with Perm /Wash buffer, cells were incubated with respective Alexa fluorogenic
secondary antibodies (Invitrogen) at 1:400 dilution at room temperature for 1 h. After the
Perm/Wash buffer wash, the cells were resuspended with stain buffer (BD Biooscience,
cat# 554656) containing DAPI solution. The immunostained cardiomyocytes were placed
on a glass slide and covered by a glass coverslip. Cardiomyocyte images were captured
with a Zeiss LSM 500 confocal microscope.

2.8. Statistical Analyses

Statistical significance was determined using one-way ANOVA with Tukey’s post-hoc
test or unpaired two-tailed Student’s f-test. p-values of < 0.05 were regarded as significant.

3. Results
3.1. Chamber Protein Expression during In Vitro Cardiac Reprogramming

We and others previously observed a heterogeneous population of iCMs, which
resemble diverse individual subtypes of cardiomyocytes, following in vitro cardiac repro-
gramming [10,11]. However, it remains elusive whether atrial and ventricular specifications
during cardiac reprogramming are mutually exclusive processes as shown during heart
development or whether they are progressed simultaneously. Thus, we sought to deter-
mine chamber specification during in vitro cardiac reprogramming using multi-channel
high-content imaging analysis. We transduced mouse embryonic fibroblasts (MEFs) with
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the quad-cistronic retroviral vector encoding four core cardiogenic transcription factors
with the splicing order of Mef2c, Gata4, Tbx5, and Hand2 (referred to as MGTH) as described
previously [6]. At three weeks after transduction, we analyzed the induction of a pan-
cardiac Troponin I, a ventricular-specific MLC-2v, and an atrial-specific MLC-2a protein
(Figure 1). About 40% of cells expressed Troponin I, indicating that these cells adopt a
cardiomyocyte fate (Figure 1C, right). While ~26% of the whole population expressed both
MLC-2a and Troponin I (~65% of Troponin I* cells), ~16% of cells induced both MLC-2v
and Troponin I (~39% of Troponin I* cells) (Figure 1C left). We noted that the induction of
an atrial-specific protein is more permissive than ventricular specification during in vitro
cardiac reprogramming. Unexpectedly, ~14% of the whole cellular population, which
represents most MLC-2v* Troponin I* cells, exhibited both atrial and ventricular markers.
Only ~2% of the whole population demonstrated ventricular chamber identity without
co-developing the atrial phenotype (MLC-2a~ MLC-2v*TnI"), while ~12% of the whole
population specified atrial chamber identity (MLC-2a*MLC-2v~TnI*) (Figure 1C right). A
major fraction of a pan-cardiac marker expressing cells, which are often defined as iCMs,
fail to specify their chamber identities during in vitro cardiac reprogramming. These re-
sults demonstrated that atrial and ventricular specifications of iCMs can be simultaneously
progressed in a non-exclusive manner during in vitro cardiac reprogramming. In addition,
we examined the expression of atrial and ventricular genes using qPCR three weeks after
MGTH transduction. We found that both atrial (i.e., MLC-2a, Nppa, Nppb, and Nrtf2) and
ventricular (i.e., MLC-2v and Irx4) genes are significantly increased by in vitro cardiac
reprogramming (Figure 1D). The extent of increase in the expression of atrial genes was
relatively greater than the ventricular counterpart.
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Figure 1. Incomplete chamber specification during in vitro cardiac reprogramming. (A) Composite
immunofluorescent images used for high-content imaging analyses to quantify Troponin I, MLC-2a, and
MLC-2v induction three weeks after MGTH transduction into MEFs. Each panel shows a composition
of 36 images taken by the high-content imaging system using a 10x objective. (B) An enlarged single
image of a white inlet in (A) (left inlet: top; right inlet: bottom). Scale bar, 400 uM. (C) Summary of
high-content imaging analyses. n = 6. * p < 0.01 versus MLC-2a*TnI" (left). * p < 0.01 or ** p < 0.001
versus MLC-2a*MLC-2v*TnlI* (right). MLC-2a*Tnl* = MLC-2a*MLC-2v~Tnl* + MLC-2a*MLC-2v*Tnl*;
MLC-2v*Tnl* = MLC-2a~ MLC-2v*TnI* + MLC-2a*MLC-2v*TnI*. (D) Expression profile of atrial and
ventricular genes following in vitro cardiac reprogramming. Expression of indicated genes was quantified
by qPCR three weeks after MGTH transduction into MEFs and normalized to uninfected control MEFs.
Four independent experiments are presented as mean =+ s.d.
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3.2. Chamber Protein Expression during In Vivo Cardiac Reprogramming Post-MI

Next, we examined chamber specification during in vivo cardiac reprogramming
post-MI. To identify iCMs derived from cardiac fibroblasts, we used the Tcf21-MerCreMer
(iCre):R26R-tdTomato cardiac fibroblast lineage reporter mouse line, which was generated
by cross-breeding Tcf21-MerCreMer knock-in mice [2,12] with Rosa26-CAG-LoxP-stop-
LoxP-tdTomato mice. In this mouse line, cardiac fibroblasts become labeled with tdTomato
upon tamoxifen administration [2]. We directly introduced retroviruses expressing MGTH
or control vector into the infarcted left ventricle. At three weeks post-MI, we processed heart
sections and immunostained them for pan-cardiac Troponin I and ventricular-specific MLC-
2v or atrial-specific MLC-2a (Figure 2A-C). We did not observe any tdTomato* Troponin I'*
iCMs in the control vector-injected hearts. However, we found that MGTH introduction
induces a significant number of tdTomato™ Troponin I* iCMs in the border zone of the
infarcted hearts, consistent with the previous studies [2,3,11,13,14] (Figure 2A). Nearly all
tdTomato* Troponin I* iCMs expressed MLC-2v, while almost no iCMs expressed MLC-2a
(Figure 2B). These results demonstrated that ventricular-like iCMs are exclusively generated
in the ventricle by in vivo cardiac reprogramming. In addition, we isolated cardiomyocytes
using Langendorff perfusion following in vivo cardiac reprogramming. By immunostain-
ing these isolated iCMs for MLC-2v and MLC-2a, we confirmed a ventricular phenotype as
well as organized myofibrillar structures of iCMs in a single cell level (Figure 2D). Our find-
ings suggest that the native intra-ventricular environment, in which iCMs are surrounded
by continuously contracting native ventricular cardiomyocytes and other types of cells in
three dimensions, may provide necessary conditions for ventricular specification which
cannot be recapitulated in a plastic dish.
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Figure 2. Exclusive induction of ventricular-like iCMs following in vivo cardiac reprogramming
post-ML. (A) Lineage tracing of iCMs using Tcf21-iCre:R26R-tdTomato mice following MGTH or
control vector injection post-MI. Heart sections were immunostained for Troponin I. White arrows
indicate tdTomato* Troponin I'* iCMs. Scale bar, 100 uM. (B) Heart sections as described in (A) were
immunostained for Troponin I and MLC-2v or MLC-2a. tdTomato* Troponin I*MLC-2v* cells indicate
ventricular-like iCMs. Scale bar, 100 uM. (C) Quantification of ventricular-like iCMs generated by
in vivo cardiac reprogramming. The average number of iCMs from six heart sections per heart is
presented. Tnl: Troponin I. n = 4. * p < 0.05. (D) Isolated iCMs exhibiting a ventricular phenotype.
Scale bar, 50 uM.
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4. Discussion

Either atrial or ventricular chamber identity of a cardiomyocyte is acquired in an
anatomically defined restrictive location through chamber-specific independent processes
during heart development [15]. In contrast, the previous study showed that diverse
subtypes of cardiomyocytes (i.e., atrial, ventricular, and pacemaker) are co-induced next to
each other by in vitro cardiac reprogramming [10,11]. However, it remains unclear whether
atrial or ventricular chamber specification progresses independently or simultaneously in
individual iCMs during in vitro cardiac reprogramming. Through this study, we found
that both atrial and ventricular chamber specifications can simultaneously progress in
individual cells during in vitro cardiac reprogramming. As a result, a significant fraction
of iCMs exhibit both atrial and ventricular phenotypes. However, such a hybrid cell does
not exist in the post-natal heart. A very small fraction of iCMs showed a pure ventricular-
like phenotype without co-expressing an atrial marker, indicating that the induction of a
ventricular chamber specification is a less efficient process as opposed to the induction of
an atrial phenotype in fibroblasts. This is consistent with our previous study demonstrating
the inability of adult fibroblasts to induce a ventricular phenotype, while diverse cardiac
phenotypes including ventricular can be induced in MEFs [10]. This uncontrolled chamber
specification would be an important obstacle to overcome for the potential in vitro clinical
application of directly reprogrammed iCMs in the future. We speculate that successful
ventricular chamber specification may require suppression of simultaneously developing
atrial specification processes, and vice versa.

In contrast to undetermined chamber specification during in vitro cardiac reprogram-
ming, ventricular-like iCMs were exclusively induced in the ventricle following in vivo
cardiac reprogramming post-ML. Ventricular specification of iCMs during in vivo cardiac
reprogramming may be analogous to that of native cardiomyocytes in the ventricle during
heart development. Our results suggest that an intra-ventricular environment containing
native ventricular cardiomyocytes and other ventricular cells may enforce iCMs to adopt
a ventricular phenotype. Continuous and vigorous contraction of native ventricular car-
diomyocytes as well as secreted molecules from various ventricular cells may be necessary
for the ventricular specification of iCMs. In vitro reprogrammed cells may mimic early
differentiated cardiomyocytes during heart development, which express both MLC-2a
and MLC-2v [16]. Activation of subtype-specific signaling pathways or longer maturation
time than in vivo cardiac reprogramming may be needed to induce subtype-specific iCMs
in vitro. Despite unsuccessful chamber specification by in vitro cardiac reprogramming, it
is important to note that the in vivo cardiac reprogramming approach may have an inherent
advantage of generating chamber-matched cardiomyocytes over other heart regenerative
approaches using pluripotent stem cell-derived cardiomyocytes, which may have to over-
come incomplete chamber specification of newly generated cardiomyocytes. In addition,
it would be important to identify ventricular-specific signaling molecules that specify
chamber identities of iCMs in an intra-ventricular environment during in vivo cardiac
reprogramming for the generation of clinically useful chamber-specific iCMs in vitro.

Our analysis for chamber specification is solely based on the protein expression of
chamber-specific proteins. Action potential assessment of iCMs is necessary to accurately
define the chamber identity of iCMs. Therefore, the main goal of this study is limited to
evaluating chamber-specific protein expression during cardiac reprogramming. However,
it is important to note that the pattern of chamber-specific protein expression is highly
correlated with chamber identity defined by action potential [10]. It may not be fair to
directly compare the phenotypes of iCMs generated in vivo with the counter parts in vitro,
given that the fibroblast population and reprogramming environment between in vitro and
in vivo cardiac reprogramming are substantially different (e.g., adult cardiac fibroblasts vs.
MEFs, and ischemic and inflammatory condition vs. a highly controlled cell culture). Since types
of fibroblasts and exogenous condition are known to affect cardiac reprogramming efficiency
in vitro, it is possible that those can affect chamber specification during cardiac reprogramming.
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