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Abstract

Natural compounds are proper tools for inhibiting cancer cell proliferation. Hence, the search

for these ligands of overexpressed receptors in breast cancer has been a competitive chal-

lenge recently and opens new avenues for drug discovery. In this research, we have investi-

gated molecular interactions between natural products and overexpressed receptors in

breast cancer using molecular docking and dynamic simulation approaches followed by

extraction of the best ligand from Citrus limetta and developing for nanoscale encapsulation

composed of soy lecithin using a sonicator machine. The encapsulation process was con-

firmed by DLS and TEM analyses. Anticancer activity was also examined using MTT

method. Among the investigated natural compounds, hesperidin was found to bind to spe-

cific targets with stronger binding energy. The molecular dynamics results indicated that the

hesperidin-MCL-1 complex is very stable at 310.15 K for 200 ns. The RP-HPLC analysis

revealed that the purity of extracted hesperidin was 98.8% with a yield of 1.72%. The results

of DLS and TEM showed a strong interaction between hesperidin and lecithin with an

entrapped efficiency of 92.02 ± 1.08%. Finally, the cytotoxicity effect of hesperidin was

increased against the MDA-MB-231 cell line with an IC50 value of 62.93 μg/mL after encap-

sulation, whereas no significant effect against the MCF10A cell line. We showed for the first

time that hesperidin is a flexible and strong ligand for the MCL-1 receptor. Also, it has the in

vitro ability to kill the MDA-MB-231 cell lines without having a significant effect on the

MCF10A cell lines. Therefore, hesperidin could be used as a food ingredient to generate

functional foods.

Introduction

Breast cancer is the top cancer in women and the second main cause of cancer death after lung

cancer [1]. In early 2020, the World Health Organization (WHO) has declared that the out-

break of breast cancer in the developing world is increasing due to increasing life expectancy,

increased urbanization, and adoption of western lifestyles so that it is estimated that 627000
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women died from breast cancer that is approximately 15% of all cancer deaths among women.

Therefore, finding a way to treat this deadly disease is very important.

Molecular docking techniques aim to predict the best matching binding mode of a ligand

to a macromolecular partner, and Molecular dynamics (MD) is a computational technique

that simulates the dynamic behavior of molecular systems as a function of time [2]. Hence,

performing such techniques needs a macromolecule as a receptor and a ligand. In the breast

cancer cells, the estrogen receptors are the main cause of this disease and are expressed in 75%

of them [3]. Among these receptors, the estrogen receptor alpha (ERα) is expressed in a low

fraction of normal breast epithelium cells and it is for female reproductive organs [4]. A study

has shown that the expression of this receptor significantly increases in breast cancer up to

80% of cells [5]. Also, the human epidermal growth factor receptor (HER) generates a cascade

of responses able to advance the formation and progression of breast cancer [6]. Therefore, the

activation of HER receptors leads to modification in the behavior of normal cells through the

final signals for cellular proliferation, anti-apoptosis, angiogenesis, and metastasis [6, 7]. On

the other hand, the ability of cancer cells to evade apoptosis is a crucial feature for them, so

that they frequently dysregulate the intrinsic apoptotic pathway to preserve tumor cell survival

through upregulation of anti-apoptotic Bcl-2 family proteins, including Bcl2-A1, Bcl-2, Bcl-xL,

Bcl-w, and Mcl-1 [8]. Therefore, these protein targets can be used as therapeutics target to

treat breast cancer. Today, several market drugs such as tamoxifen, raloxifene, toremifene, and

fulvestrant for the treatment of breast cancer are available, but each has its limitations, which

cause irreversible side effects [9].

The use of natural products in drug discovery and food industries possess several advan-

tages, including unmatched chemical diversity with structural complexity and biological

potency; occupy a complementary region of chemical space; the generation of libraries of natu-

ral product analogs, which might have enhanced drug-like properties; optimizing the regula-

tion of natural product biosynthesis; lead to the discovery and better understanding of targets

and pathways involved in the disease process, and can go straight from hit to drug [10]. Oli-

vero-Acosta et al. [6] were obtained 800 natural compound structures from the NatProd Col-

lection database. They were performed a docking analysis using AtuoDock Vina software to

identify interactions between these compounds and human epidermal growth factor receptors.

They showed that four natural products named hecogenin acetate, hesperidin, podototarin,

and theaflavin are promissory HER receptor inhibitors. According to the above descriptions,

we have analyzed these natural products on the estrogen receptor alpha and anti-apoptotic

Bcl-2 family proteins using molecular docking and molecular dynamics simulation methods

to identify the interactions and stability between them. Therefore, this study aimed to discover

a more selective compound targeting breast cancer and establish a nanoliposome encapsula-

tion to increase solubility and biocompatibility of the hesperidin for using as a therapeutic

agent.

Materials and methods

In silico experiments

Protein preparation. The 3D structures of protein targets named BCL-2 (PDB ID:

4MAN), BCL-W (PDB ID: 2Y6W), MCL-1 (PDB ID: 5FDO), and ERα (PDB ID: 1G50) were

retrieved from the RCSB Protein Data Bank. These files were introduced to AutoDock Tools

1.5.7 (the Scripps Research Institute, La Jolla, CA, USA) software to remove water molecules,

and add polar hydrogen atoms, Kollman partial charges, and AD4 type atoms. Finally, the pro-

tein files were written as.pdbqt file format for docking analysis.
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Ligand preparation. The 3D structures of four natural products named hecogenin acetate

(CID: 101906), hesperidin (CID: 10621), podototarin (CID: 5320650), and theaflavin (CID:

135403798) were retrieved from the chemical database of PubChem. The downloaded files

were converted to.pdb file format using the PyMOL software (Molecular Graphics System,

Version 2.0 Schrödinger, LLC.). The ligand files were prepared using AutoDock Tools 1.5.7

(the Scripps Research Institute, La Jolla, CA, USA) software and finally written as.pdbqt file

format for docking analysis.

Molecular docking analysis. Molecular docking analysis was performed by using Auto-

Dock Vina 1.1.2 (the Scripps Research Institute, La Jolla, CA, USA) software [11] in five inde-

pendent runs for each ligand. The ligands were docked into the target structures using

AutoDock Vina 1.1.2 with grid box values shown in Table 1. The results were evaluated to

identify the lowest binding energy and calculate the inhibition constant of the interactions.

Protein-ligand complex visualization. The protein-ligand complexes were visualized

using the Discovery Studio Visualizer 20.1 software. Using this software, the polar and hydro-

phobic interactions between ligand and target were characterized, and 2D and 3D illustrations

of such interactions were generated.

Molecular dynamics simulation. Molecular dynamics simulation of hesperidin-ERα and

hesperidin-Mcl-1 complexes were performed using GROMACS version 2018 software. The

CGenFF server and the CHARMM36 force field was used to generate the topology files for

ligand and protein, respectively [12]. Each complex was solvated in a 1.0 nm triclinic

box using the TIP3P water model and neutralized using NA and CL ions. Also, each complex

was simulated at 310.15 K and a pressure of 1 bar. Afterward, the equilibrated complexes were

set up to produce molecular dynamics simulation for 200 ns. The resulting trajectories were

analyzed to prove the stability and compactness of the structure by generating the root mean

square deviation (RMSD), root mean square fluctuation (RMSF), the radius of gyration (Rg),

and solvent accessible surface area (SASA) using the GROMACS program.

In vitro experiments

Hesperidin extraction. Hesperidin was extracted from the albedo of Persian sweet lemon

(Citrus limetta), according to the previously described method [13], with some modifications.

Briefly, the dry albedo was powdered in liquid nitrogen and then mixed with methanol in the

ratio of 1:5 (w/v). The homogenous was placed in a water bath at 55˚C for 3 h with shaking.

The supernatant was collected and 60 mL of methanol was again added to residues. After heat-

ing at 55˚C for 30 min, two supernatants were combined and filtered. The solvent was evapo-

rated and the mixture of dichloromethane: water in the ratio of 1:1 was added to extract. This

step was repeated and finally, hesperidin crystals were collected by a paper filter.

RP-HPLC analysis of extracted hesperidin. The extracted hesperidin was analyzed using

an analytical reverse-phase HPLC equipped with a C18 column (250 mm × 4.6 mm, 5 μm, 100

Å; Knauer Azura Chromatography, Berlin, Germany) to determine its purity. The separation

was performed at a flow rate of 0.25 mL/min and a column temperature of 40˚C. The column

Table 1. The grid box values used for molecular docking analysis.

Protein target Size points (x × y × z) Spacing center (Å)

BCL-2 80 × 80 × 50 0.375

BCL-W 100 × 90 × 100 0.375

MCL-1 120 × 126 × 120 0.647

ERα 120 × 120 × 120 0.375

https://doi.org/10.1371/journal.pone.0267961.t001
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was eluted with a gradient of 0–60% mobile phase B (MeOH) for 20 min, 60–90% mobile

phase B for 6 min, and 100% mobile phase B for 10 min. The mobile phase A was water and

0.1% formic acid. The elution was monitored at 285 nm using a UV detector.

Preparing hesperidin-loaded nanoliposomes. The hesperidin-loaded nanoliposomes

were prepared according to the previously described method [14], with slight modifications.

Briefly, 2% soy lecithin solution was prepared and agitated for 12 h on the stirrer. 10 mg of hes-

peridin was added to the mixture and vortexed for 15 min. Subsequently, the mixture was son-

icated at 80% of full power for 5 min (1 s on, 1 s off) using the probe sonicator (SONOPLUS

HD-4200, Bandelin, Germany). The nanoliposome suspension was filtered with a polycarbon-

ate filter (0.22 μm) and stored at 37˚C in dark for more analysis. The mixture without hesperi-

din was used as control.

Physicochemical properties of nanoliposome. The particle size and zeta potential of

nanoliposome were evaluated by dynamic scattering light using an SZ-100 nanopartica series

instrument (Horiba, Japan). The suspension was diluted in ddH2O (1:40) and placed in a verti-

cal cylindrical cell. The measurement was carried out at a scattering angle of 173˚ relative to

the source and 25˚C with a refractive index of 1.34 [15].

Entrapped efficiency of hesperidin. The nanoliposome suspension was centrifuged at

30000 g for 1 h. The supernatant was collected and then the amount of free hesperidin (unen-

capsulated) was measured using the AlCl3 method according to the previously described

method [16], whereas the various concentrations of quercetin were used as a standard curve.

The entrapped efficiency (EE) was calculated using the following equation: EE% = Ci–Cs /

Ci × 100, where Ci and Cs were the initial amount of hesperidin and the unencapsulated

amount of hesperidin in the supernatant, respectively.

TEM analysis of nanoliposome. The concentration of nanoliposome in suspension was

reduced through 10-folds dilution with ddH2O. To negative staining, an equal volume of

diluted suspension was mixed with 2% ammonium molybdate solution and kept for 3 min at

25˚C. Subsequently, a drop of the stained suspension was placed on Formvar-carbon coated

copper grid for 5 min and then the excess liquid was drawn off using filter paper. After air-dry-

ing at 25˚C, the morphology of nanoliposomes was evaluated by TEM (LEO 906 E, Philips,

Germany) operating at 200 kV [15].

Cytotoxicity assay. Cytotoxicity assay of hesperidin was evaluated against the MDA-MB-

231 human breast cancer cell line and the MCF10A normal cell line using MTT (3- [4,

5-dimethylthiazol-2-yl]-2, 5 diphenyl tetrazolium bromide) assay method, with some modifi-

cation [17]. The cancerous and normal cell lines were respectively cultured in a fresh RPMI-

1640 and DMEM medium containing 10% fetal bovine serum, 100 U/mL penicillin, and

100 μg/mL streptomycin at 37˚C in a humidified incubator with 5% CO2. After sequential pas-

sages, 200 μL of medium containing 1 × 104 cells was poured into each well of the 96-well plate

and incubated in the above conditions for 24 h. Afterward, the various concentrations of

encapsulated nanoliposomes or hesperidin (10, 20, 40, 60, and 80 μg/mL) were replaced with

medium and incubated in the above conditions for 24 h. The treatments were removed, and

the cells were washed with PBS buffer (pH 7.2). 100 μL of medium containing 0.5 mg/mL

MTT reagent was added into each well and incubated in the above conditions for 4 h. Finally,

100 μL of DMSO was replaced with MTT solution and incubated in the above conditions for

15 min with shaking. The absorbance was read using a microplate reader (Bio-Rad, Richmond,

CA, USA) at 570 nm. Unencapsulated nanoliposome and fresh medium were used as a nega-

tive control. Triton X-100 was used as a positive control. The IC50, GI50, and LC50 values were

calculated according to the previously described method [18].
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Statistical analysis

All in vitro experiments were performed in triple repeats and analyzed using SAS9.4 software.

A mean comparison analysis was performed by Tukey test. Plotting the graphs and calculating

the IC50, GI50, and LC50 values were done with the GraphPad Prism software.

Results and discussion

Molecular docking

The Gibbs free energy (kcal/mol) is suggesting an equilibrium state and complex stability in

the protein-ligand binding process [19]. In this study, the results of molecular docking showed

that the natural product of hesperidin tends to bind to BCL-W, MCL-1, and ERα target pro-

teins with the lowest binding energy of -9.2, -10.1, and -9.5 kcal/mol, respectively (Table 2).

Also, the natural product of theaflavin was bound to the BCL-2 target protein with the lowest

binding energy of -8.3 kcal/mol (Table 2). In addition, the inhibition constant of each ligand

was calculated from the binding energy according to the following equation: ΔG = RTlnKi,

whereas ΔG, R, T and Ki are related to the binding energy (cal/mol), gas constant (1.987 cal/K

mol), temperature (310.15 K), and inhibition constant (Table 2). Consequently, the hesperi-

din-MCL-1 and hesperidin-ERα complexes were selected for the stability analysis using molec-

ular dynamics simulations.

The best binding mode and interacting residues for four complexes of theaflavin-BCL-2,

hesperidin-BCL-W, hesperidin-MCL-1, and hesperidin-ERα were shown in Fig 1. As previ-

ously has shown, the active site of BCL-2 protein consists of Arg10, Val13, Met14, Trp28,

Ala30, Gly31, Leu94, Ala97, Gly98, Asp100, Phe101, Tyr105, Asp108, Phe109, Met112, Val130,

Leu134, Trp141, Gly142, Arg143, Ile144, Val145, Ala146, Phe147, Glu149, Phe150, Val153,

Asp168, Ala171, Leu172, Thr175, Phe195, and Tyr199 residues [20–22]. The theaflavin in the

binding site of BCL-2 interacted through one hydrogen interaction with Glu132, one Pi-Alkyl

interaction with Ala128, one Pi-Pi T-shaped interaction with Phe127, and one Pi-Sigma inter-

action with Ala128 (Fig 1A and 1B). The hesperidin interacted with BCL-W, MCL-1, and ERα
target proteins through 8, 16, and 11 interactions, respectively. In the case of the binding site

Table 2. The binding potency and inhibition constant of desired ligands with the target proteins.

Target protein Ligand Binding energy (kcal/mol) Inhibition constant (μM)

BCL-2 Hecogenin acetate - 7.8 1.91

Hesperidin - 8.0 1.37

Podototarin - 7.5 3.18

Theaflavin - 8.3 0.823

BCL-W Hecogenin acetate - 7.6 2.68

Hesperidin - 9.2 0.18

Podototarin - 8.1 1.16

Theaflavin - 8.5 0.586

MCL-1 Hecogenin acetate - 8.6 0.494

Hesperidin - 10.1 0.039

Podototarin - 8.4 0.694

Theaflavin - 8.7 0.421

ERα Hecogenin acetate - 9.2 0.18

Hesperidin - 9.5 0.108

Podototarin - 7.8 1.91

Theaflavin - 9.0 0.253

https://doi.org/10.1371/journal.pone.0267961.t002
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of BCL-W protein consisting of Asp153, Arg160, Val162, Trp167, Val170, Arg171, Arg177,

Ala179, and Leu180 residues [23], the interactions in the hesperidin-BCL-W complex were

through two hydrogen interactions with Arg78, one hydrogen interaction with each of Arg56,

Thr60, Gly90, and Arg95, one Pi-Cation interaction with Arg56, and one Alkyl interaction

with Arg59 (Fig 1C and 1D). The binding site residues of MCL-1 protein were determined as

His224, Ala227, Phe228, Met231, Leu235, Ile237, Leu246, Val249, Met250, Val253, Phe254,

Fig 1. The 3D and 2D illustrations of the best binding mode and interacting residues of theaflavin-BCL-2 (a, b),

hesperidin-BCL-W (c, d), hesperidin-MCL-1 (e, f), and hesperidin-ERα (g, h) complexes.

https://doi.org/10.1371/journal.pone.0267961.g001
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Asp256, Asn260, Arg263, Thr266, Leu267, Phe270, Gly271, Val274, Ile294, and Leu298 [24,

25]. According to this, the interacting residues in the hesperidin-MCL-1 complex were

Gln189, Arg215, Gly219, Gln221, Arg222, Asn223, Phe273, Lys276, and His320, so that these

interactions included seven hydrogen interactions, three Carbon hydrogen interactions, one

Amide-Pi Stacked interaction, and three Alkyl and Pi-Alkyl interactions (Fig 1E and 1F). Also,

the interacting residues of hesperidin on ERα active site, consisting of residues Leu349,

Ala350, Leu384, Leu387, Leu391, Arg394, Phe404, Ile424, Gly521, His524, Leu525, and

Met528 [4, 26], were included His1377, Glu1380, Phe1461, and Ala1546 through hydrogen

interactions; Leu1462, Leu1469, Lys1472, and Ala2430 through Alkyl and Pi-Alkyl interac-

tions; Tyr1459 and Thr1460 through Carbon hydrogen interaction; and Asp2426 through Pi-

Anion interaction (Fig 1G and 1H). Although ligands have not exactly interacted with binding

site residues of receptors, their binding patterns indicate that they may act as partial agonists

or allosteric modules, which require more investigation using the pharmacological assay. Gen-

erally, a lower binding energy shows more rational and stable interaction between ligand and

receptor. However, hesperidin-MCL-1 complex was the most stable complex with the best

binding affinity of -10.1 kcal/mol.

The various studies have proved that hesperidin has a capacity to induce cancer cell death

including breast, lung, colon, liver, and gastric cancers [6, 19]. Also, a study showed that the

hesperidin significantly inhibits the colony formation of MCF7 cells [27]. On the other hand,

it has been reported that the apoptotic effects of hesperidin are associated with altered ratios of

pro-/antiapoptotic proteins, caspase activation, c-Jun N-terminal kinase (JNK) pathway activa-

tion, and caspase-independent pathways [28]. Therefore, according to the results of previous

studies and molecular docking in this study, the selection of hesperidin as a potential inhibitor

of breast cancer to evaluate its stability using molecular dynamics simulations and perform the

in vitro studies can be useful to help to produce an anticancer drug after in vivo and clinical

experiments.

Molecular dynamics simulations

Molecular dynamics (MD) is a computer simulation method for analyzing the physical move-

ments of atoms and molecules. According to the definition, the stability of hesperidin-MCL-1

and hesperidin-ERα complexes were evaluated using the Gromacs software at 310.15 K for

200 ns. RMSD calculates the average of the whole particle for every moment [29], therefore

structural changes and deviations in both complexes are shown in Fig 2. The average RMSD

value of hesperidin-MCL-1 and hesperidin-ERα complexes is 0.16 ± 0.023 and 0.29 ± 0.025

nm, respectively. The lower RMSD indicates more stability of the complex [30]. The results

showed that the stability of hesperidin in the hesperidin-MCL-1 complex is higher than the

hesperidin-ERα complex. According to the RMSD plot (Fig 2A), although the hesperidin-ERα
complex was shown slight fluctuations at 125–160 ns, it can be concluded that this complex

was partly stabilized. On the other hand, the hesperidin-MCL-1 complex has completely stabi-

lized at 0.16 nm (Fig 2A).

The flexibility of complexes was checked by the RMSF plot (Fig 2B). The average RMSF is

made on the total time per residue [29], which calculated 0.08 ± 0.038 and 0.12 ± 0.092 nm for

hesperidin-MCL-1 and hesperidin-ERα complexes, respectively. The most flexible parts of the

protein structure are loop structures, and by nature, they are the most fluctuated regions in

protein complexes [22]. On the other hand, more RMSF indicates a more flexible complex.

Therefore, the hesperidin-MCL-1 complex is more stable.

The radius of gyration (Rg) determines the compactness of protein and this factor is differ-

ent in each of the classes of protein [31]. The average Rg value was 1.51 ± 0.007 and
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1.86 ± 0.014 nm for hesperidin-MCL-1 and hesperidin-ERα complexes, respectively (Fig 2C).

It indicates that the protein folding is lower than the initial time in the hesperidin-ERα com-

plex and has slightly increased at the end of the simulation, but it has remained almost con-

stant during the simulation for the hesperidin-MCL-1 complex. On the other hand, the SASA

analysis is closely related to Rg analysis [22]. However, the average SASA value was

86.42 ± 1.74 and 128.43 ± 2.95 nm2 (Fig 2D). Since the SASA plot shows the connection of pro-

tein with the solvent environment and it depends on protein size, it can be concluded that the

higher the level of solvent access, the lower the protein folding, resulting in more amino acids

available to interact with the ligand.

Purity evaluation of extracted hesperidin

The RP-HPLC chromatogram was shown a sharp peak at the retention time of 5.95 min

(Fig 3). In a similar extraction method, Victor et al. [13] reported that the purity of extracted

hesperidin with the yield of 2.5% has been 89.4% using RP-HPLC, whereas the extracted hes-

peridin in this study had the purity of 98.8% with the yield of 1.72%.

Physicochemical properties of nanoliposomes

The particle size of nanoliposomes is an essential quality control assay and a prominent factor

for determining entrapment efficiency, in vivo nanoliposome applications, and the release of

bioactive compounds [15, 32]. The particle size of nanoliposomes was measured using

dynamic light scattering after sonication. The z-average of nanoliposomes before and after

Fig 2. Molecular dynamics simulation of the hesperidin-MCL-1 and hesperidin-ERα complexes at 310.15 K for 200 ns. a) RMSD plot, b)

RMSF plot, c) Rg plot, and d) SASA plot.

https://doi.org/10.1371/journal.pone.0267961.g002
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encapsulation with hesperidin was 137.5 ± 1.01 and 123.03 ± 0.95 nm, respectively (Table 3).

The decrease in nanoliposomes size after encapsulation indicates a strong interaction between

hesperidin and lecithin, which results in a compaction of the core of the nanoliposomes. This

interaction can be between the acyl chains of the lecithin bilayer and the hesperidin molecule.

On the other hand, Span is an index for measuring particle size distribution in solutions and

determine from the following equation: (d90 –d10)/ d50, so that d90, d10, and d50 are related to

90, 10, and 50% intensity on a relative cumulative particle size distribution curve. The Span

index was 0.74 ± 0.08 and 0.55 ± 0.07 for nanoliposomes before and after encapsulation,

respectively. It shows that the samples are of narrow distribution. In addition to physical

parameters, the size of nanoliposomes depended on fatty acid composition, lipid classes, and

the surface-active properties of lecithin [14].

According to Table 3, the surface charge of nanoliposomes was increased after hesperidin-

encapsulation. The zeta potential lower than– 30 and higher than 30 mV indicates the stability

of systems. Therefore, hesperidin loaded and unencapsulated nanoliposomes possess high sta-

bility. The increase of zeta potential after hesperidin-encapsulated may be due to physicochem-

ical properties of hesperidin such as log P (- 0.31). On the other hand, the negative charge of

soy lecithin nanoliposomes is due to the presence of negatively charged phospholipids

Fig 3. The RP-HPLC profile of hesperidin isolated from C. limetta with yielded of 98.8%.

https://doi.org/10.1371/journal.pone.0267961.g003

Table 3. The particle size and zeta potential of nanoliposomes before and after encapsulation.

Nanoliposome Particle size (nm) Span Zeta potential (mV)

Before encapsulation 137.5 ± 1.01a 0.74 ± 0.08a - 50.33 ± 1.26b

After encapsulation 123.03 ± 0.95b 0.55 ± 0.07b - 63.53 ± 1.35a

Note: a and b letters show a significant level at a P-value of� 0.01.

https://doi.org/10.1371/journal.pone.0267961.t003

PLOS ONE Natural products for treating cancer

PLOS ONE | https://doi.org/10.1371/journal.pone.0267961 May 10, 2022 9 / 14

https://doi.org/10.1371/journal.pone.0267961.g003
https://doi.org/10.1371/journal.pone.0267961.t003
https://doi.org/10.1371/journal.pone.0267961


including phosphatidylserine, phosphatidic acid, phosphatidylglycerol, phosphatidylinositol in

its lipid composition, which all of them have a negative charge in physiological pH [14, 33].

Entrapped efficiency

The bioavailability and solubility of bioactive compounds such as hesperidin can enhance

using nanoliposome formulations [32, 34]. The entrapped efficiency of hesperidin in soy leci-

thin nanoliposomes was calculated at 92.02 ± 1.08%. It shows that the solubility of hesperidin

loaded on nanoliposomes was increased so that the solubility of hesperidin in water is 4.93 μg/

mL [35]. Therefore, the high entrapped efficiency of hesperidin might be because of observing

the significant differences of charge, size, and zeta potential before and after encapsulation.

TEM analysis

The morphology of nanoliposomes was evaluated by TEM analysis. The results showed a

nanometric round shape and unilamellar vesicles, which are suitable for creating drug delivery

systems. In addition, the bilayer structures are clearly visible in the TEM image (Fig 4), which

confirms the formation of liposomes.

Cytotoxicity assay

The cytotoxicity assay showed that hesperidin-loaded nanoliposomes were able to kill the

MDA-MB-231 cell line. According to Fig 5, the cell viability percentage decreases with increas-

ing concentration. In contrast, the hesperidin had a killing ability higher than the hesperidin-

loaded nanoliposomes at concentrations from 10 to 60 μg/mL. This ability was more for hes-

peridin-loaded nanoliposomes at a concentration of 80 μg/mL. It shows that the nanolipo-

somes may have been able to release more hesperidin at higher concentrations. The IC50 value

of hesperidin-loaded nanoliposomes and hesperidin was calculated 62.93 and > 80 μg/mL (Fig

5), while unencapsulated nanoliposomes were shown no cytotoxicity effect (Data no shown).

Therefore, the nanoliposome formulation has increased the effectiveness of hesperidin in kill-

ing cancerous cells. Also, the GI50 and LC50 values of hesperidin-loaded nanoliposome and

hesperidin were calculated > 80 μg/mL in both (Data no shown). In contrast, hesperidin-

loaded nanoliposomes and hesperidin showed no cytotoxicity effect against MCF10A,

Fig 4. The transmission electron microscopy (TEM) image of nanoliposomes composed of soy lecithin.

https://doi.org/10.1371/journal.pone.0267961.g004
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although hesperidin alone was inhibited the growth of normal cells at a concentration of

80 μg/mL with a cell viability percentage of 74.73% (Fig 5). Generally, the IC50, GI50, and LC50

values of hesperidin-loaded nanoliposome and hesperidin against the MCF10A cell line were

calculated > 80 μg/mL for all. On the other hand, nanoliposomes have protected the MCF10A

cell line against the cytotoxic effects of hesperidin (Fig 5).

The previous studies have shown that hesperidin interacts with numerous recognized cellu-

lar targets and inhibits cancer cell proliferation by inducing apoptosis and cell cycle arrest [36].

However, the cytotoxicity effects of hesperidin were proved against breast cancer [37]. Since

hesperidin is water-insoluble, therefore it is necessary to find a way to increase its solubility,

bioavailability, and in turn the cytotoxicity effects. One of these ways is nano-formulations. In

a study, the cytotoxicity effect of hesperidin against the MDA-MB-231 cell line was increased

after loading on gold nanoparticles with an IC50 value of 70–75 μg/mL, so that IC50 value of

hesperidin before nanoencapsulation was calculated > 125 μg/mL [38]. In addition, hesperidin

loaded on nanoparticles showed no significant cytotoxicity effect (IC50 value of > 125 μg/mL).

In another study, the cytotoxicity of hesperidin was evaluated against the MCF-7 cell lines and

the IC50 value was calculated 100–140 μg/mL [39]. Also, hesperidin-loaded PLGA nanoparti-

cles and hesperidin-loaded nano-emulsions have improved the cytotoxicity effect of hesperidin

[40, 41]. However, using the nanoliposome composed of soy lecithin for loading hesperidin

has not been investigated. Since lecithin acts as a type of membrane phospholipid, it maintains

membrane fluidity and facilitates drug absorption [42]. On the other hand, Therapeutic effi-

cacy of drugs with poor oral absorption is improved through lecithin-mediated formulations

[43]. Therefore, according to previous studies and our results, nanoencapsulation of hesperi-

din could be a way for increasing the bioavailability and enhancing the cellular effect on cell

proliferation, especially the MDA-MB-231 cell line.

Conclusion

The use of natural products can be useful for the therapeutic and nutritional purposes of

humans. Numerous studies have shown that natural products are a good alternative to syn-

thetic and chemical drugs because they have no side effects and are of natural origin. Based on

the results of the present study, we can also remark that natural compounds such as hesperidin

have the ability to become a unique and natural drug. Therefore, in order to achieve this prom-

ising goal, extensive in vivo and clinical studies are needed, although some researches have

been started in this field. In this study, we showed that hesperidin has a strong binding power

to MCL-1 receptors and also the stability of this binding is high and flexible. In addition, in

Fig 5. The cytotoxicity assay of hesperidin-loaded nanoliposomes and hesperidin against the MDA-MB-231 (a) and the MCF10A (b) cell

lines using the MTT assay method. Dotted lines on the graph show the IC50 value.

https://doi.org/10.1371/journal.pone.0267961.g005
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vitro studies have shown that it has the ability to kill the MDA-MB-231 breast cancer cell lines

without having a significant effect on the MCF10A normal cell lines. Therefore, hesperidin can

be a promising target for the treatment of breast cancer as a drug or food additive.
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