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ABSTRACT: We present a computational protocol, based on
density matrix perturbation theory, to obtain non-adiabatic,
frequency-dependent electron−phonon self-energies for molecules
and solids. Our approach enables the evaluation of electron−
phonon interaction using hybrid functionals, for spin-polarized
systems, and the computational overhead to include dynamical and
non-adiabatic terms in the evaluation of electron−phonon self-
energies is negligible. We discuss results for molecules, as well as
pristine and defective solids.

1. INTRODUCTION
The study of electron−phonon interaction in solids can be
traced back to the early days of quantum mechanics,1 and it
has been instrumental in explaining fundamental properties of
solids, including conventional superconductivity.2 However, it
was not until recent years that electron−phonon interaction
was computed from first-principles,3−7 leading to non-
phenomenological predictions of transport properties of solids8

and of electron−phonon renormalizations of band struc-
tures.7,9−13 Although early studies relied on semi-empirical
models14−16 to study electron−phonon interaction, modern
investigations typically employ the frozen phonon (FPH)
approach,7,17 density functional perturbation theory
(DFPT),4,5,10,11,18 or molecular dynamics (MD) simula-
tions,12,19,20 with electron−electron and electron−ion inter-
actions described at the level of density functional theory
(DFT).21

In two recent papers,10,11 we combined first-principles
calculations of electron−electron and electron−phonon self-
energies in molecules and solids, within the framework of
DFPT. We developed an approach that enables the evaluation
of electron−phonon coupling at the G0W0 level of theory

22−25

for systems with hundreds of atoms and the inclusion of non-
adiabatic and temperature effects at no additional computa-
tional cost. Recent developments have also extended the
DFPT method to study electron−phonon interactions using
DFT + U26 to obtain an improved description of systems with
strong electronic correlation. We also computed12 electron−
phonon renormalizations of energy gaps by using the path-
integral MD (PIMD) methods to investigate anharmonic

effects in crystalline and amorphous solids. The DFPT-, FPH-,
and MD-based methods are addressing different regimes and
different problems; the use of DFPT and FPH is appropriate
for systems whose atomic constituents all vibrate close to their
equilibrium positions, although anharmonic effects have been
included in some FPH calculations.7 The assumption of close
to equilibrium vibrations is however not required when
applying PIMD, which thus has a wider applicability; for
example, it can be used to study amorphous materials and
molecules and solids exhibiting prominent anharmonic effects,
for example, molecular crystals27,28 and several perovskites.29

However, the calculation of electron−phonon renormalizations
using FPH- and MD-based methods is carried out within the
Allen−Heine−Cardona (AHC)30,31 formalism, which neglects
dynamical and non-adiabatic terms of the electron−phonon
self-energies. These effects have been shown to be essential to
describe electron−phonon interactions in numerous polar
materials,32,33 for example, SiC. Perturbation-based methods,
on the other hand, can accurately compute electron−phonon
self-energies within and beyond the AHC formalism, thus
including non-adiabatic and/or frequency-dependent effects
into the self-energy. Another benefit of DFPT-based methods
is the ability to explicitly evaluate the electron−phonon

Received: June 2, 2022
Published: September 20, 2022

Articlepubs.acs.org/JCTC

© 2022 The Authors. Published by
American Chemical Society

6031
https://doi.org/10.1021/acs.jctc.2c00579

J. Chem. Theory Comput. 2022, 18, 6031−6042

https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Han+Yang"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Marco+Govoni"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Arpan+Kundu"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Giulia+Galli"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/showCitFormats?doi=10.1021/acs.jctc.2c00579&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.2c00579?ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.2c00579?goto=articleMetrics&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.2c00579?goto=recommendations&?ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.2c00579?fig=abs1&ref=pdf
https://pubs.acs.org/toc/jctcce/18/10?ref=pdf
https://pubs.acs.org/toc/jctcce/18/10?ref=pdf
https://pubs.acs.org/toc/jctcce/18/10?ref=pdf
https://pubs.acs.org/toc/jctcce/18/10?ref=pdf
pubs.acs.org/JCTC?ref=pdf
https://pubs.acs.org?ref=pdf
https://pubs.acs.org?ref=pdf
https://doi.org/10.1021/acs.jctc.2c00579?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://pubs.acs.org/JCTC?ref=pdf
https://pubs.acs.org/JCTC?ref=pdf
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://acsopenscience.org/open-access/licensing-options/


coupling matrices, which are useful quantities, for example, in
the study of mobilities34−40 and polaron formation.41−46

Here, we generalize the perturbation-based approach of refs
10 and 11 to enable efficient calculations of electron−phonon
interaction with hybrid functionals, by using density matrix
perturbation theory (DMPT)47,48 to compute phonons and
electron−phonon coupling matrices. Our implementation
takes advantage of the Lanczos algorithm,49 which enables
the calculations of electron−phonon self-energies beyond the
AHC approximation, at no extra cost.
DMPT has been used in the literature to compute excitation

energies and absorption spectra in molecules and solids in
conjunction with time-dependent DFT (TDDFT)50,51 and to
solve the Bethe−Salpeter equation (BSE).48,52−56 In the latter
case, DMPT has been applied to obtain the variation of single-
particle wavefunctions due to the perturbation of an electric
field. However, DMPT is a general formalism that can be used
to compute the response of a system to perturbations of any
form, including perturbations caused by atomic displacements.
In this paper, we first derive a formalism for phonon

calculations within DMPT, starting from the quantum
Liouville equation in Section 2; we then verify our results by
comparing them with those of FPH and PIMD calculations in
Section 3. We then present calculations of electron−phonon
interactions in small molecules (Section 4) and pristine
(Section 5) and defective diamonds (Section 6) using hybrid
functionals, and we conclude the paper in Section 7 with a
summary of our findings.

2. METHODOLOGY
Using Hartree atomic units (ℏ = e = me = 1), we describe the
electronic structure of a solid or molecule within Kohn−Sham
(KS) DFT, and we consider the quantum Liouville’s equation
to describe perturbations acting on the system

= [ ]i
t

t H t t
d
d

( ) ( ), ( )KS
(1)

where [·, ·] denotes a commutator and HKS(t) is the KS
Hamiltonian

= + + +H K V V VKS
H ext xc (2)

with K as the kinetic operator, VH as the Hartree potential, Vext
as the external potential, and Vxc as the exchange−correlation
potential. The KS Hamiltonian does not depend explicitly on
time and depends implicitly on time through the time-
dependent density matrix γ that can be written in terms of KS
single-particle orbitals ψnσ

= *t t tr r r r( , ; ) ( ; ) ( ; )
n

N

n n

occ

(3)

where σ is the spin polarization, n is the band index, and Nocc
σ is

the number of occupied bands in the spin channel σ. Below we
present calculations performed by sampling the Brillouin zone
with only the Γ point and hence omit labeling of eigenstates
with k-points.
Given a time-dependent perturbation ∂Vext(t) acting on the

Hamiltonian, the first-order change in the density matrix ∂γ(t)
satisfies the following equation

= · + [ ]i
t

t t V t
d
d

( ) ( ) ( ),ext 0 (4)

where is the Liouville super-operator

· = [ ] + [ [ ] ]

+ [ [ ] ]

t H t V t

V t

( ) , ( ) ( ) ,

( ) ,

0
KS

H 0

xc 0 (5)

Here, we use the notation ∂ to represent a change in
potentials (∂V), wavefunctions ∂ψ, charge densities ∂ρ(r), and
density matrices ∂γ(r, r′); γ0 and H0

KS are the density matrix
and the KS Hamiltonian of the unperturbed system,
respectively.
Taking the Fourier transform of eq 4, we rewrite it in the

frequency domain

· = [ ]V( ) ( ) ( ),ext 0 (6)

In phonon calculations, we adopt the Born-Oppenheimer
approximation,57 and no retardation effects are included.
Hence, we only need to solve eq 6 at ω = 0

· = [ ]V ,ext 0 (7)

The equation above can be cast in the following form
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where c is the projection operator onto the virtual bands;
1e, 2e, 1d, and 2d, defined below in eqs 12 and 13 and

15−18, are related to the variation of exchange−correlation
p o t e n t i a l V x c ; t h e e l em e n t s o f t h e a r r a y s

= { = = }a n N: 1, ..., ; ,n occ a n d
= { = = }b n N: 1, ..., ; ,n occ are variations of wave-

functions; the variation of the density matrix in terms of
wavefunction variation is

= [| | + | |]a b
n

N

n n n n

occ

(9)

In phonon calculations, the external perturbation is static
∂Vext(ω = 0), and eq 8 can be further simplified since anσ = bnσ
= ∂ψnσ for static perturbations, and eq 8 becomes

[ + + ]
= {| = = }V n N: 1, ..., ; ,n

1e 1d 2e 2d

c
ext occ (10)

Equation 10 is a generalized Sternheimer equation,58 where
the operators on the left-hand side are defined below.

= { | = = }H a n N( ) : 1, ..., ; ,n n
c

0
KS

occ
(11)

When using LDA/GGA functionals, the 1e and 2e

operators are
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where fHxc = vc + f xc is the sum of the bare Coulomb potential
vc and the exchange−correlation kernel
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with ρ(r) being the electron density.
When using hybrid functionals, the operators are
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where fHxc
loc = vc + f xcloc is the sum of the bare Coulomb potential

and the local part of the exchange−correlation kernel

=f
V

r r
r

r
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( )xc

loc xc
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(19)

and the parameter α is the fraction of the Hartree−Fock
exchange included in the definition of the hybrid functional.
Note that the 1d and 2d operators are zero for LDA/GGA
functionals.
Once we have the solutions anσ of the Liouville equation (eq

8 or eq 10), that is, the change in wavefunction ∂ψnσ, we can
compute the change in the density matrix with eq 9; the
change in density is then given using the following expression

=

= [ * + * ]
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n
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n n n n
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(20)

and force constants are obtained as follows

| |C VI J
n

N

I n J n, ext
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(21)

By diagonalizing the dynamical matrix

=
M M

C1

J I J
I J J I, ,

2
,

(22)

where MI and MJ are atomic masses, we obtain the frequency
ων of mode ν and its polarization ξIα,ν.
To compute the electron−phonon coupling matrices in the

Cartesian basis

= | |g VmnI m I nscf (23)

or in the phonon-mode basis

=g
M

gmn
I

I

I
mnI

,

(24)

where ξIα,ν is the νth vibrational mode, we need to evaluate the
change in the self-consistent (scf) potential ∂Vscf. The scf
potential is given by the sum of the Hartree potential VH, the
local part of the exchange−correlation potential Vxc

loc, and the
non-local Hartree-Fock exchange Vxc

nl. Thus, the change in the
scf potential ∂Vscf|ψnσ⟩ is the sum of the following three terms
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The Fan−Migdal and Debye−Waller self-energies can then
be computed as
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where bν is the occupation number of the frequency ων
obeying the Bose−Einstein distribution and f mσ is the
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occupation number of the KS eigenvalues εmσ obeying the
Fermi-Dirac distribution. The Debye−Waller self-energy is
derived within the rigid-ion approximation (RIA),30,59,60 which
approximates second-order electron−phonon coupling ma-
trices with first-order ones.
Using the frequency-dependent Fan−Migdal self-energy, the

renormalized energy levels can be evaluated self-consistently

= | + |T T( , ) ( )n n n
FM DW

(30)

with initial guess ω0 = εnσ and using the Lanczos49 algorithm to
evaluate the frequency-dependent Fan−Migdal self-energy (for
a detailed derivation, see refs 10 and 11). Calculations using
full frequency-dependent self-energies with DFPT have been
recently reported in the literature.10,32,43

We refer to the FM self-energy in eq 28 as the non-adiabatic
fully frequency-dependent (NA-FF) self-energy. If the
frequency dependence is considered within the adiabatic
approximation, the self-energy is

| | | | +
T g

b T
( , )

2 ( ) 1
n n

m
mn

m
A FF
FM 2

(31)

We refer to eq 31 as the adiabatic fully frequency-dependent
(A-FF) self-energy.
In our formulation the evaluation of self-energies can be

carried out simultaneously at multiple frequencies using the
Lanczos algorithm; however, we introduce below approxima-
tions leading to frequency-independent self-energies for
comparison with results present in the literature, obtained,
for example, with the AHC formalism.30,31 In particular, we
evaluate the FM self-energy by applying the so-called on-the-
mass-shell (OMS) approximation, that is, by setting ω = εnσ in
the expressions of the A-FF and NA-FF self-energies. In the
former case, we obtain the adiabatic AHC (A-AHC)30,31

approximation, and in the latter case, we obtain the non-
adiabatic AHC (NA-AHC) approximation
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We summarize the various levels of approximations applied
to evaluate the FM self-energy in Table 1; the corresponding
DW self-energies are the same for all levels of approximation.
Thus, we also use the acronyms A-AHC, NA-AHC, A-FF, and
NA-FF to denote the level of theory adopted for the total self-
energy (FM + DW) and for the electron−phonon renormal-
ization of fundamental gaps.

3. VERIFICATION
To verify the implementation of the method described above
in the WEST24 package, we first computed the phonon
frequencies of selected solids (diamond, silicon, and silicon
carbide) and the vibrational modes of selected molecules (H2,
N2, H2O, and CO2) and compared our results with those of
the FPH approach. The displacements used for FPH

calculations are 0.001 Å for all molecules and solids. In Tables
2 and 3, we summarize our results obtained at the PBE061 level
of theory and obtained by solving either the Liouville equation
or by using the FPH approach. The lattice constants used for
diamond, silicon, and silicon carbide are 3.635, 5.464, and
4.372 Å, respectively, and the cell used for molecules is a cube
of edge 10.583 Å. For verification purposes, we only computed
the phonon modes at the Γ point in the Brillouin zone of the
solids. We used an energy cutoff of 60 Ry for the solids and 50
Ry for the molecules and the SG1562 ONCV63 pseudopoten-
tials for all solids and molecules.
Table 2 shows that the absolute difference in the phonon

frequencies computed with the FPH approach and the method
implemented here is small for silicon and silicon carbide, 0.19
and 0.07 cm−1, respectively. The corresponding difference for
diamond is larger but still acceptable being below 5 cm−1. In
Table 3, we compare the vibrational frequencies of H2, N2,
H2O, and CO2 molecules computed by solving the Liouville
equation and applying the frozen-phonon (FPH) approach.
We found again that the differences are small for H2, N2, and
CO2 (below 1 cm−1), albeit slightly larger for H2O. The largest
difference is found in the case of H2O (15.29 cm−1), and this is
most likely due to the numerical inaccuracy of the FPH
approach.

Table 1. List of Theoretical Approximations Used in This
Paper to Compute the Fan−Migdal Self-Energy, Where We
Specify Whether the On-The-Mass-Shell (OMS) and the
Adiabatic Approximation are Adopted (√) or Not Adopted
(×)

Level of Theory OMS Adiabatic Equation

(A-)AHCa √ √ 32
NA-AHC √ × 33
A-FF × √ 31
NA-FF × × 28

aIn the main text, we use AHC and A-AHC interchangeably.

Table 2. Comparison of Selected Phonon Frequencies
[cm−1] in Diamond, Silicon, and Silicon Carbide Computed
in a Primitive Cell With the PBE0 Functional by Solving the
Liouville’s Equation or by Using the FPH Approach

Solid Liouville FPH Absolute Difference

Diamond 2136.21 2131.48 4.73
Silicon 737.47 737.28 0.19
silicon carbide 612.77 612.70 0.07

Table 3. Comparison of the Vibrational Modes [cm−1] of
Selected Molecules Obtained With the PBE0 Functional
and Computed by Solving the Liouville’s Equation or by
Using the FPH Approacha

Molecule Symmetry Liouville FPH Absolute Difference

H2 a1 4421.62 4421.48 0.14
N2 a1 2480.36 2480.36 0.00
H2O a1 1652.79 1658.76 5.97
H2O b2 3921.28 3936.57 15.29
H2O a1 4033.68 4048.58 11.90
CO2 e1u 698.15 698.12 0.03
CO2 a1g 1375.10 1375.18 0.08
CO2 a1u 2419.08 2419.23 0.15

aThe symmetry of the mode is given in the second column.
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To verify our calculations of electron−phonon interactions,
we carried out a detailed study of the renormalization of the
HOMO−LUMO gaps (Eg) of the CO2, Si2H6, HCN, HF, and
N2 molecules, with the results for CO2 being summarized in
Table 4 and the rest in Table 5.

Table 4 summarizes the renormalizations to the Eg of the
CO2 molecule obtained within the A-AHC formalism and
using DFPT, FPH, and PIMD12 at the LDA,64 PBE,65 PBE0,61

and B3LYP66−68 levels of theory, respectively. With the LDA
and PBE/GGA functionals, the solution of the Liouville
equation yields the same results as the method proposed in refs
10 and 11, as expected. When solving the Liouville equation
with the DFPT method, the RIA is adopted; however, the
latter approximation is not used in the FPH approach, leading
to a slight difference between the FPH and Liouville results. In
addition, we carried out calculations with the hybrid
functionals, PBE0 and B3LYP, and compared our results
with those of the FPH and PIMD approaches.12 The PIMD
approach circumvents the RIA and also includes ionic
anharmonic effects. Since the RIA is adopted and anharmo-
nicity is not included in the Liouville approach, differences on
the order of ∼30 meV, relative to PIMD, are considered as
acceptable. We note that the computed renormalizations of the

gap of CO2 reported in the literature,69 −680.7 and −716.2
meV with LDA64 and PBE + TS70 functionals, respectively, are
significantly different from those obtained here. We also note
that ref 69 reports the result at the B3LYP level of theory, −
4091.6 meV, which is one order of magnitude larger than the
corresponding LDA and PBE + TS results, hence calling into
question the numerical accuracy of the data. Such significant
differences between our and the results of ref 69 probably
stems from the different choices of basis functions, localized
basis functions in ref 69 and plane waves in this work.
In addition to CO2, we also computed the energy gap

renormalizations of Si2H6, HCN, HF, and N2 molecules with
the B3LYP functional; these are shown in Table 5. For Si2H6
and HCN, the results computed with Liouville’s equation and
the FPH approach agree well, with small differences of 22 and
5 meV, respectively. The renormalization of HF is about −20
meV with both the Liouville and FPH approaches, consistent
with the result −29.9 meV reported in the literature. The
Liouville and FPH methods both predict the renormalization
of N2 to be close to zero, in agreement with ref 69.
In summary, we have verified our implementation of phonon

and electron−phonon interaction by comparing results
computed with Liouville’s equation and those obtained with
DFPT, FPH, and PIMD methods. At the LDA/PBE level of
theories, we obtain exactly the same results as with DFPT, as
expected; at the hybrid functional level of theory, the results
obtained with Liouville’s equation are comparable with those
of the FPH and PIMD methods, with reasonable differences
compatible with the different approximations employed in the
three different approaches.

4. ELECTRON−PHONON RENORMALIZATION OF
ENERGY GAPS IN SMALL MOLECULES

Having verified our implementation, we carried out a study of
the renormalization of the HOMO−LUMO gap of molecules
in the G2/97 test set71 with LDA, PBE, PBE0, and B3LYP
functionals, 50 Ry plane wave energy cutoff, and SG1562

ONCV63 pseudopotentials. The results are summarized in
Tables 6 and 7 and are illustrated in Figure 1.
Table 6 summarizes the renormalizations computed with the

A-AHC formalism. For most of the molecules, using hybrid
functionals does not significantly change the gap renormaliza-
tion relative to LDA or PBE results. For example, the energy
gap renormalizations of the H2 molecule computed with LDA,
PBE, PBE0, and B3LYP functionals are 58, 61, 63, and 63
meV, respectively. However, hybrid functionals do reduce the
magnitude of gap renormalization in several systems, and CO2
and CH3Cl are representative examples. In CO2, the
renormalization is reduced from the −415 meV (PBE) to
−137 meV (PBE0) level of theory; in CH3Cl, it is reduced
from −149 meV (PBE) to −59 meV (PBE0).
We report in Table 7 our results within the non-adiabatic

AHC (NA-AHC) framework. The removal of the adiabatic
approximation significantly influences the computed magni-
tude of the gap renormalization in most of the molecules, with
some exceptions, for example, CO2. For example, the H2 gap
renormalization computed using PBE0 varies from 63 meV
(AHC) to −377 meV (NA-AHC). The most significant
differences are found for the F2 and H2O2 molecules, where the
gap renormalizations computed at the PBE0 level of theory are
25 and −72 meV, respectively, within the AHC approach and
−2914 and −891 meV, when using the non-adiabatic AHC
method.

Table 4. Electron−Phonon Renormalization Energies
[meV] of HOMO and LUMO Energy Levels and the
HOMO−LUMO Gap in the CO2 Molecule, Computed by
Solving Liouville’s Equation, Using DFPT, the FPH
Approach, and the PIMD Methoda

Method Functional
HOMO
Renorm.

LUMO
Renorm.

Gap
Renorm.

Liouville LDA 64 −453 −517
DFPT LDA 64 −453 −517
Liouville PBE 65 −350 −415
DFPT PBE 65 −350 −415
FPH PBE 53 −325 −378
Liouville PBE0 68 −69 −137
FPH PBE0 55 −77 −132
PIMD PBE0 59 −103 −162
Liouville B3LYP 67 −107 −174
FPH B3LYP 54 −89 −143
PIMD B3LYP 58 −112 −170

Reference 69 LDA −680.7
PBE + TS −716.2
B3LYP −4091.6

aWe compare results obtained with different functionals, LDA, PBE,
PBE0, and the B3LYP functionals, and include results obtained in ref
69.

Table 5. Electron−Phonon Renormalization Energies
[meV] of the Energy Gap in Si2H6, HCN, HF, and N2
Molecules Computed by Solving Liouville’s Equation and
Using the Frozon Phonon (FPH) Approach at the B3LYP
Level of Theory

Molecule Liouville FPH Ref 69

Si2H6 −117 −139 −1872.3
HCN −19 −14 −171.4
HF −18 −25 −29.9
N2 8 −6 8.7
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We emphasize that neither the AHC nor the non-adiabatic
AHC formalism correctly describes the self-energies in the full
energy range, and thus, we suggest that the frequency-
dependent self-energies should always be computed.

5. ELECTRON−PHONON RENORMALIZATION OF THE
ENERGY GAP OF DIAMOND

We computed the electron−phonon renormalization of the
energy gap in diamond within the AHC formalism and by
computing the NA-FF self-energies self-consistently (see Table
1 and eq 30). The calculations for diamond were carried out in
a 3 × 3 × 3 supercell with 60 Ry plane wave energy cutoff and
SG1562 ONCV63 pseudopotentials.
In Figure 2, we present the temperature-dependent indirect

gap renormalization computed with the PBE, PBE0, and
dielectric-dependent hybrid (DDH) functionals,72,73 where the
fraction of exact exchange (0.18) in DDH is chosen to be the
inverse of the dielectric constant of diamond (5.61).72 Within
the same level of approximation, for example, the AHC
formalism (circles in the plot), the PBE, PBE0, and DDH

results are almost the same for temperatures lower than 400 K,
but their difference increases at higher temperatures. With the
same functional, for example, the PBE0 functional (orange
lines in the plot), the results obtained with the fully frequency-
dependent non-adiabatic self-energies are lower than those
obtained with the AHC formalism. In general, the use of the
hybrid functional does not significantly modify the trend of the
ZPRs computed at the PBE level, as a function of temperature.
In Figure 2, we also report the renormalization of the

indirect gap of diamond obtained with the FPH approach and
the PBE0 functional. The results obtained with the FPH
(purple line) approach and the Liouville equation (orange lines
in the plot) are essentially the same below 300 K, but they
differ as T is increased. The difference between the AHC/NA-
FF and FPH approaches is always smaller than 10 meV at all
temperatures, and it is reasonable considering that the FPH
approach does not adopt the RIA, which is instead used within
the AHC and NA-FF approaches.
A comparison of the computed and measured renormalized

energy gap of diamond is given in Figure 3 and Table 8.

Table 6. HOMO−LUMO Energy Gaps of Small Molecules and Their Zero-Point Renormalization Energy (ZPR) Computed
Within the Adiabatic AHC (A-AHC) approximationa

LDA PBE PBE0 B3LYP

Molecule Gap ZPR Ref 69 Gap ZPR Gap ZPR Gap ZPR Ref 69

H2 9.998 0.058 −0.0021 10.164 0.061 11.890 0.063 11.648 0.063 0.0036
0.0579b

LiF 5.108 0.006 0.0331 4.723 0.006 7.014 0.007 6.601 0.007 0.0040
0.0796b

N2 8.221 0.013 0.0118 8.319 0.013 11.707 0.007 11.179 0.008 0.0087
0.0130b

CO 6.956 0.005 0.0065 7.074 0.004 10.055 −0.003 9.575 −0.002 0.0024
0.0055b

ClF 3.194 0.004 0.0041 3.167 0.005 6.250 −0.002 5.629 −0.001 0.0025
CS 3.954 −0.004 −0.0042 4.042 −0.004 6.562 −0.006 6.199 −0.006 −0.0058
HF 8.681 −0.032 −0.0397 8.598 −0.030 11.302 −0.011 10.809 −0.018 −0.0299
NaCl 3.524 0.002 0.0001 3.225 0.002 5.069 0.002 4.577 0.002 0.0004
SiO 4.524 0.001 −0.0019 4.549 0.001 6.764 −0.002 6.368 −0.002 −0.0032
Cl2 2.899 0.006 0.0063 2.894 0.006 5.503 0.002 4.887 0.003 0.0060
F2 3.495 0.030 0.0369 3.370 0.029 7.840 0.025 6.917 0.025 0.0329
Li2 1.532 0.001 0.0006 1.524 0.001 2.582 0.001 2.343 0.001 0.0007
LiH 2.985 0.002 −0.0066 2.873 0.003 4.424 0.001 4.117 0.002 −0.0061
Na2 1.564 0.001 0.0002 1.521 0.001 2.495 0.000 2.264 0.001 0.0000
P2 3.649 0.005 0.0021 3.644 0.005 5.537 0.005 5.107 0.005 0.0037
CO2 8.075 −0.517 −0.6807 8.033 −0.415 10.159 −0.137 9.708 −0.174 −4.0916
HCN 7.878 −0.185 −0.1412 7.930 −0.190 10.186 −0.020 9.806 −0.019 −0.1714
H2O 6.272 −0.042 −0.0806 6.208 −0.036 8.511 −0.013 8.084 −0.020 −0.0524
SH2 5.212 −0.189 −0.0360 5.238 −0.160 6.942 −0.042 6.593 −0.059 −0.2117
SO2 3.457 −0.019 −0.0178 3.414 −0.021 6.087 −0.016 5.596 −0.018 −0.0186
H2CO 3.470 −0.091 −0.0876 3.589 −0.092 6.451 −0.114 5.993 −0.111 −0.1005
H2O2 5.028 −0.093 −0.1290 4.887 −0.071 7.780 −0.072 7.505 −0.110 −0.2254
NH3 5.395 −0.053 −0.0611 5.304 −0.048 7.205 −0.035 6.825 −0.038 −0.0333
PH3 5.999 −0.146 −0.0592 5.946 −0.110 7.388 −0.039 7.056 −0.047 −0.2017
C2H2 6.703 −0.179 −0.1901 6.712 −0.029 8.181 −0.016 7.835 −0.014 −0.2327
CH3Cl 6.232 −0.158 −0.1441 6.210 −0.149 8.042 −0.059 7.691 −0.068 −0.1141
CH4 8.799 −0.084 −0.1147 8.820 −0.081 10.647 −0.091 10.320 −0.090 −0.0947
SiH4 7.727 −0.141 −0.6149 7.772 −0.115 9.440 −0.083 9.187 −0.086 −0.2027
N2H4 4.892 −0.386 −0.1169 4.866 −0.383 6.736 −0.375 6.426 −0.359 −0.0793
C2H4 5.654 −0.129 −0.1358 5.673 −0.123 7.592 −0.059 7.224 −0.053 −0.1194
Si2H6 6.364 −0.305 −0.5880 6.386 −0.238 7.874 −0.117 7.609 −0.117 −1.8723

aAll gaps and ZPRs are in eV. We compare results obtained with different energy functionals (LDA, PBE, PBE0, and B3LYP) and we also report
ZPRs from ref 69 and, in few cases, ref 60. bReference 60.
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Table 7. HOMO−LUMO Gaps of Small Molecules and Their ZPR Computed Within the Non-Adiabatic AHC (NA-AHC)
Approximationa

LDA PBE PBE0 B3LYP

Molecule Gap ZPR Gap ZPR Gap ZPR Gap ZPR

H2 9.998 −0.260 10.164 −0.263 11.890 −0.377 11.648 −0.366
LiF 5.108 −0.123 4.723 −0.122 7.014 −0.134 6.601 −0.134
N2 8.221 −0.418 8.319 −0.432 11.707 −0.418 11.179 −0.428
CO 6.956 −0.361 7.074 −0.373 10.055 −0.338 9.575 −0.346
ClF 3.194 −0.959 3.167 −0.985 6.250 −1.011 5.629 −1.000
CS 3.954 −0.151 4.042 −0.156 6.562 −0.155 6.199 −0.154
HF 8.681 −0.225 8.598 −0.194 11.302 −0.083 10.809 −0.111
NaCl 3.524 −0.021 3.225 −0.022 5.069 −0.022 4.577 −0.022
SiO 4.524 −0.052 4.549 −0.054 6.764 −0.056 6.368 −0.055
Cl2 2.899 −0.557 2.894 −0.560 5.503 −0.622 4.887 −0.589
F2 3.495 −2.405 3.370 −2.317 7.840 −2.914 6.917 −2.600
HCl 6.768 −0.501 6.784 −0.440 8.858 −0.128 8.417 −0.195
Li2 1.532 −0.007 1.524 −0.008 2.582 −0.010 2.343 −0.010
LiH 2.985 −0.049 2.873 −0.045 4.424 −0.055 4.117 −0.058
Na2 1.564 −0.002 1.521 −0.002 2.495 −0.002 2.264 −0.002
P2 3.649 −0.077 3.644 −0.079 5.537 −0.100 5.107 −0.096
CO2 8.075 −0.495 8.033 −0.398 10.159 −0.136 9.708 −0.174
HCN 7.878 −0.543 7.930 −0.541 10.186 −0.147 9.806 −0.138
H2O 6.272 −0.114 6.208 −0.095 8.511 −0.050 8.084 −0.061
SH2 5.212 −0.203 5.238 −0.166 6.942 −0.050 6.593 −0.069
SO2 3.457 −0.231 3.414 −0.234 6.087 −0.281 5.596 −0.274
H2CO 3.470 −0.364 3.589 −0.376 6.451 −0.386 5.993 −0.382
H2O2 5.028 −2.549 4.887 −2.582 7.780 −0.891 7.505 −0.799
NH3 5.395 −0.590 5.304 −0.566 7.205 −0.578 6.825 −0.562
PH3 5.999 −0.516 5.946 −0.493 7.388 −0.453 7.056 −0.450
C2H2 6.703 −0.420 6.712 −0.074 8.181 −0.080 7.835 −0.073
CH3Cl 6.232 −0.351 6.210 −0.307 8.042 −0.112 7.691 −0.116
CH4 8.799 −1.950 8.820 −1.961 10.647 −2.245 10.320 −2.210
SiH4 7.727 −0.931 7.772 −0.916 9.440 −1.019 9.187 −1.007
N2H4 4.892 −1.082 4.866 −1.038 6.736 −1.129 6.426 −1.050
C2H4 5.654 −0.408 5.673 −0.411 7.592 −0.184 7.224 −0.173
Si2H6 6.364 −0.607 6.386 −0.551 7.874 −0.506 7.609 −0.507

aAll gaps and ZPRs are in eV. We compare results obtained with different energy functionals (LDA, PBE, PBE0, and B3LYP).

Figure 1. Computed ZPRs of the HOMO−LUMO gaps of small molecules using the AHC (upper panel) and NA-AHC (lower panel)
approximations (see Table 1 for the definition of the approximations). We used different functionals specified in the inset.
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Although the PBE0 and DDH hybrid functionals yield a similar
trend as PBE for the electron−phonon renormalization as a
function of temperature, the renormalized gap is noticeably
improved compared to that of experiments when using hybrid

functionals. The indirect energy gap of diamond computed
with PBE, PBE0, and DDH without electron−phonon
renormalization is 4.144, 6.189, and 5.597 eV, respectively,
and the experimental indirect gap measured at approximately

Figure 2. Electron−phonon renormalization energy of the indirect band gap of diamond computed by solving the Liouville equation and with
different approximations to the self-energy, as defined in Table 1. The results obtained with the FPH approach and the PBE0 functional are also
reported for comparison. The renormalization energy at zero temperature has been shifted to zero.

Figure 3. Electron−phonon renormalized indirect energy gap in diamond computed with the PBE and PBE0 functionals compared to experimental
measurements.74 We show calculations performed with different approximations, as defined in Table 1.

Table 8. Temperature-dependent ZPR and Renormalized Indirect Energy Gap (Gap + ZPR) Computed With the PBE, PBE0,
and DDH Functionals, Using Different Levels of Approximations, as Defined in Table 1a

Temperature [K]

Functional Method 0 100 200 300 400 500 600

ZPR PBE AHC −0.281 −0.281 −0.282 −0.284 −0.291 −0.303 −0.320
NA-FF −0.438 −0.438 −0.438 −0.441 −0.448 −0.463 −0.483

PBE0 AHC −0.290 −0.290 −0.290 −0.291 −0.297 −0.308 −0.323
NA-FF −0.454 −0.454 −0.454 −0.456 −0.463 −0.476 −0.495

DDH AHC −0.289 −0.289 −0.289 −0.291 −0.297 −0.308 −0.324
NA-FF −0.450 −0.450 −0.450 −0.451 −0.458 −0.472 −0.492

Gap + ZPR PBE AHC 3.862 3.862 3.862 3.860 3.853 3.840 3.824
NA-FF 3.705 3.705 3.705 3.703 3.695 3.681 3.661

PBE0 AHC 5.899 5.899 5.899 5.898 5.892 5.881 5.866
NA-FF 5.735 5.735 5.735 5.733 5.726 5.713 5.694

DDH AHC 5.308 5.308 5.308 5.306 5.300 5.289 5.274
NA-FF 5.148 5.148 5.148 5.146 5.139 5.125 5.106

aThe energy gaps computed at the PBE, PBE0, and DDH level of theory, without electron−phonon interaction, are 4.144, 6.189, and 5.597 eV,
respectively. All energies are reported in eV.
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100 K is 5.45 eV.74 By including electron−phonon
renormalization, we can see that the results computed at the
PBE0 level of theory agree relatively well with the experimental
measurements (see Figure 3 and Table 8). The renormalized
indirect gap computed with the PBE0 functional at 100 K is
5.899 eV when the AHC formalism is used, and it is 5.735 eV
when the NA-FF self-energies are used. The renormalized
indirect gaps computed with the DDH functional at 100 K are
5.308 (AHC) and 5.148 eV (NA-FF). As expected, the DDH
results are closer to experimental measurements compared
with those of the PBE0 functional since the fraction of exact
exchange is chosen according to the system-specific dielectric
constant. Overall, we find that computing electron−phonon
interactions at the hybrid level of theory is a promising
protocol to obtain quantitative results, comparable to those of
experiments. We note that ref 19 reported −262 and −278
meV for the indirect gap renormalization of diamond obtained
with the PBE functional, a 3 × 3 × 3 supercell, and the
projector augmented-wave (PAW) method,75 using one-shot76

and standard20,77 Monte-Carlo (MC) approaches, respectively.
These results are in good agreement with our result of −281

meV obtained with the AHC method at 0 K. Reference 19 also
reported −320 and −315 meV with a 5 × 5 × 5 supercell,
using one-shot and standard MC approaches, respectively,
indicating that the full converged result is about 10% larger in
absolute value relative to what obtained with a 3 × 3 × 3
supercell.

6. APPLICATION TO SPIN DEFECTS IN DIAMOND
Spin defects have been extensively studied due to their
potential applications in quantum technologies.78−81 To
accurately predict the electronic structures of spin defects,
we computed their electronic properties using electron−
phonon renormalizations, and we considered a single-boron
defect and the NV− center shown in Figure 4. The calculations
were carried out in a 2 × 2 × 2 cubic cell with a 60 Ry plane
wave energy cutoff and SG1562 ONCV63 pseudopotentials (63
atoms for the NV− center and 64 atoms for the single-boron
defect).
In Tables 9 and 10, we report the electronic energy levels

and ZPR for both defects obtained with the PBE, PBE0, and
DDH functionals. We found that electron−phonon inter-

Figure 4. (a) Localized occupied state introduced by the nitrogen vacancy defect and (b) delocalized unoccupied state introduced by the single-
boron vacancy defect. The wavefunctions are computed with the DDH functional. (c,d)Level ordering within the energy gap of diamond.

Table 9. Computed Energy Levels (eV) and Their ZPRs (eV) in the NV− Centera

PBE PBE0 DDH

Level ZPR Level ZPR Level ZPR

LUMO 1.359 −0.035 3.593 −0.033 2.948 −0.033
HOMO 0.000 0.001 0.000 0.012 0.000 0.009
HOMO − 1 −0.411 0.012 −0.059 0.004 −0.189 0.008
HOMO − 2 −0.924 0.038 −0.942 0.057 −0.952 0.052

aEnergy levels are referred to the HOMO energy level, and the labels of energy levels are given in Figure 4c.

Table 10. Computed Energy Levels (eV) and Their ZPRs (eV) in the Boron Defecta

PBE PBE0 DDH

Level ZPR Level ZPR Level ZPR

LUMO + 2 4.061 −0.359 6.109 −0.367 5.517 −0.365
LUMO + 1 4.041 −0.361 6.090 −0.368 5.498 −0.367
LUMO 0.137 0.126 1.389 0.285 1.027 0.241
HOMO 0.000 0.111 0.000 0.126 0.000 0.121
HOMO − 1 −0.278 0.087 −0.319 0.054 −0.308 0.062
HOMO − 2 −0.287 0.089 −0.327 0.104 −0.316 0.100

aEnergy levels are referred to the HOMO energy level, and the labels of energy levels are given in Figure 4d.
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actions weakly affect the energy levels of the NV− center,
which exhibit localized wavefunctions; they are instead more
significant for the single-Boron defect with delocalized
wavefunctions. In the NV− center, the ZPR of the LUMO
computed with the PBE functional is only −35 meV and that
of the HOMO is negligible. In addition, the hybrid functionals
PBE0 and DDH yield results similar to PBE results. For the
boron defect, with the PBE (DDH) functional, the ZPRs of
HOMO and LUMO are 111 meV (121) and 126 meV (241),
respectively.

7. CONCLUSIONS
In this paper, we computed phonon frequencies and electron−
phonon interaction at the level of hybrid DFT by using DMPT
and by solving the Liouville equation. Using this approach, we
obtained phonon frequencies and energy gap renormalizations
for molecules and solids by evaluating the non-adiabatic full
frequency-dependent electron−phonon self-energies, thus
circumventing the static and adiabatic approximations adopted
in the AHC formalism, at no extra computational cost. We
investigated the electronic properties of small molecules using
LDA, PBE, B3LYP, and PBE0 functionals. We also carried out
calculations of the electronic structure of diamond with the
PBE, PBE0, and DDH functionals and found that the hybrid
functionals PBE0/DDH noticeably improve the renormalized
energy gap compared to experimental measurements. In
addition, we studied the electron−phonon renormalizations
of defects in diamond, and we concluded that electron−
phonon effects are essential to fully understand the electronic
structures of defects, especially those with relatively delocalized
states. We note that the use of hybrid functionals affects both
the perturbing potentials and wavefunctions entering the
definition of the electron−phonon coupling matrices. In
general, we expect the wavefunctions computed with hybrid
functionals to be of better quality compared to those obtained
with LDA/GGA. The perturbing potentials computed with
hybrid functionals are non-local compared to the ones
obtained with LDA/GGA. Thus, we expect both differences
in wavefunctions and potentials, relative to LDA/GGA, to
impact calculations with hybrid functionals.
In conclusion, computing electron−phonon interactions at

the hybrid functional level of theory is a promising protocol to
accurately describe the electronic structure of molecules and
solids, and DMPT is a general technique that allows one to do
so in an efficient and accurate manner by evaluating non
adiabatic and full frequency-dependent electron−phonon self-
energies.
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