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A novel electrochemical sensor based on conducting polymer and multi-walled carbon
nanotubes was reported for the detection of nitrite ions (NO2

−). The hybrid material poly
1,8-Diaminonaphthalene (poly 1,8-DAN)/functionalized multi-walled carbon nanotubes
(f-MWCNT) was prepared by using a simple electrochemical approach which is based
on the deposition of functionalized multi-walled carbon nanotubes (f-MWCNT) on the
surface of the electrode followed by the electropolymerization of 1,8-DAN using cyclic
voltammetry. The morphology and the electro-catalytic properties of the obtained
electrodes were investigated with Fourier Transform Infrared Spectroscopy (FTIR),
Transmission Electron Microscopy (TEM), Cyclic Voltammetry (CV), and
Electrochemical Impedance Spectroscopy (EIS) showing an improvement of the
electronic transfer due to the synergic effect between the proprieties of poly 1,8-DAN
and f-MWCNT. Under the optimum experimental conditions, the poly 1,8-DAN/f-MWCNT/
CPE exhibited excellent electro-catalytic activity towards nitrite detection. The nitrite
anodic peak potential decreased by 210mV compared to the bare carbon paste
electrode. The calibration plot of nitrite detection was linear in the range of
concentration from 300 to 6500 nM with a low detection limit of 75 nM.

Keywords: nitrite detection, conducting polymer, 1,8-Diaminonaphthalene, electrochemical sensor, multi-walled
carbon nanotubes

INTRODUCTION

Nitrite ions; one of the inorganic forms of natural nitrogen; take part of the cycle in which nitrogen takes
different forms following several processes such as fixation, assimilation, nitrification, and denitrification
(Zhu et al., 2015). It is important to highlight that the industrialization, overpopulation, and the progress
of the agri-food sector have led to the accumulation of nitrite in our environment in a very significant
way (Berardo et al., 2016). Indeed, it is generated during the decomposition of fertilizers and human
waste leading to the contamination of the soil and the groundwater. Nitrite is also used as food
preservatives and food coloring under the form of sodium nitrite noted (E250) and constitutes a real
threat to the human health. In fact, it has been reported that an excess of this element in the body leads to
the conversion of the hemoglobin tomethemoglobin, which reduce the amount of oxygen distributed by
the blood to the tissues called hypoxia (Katabami et al., 2016). Nitrite ions can also react with amines to
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formN-nitroamines causing serious health problems such as gastric
cancer (Song et al., 2015; Zhang et al., 2019), thyroid cancer
(Aschebrook-Kilfoy et al., 2013), and non-Hodgkin’s lymphoma
(Yu et al., 2020). Moreover, research studies have confirmed a
possible relationship between nitrite consumption and neurological
damages (Ribeiro et al., 2017). Therefore, there is an urgent need to
monitor the presence of nitrite in water and food. For this purpose,
the World Health Organization (WHO) has determined a
maximum admissible concentration in drinking water of 3 mg/L
equivalent to 65.217 µM (Ren et al., 2018). Numerousmethods have
been developed to detect and quantify nitrite (Wang et al., 2017),
such as spectrofluorimetry (Zhan et al., 2019), spectrophotometry
(Lo et al., 2017), chemiluminescence (Han and Chen, 2019),
chromatography (Lin et al., 2019), capillary electrophoresis
(Kalaycıoğlu and Erim, 2016), and electrochemistry (Zhao et al.,
2017). The electrochemical techniques possess several advantages
such as low cost, rapid response and high sensitivity (Bansod et al.,
2017; Oularbi et al., 2019). The electro-oxidation of nitrite leads to
the formation of nitrate, unlike its electro-reduction, which can
produce several products, and it is limited by the interference of
dioxygen (O2) and nitrate reduction (NO3

−) (Kesavan et al., 2018).
However, the oxidation of nitrite still faces many challenges to
overcome, such as the oxidation overpotential, and the slow kinetic
of the electronic transfer (Mao et al., 2018). To address this issues,
electrochemical sensors and biosensors seem to be a very good
alternative. It is, in fact, absolutely necessary to modify the
conventional electrodes such as carbon paste (Bijad et al., 2017),
screen-printed electrodes (Jaiswal et al., 2017), and glassy carbon
electrodes with a suitable agent (Muthumariappan et al., 2017;
Velmurugan et al., 2020; Karimi-Maleh et al., 2021).
Electrochemical Multi-walled carbon nanotubes (MWCNT),
largely used to modify the surface of electrodes for many
applications (Mani et al., 2017; Beitollahi et al., 2018; Roy et al.,
2018; Rui et al., 2020; Shaikshavali et al., 2020; Baghayeri et al.,
2021a); are considered as an ideal choice thanks to their interesting
properties. Moreover, they can be combined with metallic
nanoparticles, metal organic framework or conducting polymers
in order to enhance the sensitivity towards nitrite determination in
different matrices (Thirumalraj et al., 2016; Wan et al., 2017; Yu
et al., 2019; Baghayeri et al., 2020a; Salagare et al., 2020). Conducting
polymers (CPs) constitute a new class of emerging materials and
have shown considerable potential for several applications (Gracia
andMecerreyes, 2013; Elbasri and Rhazi, 2015; Salih et al., 2017b; El
Rhazi et al., 2018; Salih et al., 2018; Chemchoub et al., 2019;
Chemchoub et al., 2020; El Attar et al., 2020; Vagin et al., 2021).
They have also shown excellent electrocatalytic activity towards
nitrite detection. Recently, several hybrid materials based on CPs
have been developed for nitrite sensing (Salhi et al., 2021).
Rajalakshmi and John (2015), developed a composite based on
5-amino-1,3,4-thiadiazole-2-thiol and MWCNT for nitrite
detection and obtained a very low detection limit of about
0.2 nM. A novel electrochemical approach was also reported in
the literature which consists on the combination of poly (3,4-
ethylenedioxythiophene) with gold nanoparticles leading to a
very good activity toward nitrite oxidation with high stability
and selectivity (Lin et al., 2016). Moreover, Shi et al., co-
deposited palladium nanoparticles and poly (1.5-

Diaminonaphthalene) on MWCNT. The prepared hybrid
showed a good electrocatalytic activity towards nitrite oxidation
due to its high active surface area and the synergistic effect of Pd
nanoparticles, poly 1.5-DAN and MWCNT (Shi et al., 2019).
Nevertheless, the main disadvantage of the sensors based on
gold and palladium nanoparticles lies in the fact that they are
quite expensive.

In this context, we propose a very simple approach which
consists on the combination of the two materials (CP and
MWCNT) in order to develop an electrochemical sensor;
efficient and less expensive; for nitrite determination in water
samples. The electropolymerization of 1,8-DAN on carbon
nanotubes was carried out using cyclic voltammetry in acidic

FIGURE 1 | CV of (A) CPE and (B) f-MWCNT/CPE in 0.1 M HCl
containing 5 mM 1,8-DAN for 15 cycles at a scan rate of 50 mV/s.

Frontiers in Chemistry | www.frontiersin.org March 2022 | Volume 10 | Article 8703932

Salhi et al. Poly 1,8-DAN/MWCNT for Nitrite Detection

https://www.frontiersin.org/journals/chemistry
www.frontiersin.org
https://www.frontiersin.org/journals/chemistry#articles


medium, which allowed us to prepare our working electrodes in
less than 1 hour. The morphology and the electrochemical
behavior of the modified electrodes were investigated using
various techniques such as Fourier transform infrared
spectroscopy (FTIR), transmission electron microscopy (TEM),
cyclic voltammetry (CV), and electrochemical impedance
spectroscopy (EIS). The electrocatalytic activity of poly 1,8-
DAN/f-MWCNT/CPE towards nitrite oxidation was examined
using both cyclic voltammetry and amperometry.

EXPERIMENTAL

Chemical and Reagents
Graphite powder, paraffin oil, 1,8-Diaminonaphthalene (1,8-
DAN), potassium Ferri/Ferrocyanide (K3Fe(CN)6/
K4Fe(CN)6.3H2O; ACS reagent >99%), disodium hydrogen
phosphate heptahydrate (Na2HPO4.7H2O) and sodium
dihydrogen phosphate dihydrate (NaH2PO4.2H2O) were
obtained from Sigma Aldrich. Potassium chloride (KCl),
hydrochloric acid (HCl, 37%), nitric acid (HNO3, 69%), and
sulfuric acid (H2SO4, 98%) were procured from Labo Chimie.
Sodium nitrite (NaNO2, ACS reagent >98%) was acquired from
Panreac Quimica. Bi-distillated water was used to prepare all the
solutions including 0.1 M of phosphate buffer solution (PBS, pH
7.2), which was used as the electrolyte.

Functionalization of Multi Walled Carbon
Nanotubes
In order to functionalize multi-walled carbon nanotubes, an
appropriate amount of MWCNT was dispersed in a solution of
concentred H2SO4 and HNO3, with a volume ratio of 1:3. The

suspension was ultrasonicated for a few minutes, then left under
magnetic stirring over-night. Afterwards, the functionalized multi
walled carbon nanotubes (f-MWCNT) were filtered using aMillipore
polycarbonate membrane with a diameter of 0.22 µm, and washed
with bi-distillated water until a neutral pH of the filtrate was obtained.
Eventually, the f-MWCNT were dried at the oven at 50°C for 5 h.

Preparation of the Modified Electrodes
Firstly, the carbon paste electrode (CPE) was prepared by mixing
1 g of graphite powder with 30% paraffin oil w/w in a mortar until
the formation of a homogeneous paste (Salih et al., 2017a; Oularbi
et al., 2020; El Attar et al., 2021). Subsequently, the paste was
placed in a 3 mm diameter Teflon tube. Then, it was polished
until the obtention of a smooth surface. The aqueous suspension
of f-MWCNT was prepared by dispersing 1 mg of f-MWCNT in
1 ml of distillated water. Afterward, 20 µL of the suspension was
dropped onto the surface of CPE, then dried at the oven at 50°C.

The electrochemical deposition of poly (1,8-DAN) was carried
out in a 0.1 M HCl solution containing 5 mM of the monomer
(1,8-DAN) using cyclic voltammetry (CV) by sweeping the
potential from −0.5 to 1 V vs. Ag/AgCl for 15 cycles at a scan
rate of 50 mV/s.

Electrochemical Measurements and
Physicochemical Characterization
All the electrochemical measurements including cyclic
voltammetry (CV), electrochemical impedance spectroscopy
(EIS), and amperometry were performed using a PalmSens4
connected to a PSTrace 5.3 software. A traditional three
electrodes system was used, which consists of a modified
carbon paste electrode (CPE) as the working electrode, a
platinum disk as the counter electrode, and a silver/silver
chloride (Ag/AgCl) as the reference electrode.

The CV measurements were carried out in a 0.5 M KCl
solution containing 10 mM [Fe(CN)6]

3−/4− at an applied
potential ranging from −0.4 to 0.8 V vs. Ag/AgCl, and in
0.1 M phosphate buffer (PBS, pH 7.2) containing 0.1 M KCl
and 1 mM NO2

−, sweeping the potential from −0.2 to 1.1 V
vs. Ag/AgCl at different scan rates. Electrochemical impedance
spectroscopy (EIS) measurements were performed in 0.1 M PBS
(pH 7.2) containing 0.1 M KCl and 1 mM NO2

− at a fixed
potential of 0.85 V vs. Ag/AgCl, a frequency range from
10 mHz to 63 kHz and an amplitude of 10 mV. The
amperometry measurements were conducted in 0.1 M PBS
containing 0.1 M KCl at a fixed potential of 0.9 V vs. Ag/AgCl
under stirring. It should be noted that all the experiments were
performed at room temperature.

Fourier Transform Infrared spectroscopy (FTIR) using an
Affinity-1S SHIMADZU spectrometer equipped with a golden
gate single reflection attenuated total reflectance (ATR) accessory.
FTIR spectra were recorded in the range of 500–4000 cm⁻1 at a
resolution of 16 cm⁻1 and were used to determine the structural
properties of f-MWCNT and poly 1,8-DAN/f-MWCNT. The
morphological properties of the electrocatalysts were
characterized using Transmission Electron Microscopy-EDX
(TALOS F200S).

FIGURE 2 | CV of poly 1,8-DAN/f-MWCNT/CPE in 0.1 M HCl at a scan
rate of 50 mV/s.
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FIGURE 3 | (A) FTIR spectra of f-MWCNT (red line), and poly 1,8-DAN/f-MWCNT (blue line). TEM images of (B) f-MWCNT, and (C) poly 1,8-DAN/f-MWCNT.
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RESULTS AND DISCUSSIONS

Polymerization of 1,8-DAN
In order to polymerize 1,8-Diaminonaphthalene onto the surface of
CPE and f-MWCNT/CPE, cyclic voltammetry technique was
performed in a 0.1M HCl solution containing 5mM of the
monomer (1,8-DAN) by sweeping the potential from −0.5 to 1 V
vs. Ag/AgCl at a scan rate of 50 mV/s for 15 scans. The formation of
a brown film on each electrode was observed indicating the
formation of poly 1,8-DAN (Oyama et al., 1989). The cyclic
voltammograms obtained at CPE and f-MWCNT/CPE were
illustrated in Figure 1. The bare electrode (Figure 1A) shows a
peak current at +0.5 V vs. Ag/AgCl corresponding to the irreversible
electrooxidation of 1,8-DAN which disappears completely after the
sixth scan giving rise to new oxidation-reduction peakswhich appear
at about +0.05 and +0.2 V vs. Ag/AgCl. This is consistent with the
previous results found by Majid et al. (2003). However, at the
f-MWCNT/CPE as it is shown in Figure 1B, during the first
scan, a peak current was observed at + 0.4 V vs. Ag/AgCl which
corresponds to the irreversible oxidation of the monomer. The shift
of about 100mV observed on CPE modified by f-MWCNT can be
attributed to the 3-dimensional network of f-MWCNT which
increases the electrode surface area. It should be noted that a
second peak was observed at 0.7 which may correspond to the
second oxidation of the amine group. These results are in agreement
with the work of Lee et al. (1992), when using platinum electrode for
the polymerization of 1,8-DAN. It is important to highlight that after
the modification of the electrode with f-MWCNT, the current
intensities increased by about 76%. This may be attributed to the
higher and good electrical conductivity of f-MWCNT and/or to the
3-dimensional network and large surface area of the f-MWCNT
(Guo et al., 2020).

In order to check the formation of a stable polymer, the
prepared electrode was then placed in a 0.1 M HCl solution
free monomer and CV was performed under the potential range
of −0.5–1 V at a scan rate of 50 mV/s for 5 cycles. Figure 2 shows
the results obtained on poly 1,8-DAN/f-MWCNT/CPE. It can be
seen that the voltammograms kept the same shape after
consecutive scans revealing the oxidation/reduction peaks of
poly 1,8-DAN in acidic medium, which indicates that a stable
film of poly 1,8-Diaminonapththalene was synthesized on
f-MWCNT/CPE (Salih et al., 2017b).

FTIR and TEM Characterization of Poly
1,8-DAN/f-MWCNT
FTIR spectroscopy was used to confirm the functionalization of
MWCNT with carboxylic groups, and also to confirm the
deposition of poly 1,8-DAN film (Figure 3A). The FTIR of
f-MWCNT (red line) showed two absorption bands at 2334 and
2361 cm−1, which correspond to the hydrogen of the carboxylic
group (-COOH). In addition to this, two other bands were noticed
at 976 and 1741 cm−1, which are attributed respectively to the C=O
and C-O of the -COOH. Another band was observed at 3600 cm−1

indicating the presence of the hydroxylic group -OH of -COOH
(Oularbi et al., 2017; Oularbi, 2018; El Attar et al., 2022). These
results demonstrated that the MWCNT were successively
functionalized. The structural properties of poly 1,8-DAN/
f-MWCNT have also been investigated using FTIR spectroscopy
(blue line). It can be seen that new peaks appeared after the
electrodeposition of the polymer. In fact, the absorption band
located in 3309 cm−1 corresponds to the N-H stretching.
Whereas, the peaks that appeared at 1490 and 1581 cm−1 are
attributed to the C-C of the polymer. Furthermore, the band of
1203 indicates the C-N stretching (Pałys et al., 1997). These results
confirm the formation of poly 1,8-DAN on the surface of
f-MWCNT/CPE. The morphologies of f-MWCNT/CPE and
poly 1,8-DAN/f-MWCNT/CPE were examined using TEM
(Figures 3B,C). The corresponding images (Figure 3B) reveal a
slight increase of the carbon nanotubes diameter after the
electrochemical deposition of poly 1,8-DAN.

The thickness of the polymeric film (d) was also determined
using Eq. 1 described as follow (Halim et al., 2019):

d � (Q × Mw)/(n × F × A × φ) (1)
WhereMw is the molar mass of the monomer (158.2 g/mol), Q is the
electrical charge associated to the polymer formation, n is the number
of the involved electrons (2) (Lee et al., 1992), F is the Faraday
(96485 Q/mol), A is the surface area of theworking electrode, andφ is

FIGURE 4 | CV of CPE (black line), f-MWCNT/CPE (red line), and poly
1,8-DAN/f-MWCNT/CPE (blue line) in 0.5 M of KCl containing 10 mM of
[Fe(CN)6]

3−/4− at a scan rate of 50 mV/s.

TABLE 1 | Comparison between Ipa, Ipc and the peak-to-peak separation (ΔEp) for
CPE, f-MWCNT/CPE and 1,8-DAN/f-MWCNT/CPE.

Electrode Ipa/µA Ipc/µA ΔEp/V

Bare CPE 235 196 0.332
f-MWCNT/CPE 393 387 0.098
Poly 1,8-DAN/f-MWCNT/CPE 40 47 0.091
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the monomer density (1.12 g/cm3). The thickness of poly 1,8-DAN
film deposited on the surface of f-MWCNT/CPE was found to be
22 nm, which indicates the formation of a thin film on the surface.
This thickness is in agreement with the results found using the
transmission electron microscopy.

Electrochemical Characterization of Poly
1,8-DAN/f-MWCNT
Cyclic Voltammetry Characterization in [Fe(CN)6]

3-/4-

The preliminary investigations were aimed towards comparing
the electrochemical responses of ferri-ferrocyanide system on
different electrodes. In this perspective, CV measurements were
performed in 0.5 M KCl containing 10 mM [Fe(CN)6]

3−/4− at
CPE, f-MWCNT/CPE, poly 1,8-DAN/f-MWCNT/CPE in the

potential range from −0.4–0.8 V vs. Ag/AgCl. As can be seen
in Figure 4 and Table 1, the peak-to-peak separation on CPE
(black line) is equal to 223 mV, which indicate a slow electronic
transfer. On the f-MWCNT/CPE, the peak-to-peak separation
was reduced to reach the value of 98 mV (red line) and the current
intensities increased by about 40%. This behavior could be
explained by the large specific surface area and high electrical
conductivity offered by f-MWCNT. The same behavior was
observed by Oularbi et al. (2017), when using Polypyrrole and
Carbon nanofibers. A surprising fact was observed after the
electrodeposition of poly 1,8-DAN on f-MWCNT/CPE (blue
line). A dramatic decrease of the value of ΔEp was found,
around 91 mV, which is about more than 3 times smaller than
the bare CPE. The only possible explanation is that the decrease in
ΔEp is probably due to the improvement of the electronic transfer

FIGURE 5 | CV of (A) CPE, (B) f-MWCNT/CPE, and (C) poly 1,8-DAN/f-MWCNT/CPE in 0.5 M of KCl containing 10 mM of [Fe(CN)6]
3−/4− at different scan rates.
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at the interface electrode-solution due to the presence of a large
amount of amine groups all along the polymer backbone (Wang
et al., 2016). Indeed, It has been proved that an amine-rich surface
enhances the electronic transfer (Li et al., 2017; Ning et al., 2019).
Contrary to what one might expect to find, a low current
compared to CPE and f-MWCNT/CPE was obtained due to

the low conductivity of poly 1,8-DAN at neutral pH (Majid et al.,
2003).

The specific surface area of all the electrodes was calculated
using the Randles and Sevcik Eq. 2 (Analytical Electrochemistry,
Wang, 2006) as shown in Figure 5:

Ip � 2.69 × 105 × n3/2 × A × C × D1/2 × V1/2 (2)
Where, the number of electrons transferred (n) is equal to 1, the
concentration (C) is equal to 10 mM and the diffusion coefficient
(D) is equal to 6.7 10–6 cm2/s (Halim et al., 2019). The specific
surface areas were found to be 0.073, 0.162, and 0.033 cm2,
respectively for CPE, f-MWCNT/CPE, and poly 1,8-DAN/

FIGURE 6 | CV of CPE (balck line), f-MWCNT/CPE (red line), and poly
1,8-DAN/f-MWCNT/CPE in 0.1 M PBS containing 0.1 M KCl (green dots) and
1 mM NO2

− (blue line) at pH 7, 2 and a scanning speed of 50 mV/s.

FIGURE 7 | Nyquist plots of CPE (black line), f-MWCNT/CPE (red line),
and poly 1,8-DAN/f-MWCNT/CPE (blue line) in 0.1 M PBS containing 0.1 M
KCl and 1 mM NO2

− at pH 7.2 and a fixed Potential of 0.85 V vs. Ag/AgCl.

FIGURE 8 | (A) CV of poly 1,8-DAN/f-MWCNT/CPE in 0.1 M PBS
containing 0.1 M KCl and 1 mMNO2

− at pH 7.2 and scanning rates from 25 to
400 mV/s with the plot of nitrite oxidation peak current versus V1/2, (B) the plot
of the peak current versus Log(V).
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f-MWCNT/CPE. Indeed, the specific surface of f-MWCNT/CPE
was about two times higher than the bare CPE. This was due to
the large specific surface of multi-walled carbon nanotubes (Shi
et al., 2019). It is important to mention that the electrode
modified with poly 1,8-DAN and f-MWCNT has the smallest
surface area. This phenomena can be explained by the low
electrical conductivity of polymer, and the lack of active sites
of the poly (1,8-DAN) at neutral pH (Majid et al., 2003).

Electrooxidation Behavior of Nitrite on the
Poly 1,8-DAN/f-MWCNT
After the characterization of our electrodes, the behavior of the
different electrodes in presence of nitrite was investigated using CV
in a pH 7.2, 0.1M phosphate buffer solution containing 0.1M KCl
and 1mM nitrite. Figure 6 presents the corresponding
voltammograms at the bare CPE, f-MWCNT/CPE, and poly 1,8-
DAN/f-MWCNT/CPE. An irreversible peak at 1.04 V vs. Ag/AgCl
(black line) was obtained at bare carbon paste electrode which
corresponds to the irreversible oxidation of nitrite. As expected,
the peak potential was shifted to more negative value (210 mV) after
the modification of CPE with f-MWCNT (red line) with an
important increase in the current intensity. After the
electrodeposition of poly 1,8-DAN on the surface of f-MWCNT/
CPE (blue line). The same results were observed concerning the peak
potential with a further increase of the current intensity, indicating
that nitrite is much easier to oxidase on the hybrid material. Similar
results were obtained by Huang et al., using gold nanoparticles
combined with poly (3-methylthiophene), which was explained by
the synergistic effect of combining both gold nanoparticles and
conducting polymers. It seems that the carbon nanomaterials
combined with conducting polymers enhance the electronic
transfer as observed by many authors (Zheng et al., 2009;
Rajalakshmi and John, 2015, 2; Arulraj et al., 2018). To better
understand this phenomenon, electrochemical impedance
spectroscopy (EIS) was conducted in the same solution at an
applied potential of 0.85 V vs. Ag/AgCl with a small amplitude of
10 mV. Figure 7 presents the correspondingNyquist plots. Indeed, it
can be seen that the charge transfer resistances (Rct) decreased from
3277Ω to 11Ω after the modification of CPE with poly 1,8-DAN/
f-MWCNT, which is 300 times smaller. These results are in good
agreement with the CV measurements and suggests that the
prepared hybrid material promotes the electronic transfer
between the supporting electrolyte and the electrode.

Electrooxidation Mechanism of Nitrite on
the Poly 1,8-DAN/f-MWCNT
In order to establish the reaction mechanism of nitrite oxidation,
cyclic voltammetry experiments were recorded on poly 1,8-DAN/
f-MWCNT/CPE. The corresponding graphs shown in Figure 8A
present the variation of the oxidation current with the square root of
the scan rate.

It can be seen that the nitrite oxidation peak increased
linearly with the square root of the scan rate according to
the equation Ipa = 25.14688 + 268.51707 V1/2 with a
correlation coefficient of 0.98404 which suggests that the

electrochemical reaction is controlled by a diffusion process
(Baghayeri et al., 2020b; Baghayeri et al., 2021b). It should be
noted that a shift in the oxidation peak potential (Epa) to more
positive values with the scan rates confirms the irreversibility of
the nitrite oxidation reaction as mentioned by others authors
(Zhao et al., 2017; Shi et al., 2019). The number of the
transferred electrons can be calculated by plotting the Epa vs.
Log V. Epa varied linearly with the logarithm of the scan rate as
described by the equation Epa = 0.7318 + 0.05582 Log V with a
correlation coefficient of 0.97106 (Figure 8B). The number of
the transferred electrons during the oxidation reaction of nitrite

FIGURE 9 | (A) Amperometry of poly 1,8-DAN/f-MWCNT/CPE in 0.1 M
PBS containing 0.1 M KCl at pH 7.2 with a fixed potential of 0.9 V vs. Ag/AgCl
at consecutive additions of nitrite, insert the calibration plot of the current
versus nitrite concentrations. (B) Effect of some interference
components on nitrite response.
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was then calculated according to Laviron’s Eq. 3 (Analytical
Electrochemistry, Wang, 2006):

Epa� E° + (RT/anF)ln(RTK°/αnF) + 2.3(RT/αnF)log(v) (3)
Where n is the number of the transferred electrons, α is the
electron transfer coefficient which is taken as 0.5 in a totally
irreversible reaction (Shi et al., 2019), v is the scan rate, and E°’ is
the formal potential. Whereas R, T and F have their conventional
meaning. The number of electron n involved in the oxidation
reaction of nitrite was calculated to be about 2 (2.08), which
demonstrates that the electrooxidation of nitrite requires the
transfer of two electrons according to the following reactions
noted (4) and (5). These results are in agreement with the
literature (Arulraj et al., 2018):

2NO−
2 ↔ 2NO2+2e− (4)

2NO2+H2O → NO−
3+NO−

2+2H+ (5)

Calibration Curve and Real Sample Analysis
After the characterization of our sensor, and in order to evaluate the
advantages offered by f-MWCNT and poly 1,8-DAN, amperometry
was chosen as a sensitive technique to detect nitrite in aqueous
solution (Liu et al., 2011; Rajalakshmi and John, 2015; Zhang et al.,
2015; Fan et al., 2017). Indeed, amperometry was performed in 0.1M
PBS pH 7.2 containing 0.1M KCl at a fixed potential of 0.9 V vs. Ag/
AgCl under continuous stirring. The corresponding graph shown in
Figure 9A illustrates the variation of the current intensities versus
time after successive additions of nitrite. The oxidation current
increased linearly with nitrite concentration in a range between
300 and 6500 nM according to equation I = −0.0537 + 0.44453
[NO2⁻] with a correlation coefficient of 0.99722, a relative standard
deviation (RSD) of 2.36% (n = 3 tests), and a sensitivity of
0.44453 μA/μM. The detection limit was calculated by the
equation LOD = 3 × SD/P. where SD is the standard deviation,
and P the slope of the calibration curve, and it was found to be 75 nM.

Prior to the application in real samples, the selectivity of the
developed sensor was investigated in the presence of some
components such as NaNO3, Na2SO4, LiClO4, and Li2CO3. From
the obtained results (Figure 9B), we can assume that these
components did not interfere with the nitrite response.
Subsequently, the effectiveness application of the developed hybrid
sensor for detection of nitrite in real samples was tested in tap water.
The determination of nitrite was based on the method of dosed
additions, and the concentration of nitrite was found to be 0.28667 ±
0.01528 µM with an RSD of about 5.3% (3 tests) which suggests that

our sensor can be used directly in real samples, and without any
pretreatment of water. The detection limit, linearity range, and the
detection technique of different hybrids reported in the literature are
summarized in Table 2. Our material seems to be a good choice for
nitrite determination in water samples.

CONCLUSION

In summary, a low-cost sensor based on 1,8-Diaminonaphthalene
electrodeposited on f-MWCNT/CPE was developed for a rapid and
effective determination of nitrite in aqueous solutions. The
characterization of the electrode was performed using different
techniques such as FTIR, TEM, CV and EIS. The FTIR and TEM
characterizations confirm the presence of the polymer on the surface
of our sensor, while the electrochemical measurements revealed that
the combination of f-MWCNT and poly 1,8-DAN improves the
electronic transfer, and has very good electro-catalytic activity
towards nitrite oxidation. The sensor was then applied for
detection of nitrite showing a good linearity, selectivity and
sensitivity with a very low detection limit of 75 nM. It should be
highlighted that the sensor can be used directly and without any pre-
treatment of water samples. More studies are undergoing to enhance
the linearity range and to extend the applicability of this sensor.
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TABLE 2 | Comparison of the electrocatalytic performance of different hybrid materials.

Catalyst Technique Linear range/µM Detection limit/µM Refs.

p-ATT/f-MWCNT Amperometry 0.001–1.0 0.0002 Rajalakshmi and John (2015)
AuNPs/PEDOT Amperometry 0.2–1400.0 0.06 Lin et al. (2016)
PdNPs-poly (1.5-DAN)/MWCNT Amperometry 0.25–100 0.08 Shi et al. (2019)
rGO/AuNPs Chronoamperometry 1.0–6000.0 0.13 Jian et al. (2018)
Pd/Fe3O4/Poly DOPA/rGO Amperometry 2.5–6470.0 0.5 Zhao et al. (2017)
AuNPs/MWCPE Amperometry 0.05–250 0.01 Afkhami et al. (2014)
Au-rGO/PDDA DPV 0.05–8.5 0.04 Jiao et al. (2015)
Poly (1,8-DAN)/f-MWCNT Amperometry 0.3–6.5 0.075 This Work
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