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Network-assisted analysis of 
primary Sjögren’s syndrome GWAS 
data in Han Chinese
Kechi Fang, Kunlin Zhang & Jing Wang

Primary Sjögren’s syndrome (pSS) is a complex autoimmune disorder. So far, genetic research in pSS 
has lagged far behind and the underlying biological mechanism is unclear. Further exploring existing 
genome-wide association study (GWAS) data is urgently expected to uncover disease-related gene 
combination patterns. Herein, we conducted a network-based analysis by integrating pSS GWAS in 
Han Chinese with a protein-protein interactions network to identify pSS candidate genes. After module 
detection and evaluation, 8 dense modules covering 40 genes were obtained for further functional 
annotation. Additional 31 MHC genes with significant gene-level P-values (sigMHC-gene) were also 
remained. The combined module genes and sigMHC-genes, a total of 71 genes, were denoted as pSS 
candidate genes. Of these pSS candidates, 14 genes had been reported to be associated with any of 
pSS, RA, and SLE, including STAT4, GTF2I, HLA-DPB1, HLA-DRB1, PTTG1, HLA-DQB1, MBL2, TAP2, 
CFLAR, NFKBIE, HLA-DRA, APOM, HLA-DQA2 and NOTCH4. This is the first report of the network-
assisted analysis for pSS GWAS data to explore combined gene patterns associated with pSS. Our study 
suggests that network-assisted analysis is a useful approach to gaining further insights into the biology 
of associated genes and providing important clues for future research into pSS etiology.

Sjögren’s syndrome (SS) is a chronic autoimmune disease characterized by exocrine gland dysfunction, specifically 
the salivary and lacrimal glands, resulting in oral and ocular dryness1. The disease may occur alone as primary 
Sjögren’s syndrome (pSS) or in connection with other systemic rheumatic conditions as secondary Sjögren’s syn-
drome (sSS)1. In China, the prevalence of pSS is estimated to be 0.77%2. Although pSS is one of the most common 
autoimmune diseases, scientific and medical research in pSS has lagged far behind and the pathogenic mecha-
nisms of pSS are not yet fully known3. An interaction between genetic predisposition and environmental factors 
is believed to cause pSS4.

In recent years, genome-wide association studies (GWAS) have become a promising approach to unravelling 
common variants associated with human complex disorders including pSS5,6. The pSS GWASs have uncovered a 
few risk loci conferring susceptibility to pSS5,6. In spite of these successes, as with other complex diseases, GWAS 
analysis of pSS is limited by the use of a genome-wide significance cutoff SNP P-value of 5 ×  10−8 needed for 
multiple testing correction7. Except the strongest genetic markers, many modest loci that each contributes in 
small part to the genetics of the disease may be ignored under this stringent strategy8. The reported loci by GWAS 
account for only a small proportion of pSS genetic risk. The underlying genes remain largely unknown, especially 
the interactions among these susceptibility genes are elusive. Moreover, how to translate the GWAS observations 
into any biological function is still a challenge for pSS. Hence there is an urgent need to apply new method that can 
integrate GWAS data with high-throughput datasets to examine the combined effect of multiple variants for pSS.

As human protein interaction data become more and more abundant, protein-protein interaction (PPI) 
networks are increasingly serving as tools to discover the molecular basis of diseases. PPI network provides a 
convenient framework for exploring relationships of disease-related genes and can be integrated with other var-
ious biological data. An integrative analysis of GWAS data with PPI network opens a new avenue for promoting 
the identification of true genetic signals and has been widely applied in many diseases9–11. The rationale behind 
network-assisted analysis is “guilt by association”12, i.e. different causal genes for the same phenotypes often interact, 
either directly or via common interaction partners.

Along these lines, the present study applied a network-assisted method by integrating pSS GWAS data in Han 
Chinese with human PPI network to investigate whether a set of genes, whose protein products closely interact 
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with each other might collectively contribute to pSS risk. We highlighted 71 pSS candidate genes including 40 
module genes identified by dense module searching (DMS) algorithm and additional 31 MHC genes with small 
gene-level P-values (sigMHC-genes). Of these candidates, 14 genes had been reported to be associated with any of 
pSS, RA, and SLE. The results also obtained gene-gene interactions among these candidates. Our network-assisted 
analysis of pSS GWAS would facilitate the understanding of genetic mechanism of pSS.

Results
Identification of sigMHC-genes and modules enriched for pSS-associated genes.  To perform 
network-assisted analysis, pSS GWAS data in Han Chinese was applied and gene-level P-values were computed 
with VEGAS (see Methods). A total of 26,929 genes with P-values were obtained. Then, the gene P-values were 
integrated with a high confident PPI network (see Methods), resulting in a pSS specific node-weighted network of 
9,203 proteins and 31,908 interactions. The involved interactions were listed in Supplementary Table S1.

Particularly, there were 31 genes located in MHC region and with gene P-values <  0.05, defined as 
sigMHC-genes (see Methods). In order to reduce the influence of sigMHC-genes on module searching and pri-
marily focus on genes outside MHC, the sigMHC-genes were not set as seed nodes to search modules.

Dense module searching was performed within the node-weighted pSS network to identify modules enriched 
for genes with significant pSS genetic signals. A total of 8,594 independent modules were preliminarily generated. 
After estimating the significance of module scores, 127 modules met the criterion of ( )P Zm  <  0.05 were left for 
further estimating the topological properties. As a result, eight modules were finally remained as significant mod-
ules. The union of resultant modules was finally computed, resulting in a single connected subnetwork of 40 
non-redundant genes and 70 interactions (Fig. 1a). Of these 40 module genes, 24 had nominally significant gene 
P-values (< 0.05). To further validate whether module genes were significantly physically interacted, DAPPLE was 
used13. The results showed that the direct PPI network of module genes had more significant edges than expected 
by chance (permutation P-value =  9.9 ×  10−5) (Supplementary Figure S1), suggesting that the interactions among 
the module genes were statistically significantly connected. The detailed information for the DMS-identified 
module genes and sigMHC-genes were listed in Supplementary Table S2.

Biological annotation for the identified module genes.  To better understand the biological functions 
of the DMS-identified module genes, we conducted a Gene Ontology (GO) enrichment analysis by using DAVID. 
The enriched biological processes were related with negative regulation of protein metabolic process and proteas-
omal protein catabolic process. The enriched molecular functions were about transcription regulator activity and 
transcription factor activity. Further information of GO enrichment analysis of module genes was summarized 
in Supplementary Table S3.

We also computed the tissue specificity of module genes by using the Gene Enrichment Profiler. In the tran-
script expression heatmap (Supplementary Figure S2), approximately two-thirds of these genes were highly 
expressed in immune-related cell types (specifically, B, T and myeloid cells). In the transcript enrichment heatmap 
(Supplementary Figure S3), we found module genes were preferentially expressed in the immune cell types.

Module genes and sigMHC-genes as candidates for pSS.  To explore whether exist inter-
actions between the DMS-identified module genes and sigMHC-genes, we extracted these genes and 
according interactions from the node-weighted pSS network, resulting in a subnetwork as shown in 
Fig.  1b. Most of sigMHC-genes directly or indirectly connected with module genes except 6 single-
tons and two isolated PPI pairs (HLA-DPB1 vs. HLA-DPA1, and HLA-DQB1 vs. HLA-DQA2). The 
combined module genes and sigMHC-genes were defined as candidate genes (71 genes) for pSS. Of 
these candidates, four genes (STAT4, GTF2I, HLA-DPB1, and HLA-DRB1) had been reported their 

Figure 1.  (a) The subnetwork formed by identified module genes; (b) the subnetwork formed by sigMHC-
genes and identified module genes. The triangle-shaped nodes represent sigMHC-genes and circular-shaped 
nodes represent DMS-identified module genes. The color of the node was proportioned with the gene P-value. 
The most significant gene P-value was red color and the most non-significant gene P-value was yellow color.
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association with pSS in the original GWAS dataset6, and gene PTTG1 (pituitary tumor-transforming 1)  
had been reported as suggestive association (rs2431098, allelic meta P-value =  2.28 ×  10−7; rs2431697, allelic 
meta P-value =  3.76 ×  10−6) with SS in another GWAS study of SS in European descent5. In addition, three genes 
(HLA-DQB114, MBL215, and TAP216) had been previously reported their association with SS/pSS by candidate 
gene studies.

Given the overlap of certain clinical and serologic features between pSS and other autoimmune diseases (AIDs), 
such as Rheumatoid arthritis (RA) and Systemic lupus erythematosus (SLE), it is reasonably assumed that pSS 
might share some genetic signatures with other AIDs17. Hence, we also investigated how many candidate pSS 
genes had been reported their susceptibility to either SLE or RA by searching GWAS studies collected in GWAS 
Catalog8. The overlaps of candidate pSS genes among SLE and RA was shown in Fig. 2. Another six genes with 
positive evidence associated with SLE or RA were obtained, including five genes (HLA-DRA18, HLA-DQA219, 
CFLAR20, NFKBIE20–22, and APOM23) reported to be associated with RA, and two genes (HLA-DQA224,25 and 
NOTCH424) reported to be associated with SLE. Gene HLA-DQA2 was overlapped between RA and SLE. These 
six SLE and RA susceptibility genes might be the shared genetic signatures between AIDs. In addition, four genes 
(STAT46,20,22,24–27, HLA-DQB114,19,24,27–29, HLA-DRB16,20,26,27, and MBL215,30,31) were overlapped among SS, SLE and 
RA, and gene PTTG1 was overlapped between SS and SLE5,24.

Discussion
Unlike the extensive GWAS experiment in other AIDs, such as RA and SLE, there have been only two GWAS 
studies in SS/pSS until now5,6. Genetic studies of pSS have lagged behind. To further mining the existing genetic 
data, network-assisted analysis of pSS GWAS in Han Chinese was performed in order to explore the joint effects 
of multiple genetic association signals on pSS and discover additional candidate genes associated with pSS patho-
genesis. First, all SNPs were first mapped into genes and gene-based association was performed by using VEGAS. 
Then, dense modules were dynamically searched in the context of the node-weighted pSS network via DMS, 
yielding thousands of functional modules. To avoid false positive results and the topology bias, a strict criterion 
was applied to select modules with significant genetic signals. After two stepwise significance tests (see Methods), 
8 modules covering 40 genes were screened out. These 40 module genes had a high proportion of significant genes 
(60%) and preferentially expressed in immune-related cell types. The proteins encoded by the DMS-identified 
module genes were more closely interconnected than what would be expected by random cases, as suggested by 
DAPPLE analysis. In addition, there were 31 MHC genes with significant gene P-values, defined as sigMHC-genes. 
To avoid the results of module search focusing on MHC region, the sigMHC-genes were not set as “seed genes” 
(see methods) and directly remained as part of final results. By merging all module genes and sigMHC-genes, a 
total of 71 genes were involved and denoted as candidate pSS genes.

Of the 71 candidate pSS genes, eight genes had been previously reported their association with SS/pSS, as well 
as another six genes that had positive evidence associated with SLE or RA (Fig. 2). All the 14 reported genes had 
significant gene P-values (see Supplementary Table S2). Considering that pSS might share genetic signatures with 
SLE and RA to some extent, these six SLE or RA susceptibility genes were very likely associated with pSS. For 
example, one of reported RA susceptibility genes was NFKBIE (nuclear factor of kappa light polypeptide gene 
enhancer in B-cells inhibitor, epsilon)20–22, which is a non-MHC gene with gene-level P-value of 0.00801. NFKBIE, 
also known as IκBε, is part of the Iκ B family of proteins that regulates NF-κ B-dependent transcription by inhibiting 
DNA binding and localizing these factors to the cell cytoplasm32. It has been demonstrated that IκBα (another Iκ B 

Figure 2.  The overlaps of candidate pSS genes among other autoimmune diseases. The green, blue, and 
pink circles indicate the candidate pSS genes that have positive evidence to be associated with SS, SLE, and RA, 
respectively.
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family of protein) promoter polymorphisms are associated with susceptibility to SS33. In addition, NF-κ B plays 
an important role in inflammatory diseases and in the development of autoimmunity34. Experimental studies 
have shown an activation of NF-κ B in pSS. These clues implied that NFKBIE might be also associated with pSS.

Due to disease genes execute their functions are not alone, the interactions among the candidate pSS genes 
might play an important role. It has been observed that causal genes for the same Mendelian disease often phys-
ically interact35,36. There were two direct interactions among the reported genes, i.e. (HLA-DRB1 vs. HLA-DRA), 
and (HLA-DQB1 vs. HLA-DQA2). It was worth noting that most of 14 reported genes were closely connected 
by gene UBC (ubiquitin C) except for some sigMHC-genes. As the theory of “guilt by association”, it is possible 
that a few highly connected nodes (hub genes) bring together several disease-associated genes, even though the 
hubs themselves are not relevant37. In this study, although the gene-level P-value of UBC was not significant (gene 
P-value =  0.463), it was involved by all the DMS-identified modules. As shown in Fig. 1a,b, UBC was centered both 
in the subnetwork formed by DMS-identified genes and in the subnetwork formed by the combined candidate 
genes. UBC directly or indirectly (via one or two nodes) connected with most of pSS candidate genes.

Of the rest of 57 genes, some genes with non-significant gene P-values might act as connectors to connect 
with other disease genes. For example, the gene P-value of JUN (jun proto-oncogene) was not significant (gene 
P-value =  0.918), but it interacted with STAT4 (signal transducer and activator of transcription 4), which was the 
most significant gene in this study (gene P-value =  1E-07). In addition, STAT4 was the only gene that had been 
confirmed its association with SS/pSS in both Han Chinese and European descent5,6. In addition, other novel can-
didate pSS genes with significant gene P-values were also valuable, such as STAT1 (signal transducer and activator 
of transcription 1, 91kDa). STAT1 (gene P-value =  0.00267) directly interacted with GTF2I, which was a reported 
pSS associated gene in the Chinese cohort6. STAT1 phosphorylation at serine 708 is a key event in the interferon 
signalling pathway38. In many SS patient, interferon activation plays an important role in the immune attack and 
destruction of salivary and lacrimal glands at some stage in the course of the disease. These evidence suggested 
that STAT1 was likely related with pSS.

The present study has some limitations that require consideration. First, only one pSS GWAS data in Han 
Chinese was available for this study. It would be more valuable if we could make a comparison between multiple 
GWAS datasets from different population. In our study, only gene PTTG1 could be cross evaluated between two SS/
pSS GWAS. PTTG1 was only reported as suggestive association with SS in European descent5 and not found to be 
a risk factor in the Chinese cohort6. However, this gene was significant at gene-level (gene P-value =  0.00143) and 
identified by module search, and it was also reported to be associated with SLE24. These lines of evidence implied 
that PTTG1 might be associated with pSS in Han Chinese. Second, calculation of gene-level P-value is a key step in 
the network-assisted analysis of GWAS. VEGAS is comparable with other tools to compute gene P-values, however, 
it could only deal with autosomal SNPs. Due to women are nine times more likely than men to be affected with SS, 
it would be interesting to evaluate SNPs located on the sex chromosomes (X and Y).

In summary, this is the first use of network analysis of pSS GWAS data to further mine genetic signals at a 
molecular level instead of analyzing each of single locus (SNP). Complementary to the traditional GWAS analysis, 
it was more powerful that gene-level P-value was considered by calculating the combined effect of all SNPs within 
a gene and subsequently integrated with a pSS-specific PPI network to search for gene combination patterns 
contributed to pSS. Our findings included 40 non-MHC genes identified by DMS algorithm and 31MHC-region 
genes with significant gene-level P-values. These candidates and interactions among them were more likely to be 
associated with pSS.

Deciphering the mechanism of pSS pathogenesis is still challenging, although certain progress has been made, 
much remains to be understood. Deriving a pSS-specific PPI network and identification of dense module genes 
and sigMHC-genes, as described herein, offers new targets for further functional assessment for this chronic and 
complex condition.

Methods
The workflow of the network-assisted analysis for pSS GWAS data was shown in Supplementary Figure S4, and 
the sections below were labeled in correspondence with this figure.

pSS GWAS dataset.  The pSS GWAS data is composed of samples of Han Chinese6. There are 642,832 SNPs 
in 597 pSS cases and 1,090 controls genotyped with the Affymetrix Axiom Genome-Wide CHB 1 Array Plate. 
Details of this pSS GWAS data and process of quality control are provided in ref.6. After quality control filtering, a 
total of 542 cases, 1,050 controls and 556,134 autosomal SNPs were remained for subsequent analysis.

Computing gene-level P-values.  To perform network analysis and examine functional correlation 
between genes, gene-level P-value representing the significance of association with phenotype for each gene was 
needed to be considered. The gene-level P-value was calculated with VEGAS39, which can incorporate informa-
tion from all SNPs mapped to a gene and take into account the linkage disequilibrium (LD) patterns between 
SNPs for the specific samples (a custom set of individuals) or ethnic background (HapMap data). In VEGAS, all 
SNPs were mapped to human protein-coding genes according to positions on the UCSC Genome Browser. In this 
study, an off-line version of VEGAS was applied and improved in some aspects. First, gene position was updated 
from original hg18 to hg19 downloaded from Ensembl (GRCh37.P11)40. Second, in order to capture SNPs in 
regulatory region and simultaneously avoid too many genes with overlapped SNPs, gene boundary was extended 
to 20kb upstream/downstream of the gene coordinates instead of 50kb by default. Third, when estimating the LD 
patterns, the pSS GWAS data was used.

Building a node-weighted pSS interactome.  A consolidated human protein-protein interaction (PPI) 
network data was obtained from iRefIndex database (version 13.0)41, which collected nine interaction databases 
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and computed the union of data sets. Among this large network, many interactions were either predicted or sup-
ported by a single experiment. In order to reduce the rate of false positives, we included only those interactions 
supported by at least two publications for all subsequent analyses, resulting in a highly reliable network of 10,163 
nodes (genes) and 36,680 interactions. Then, the nodes involved in this network was annotated with gene P-value 
as a node attribute, and extracted to derive a node-weighted pSS network.

sigMHC-genes.  Currently, the reported susceptibility genes associated with pSS mainly focused on 
immune-related genes and the MHC region5,6,42,43. To unravel more risk genes outside MHC region and avoid the 
complexity of the MHC region44, we did not assign gene P-values for nodes in pSS network if the corresponding 
genes located in MHC region and their gene P-values < 0.05, named as significant MHC genes (sigMHC-genes). 
Since sigMHC-genes might interplay with other significant genes and play an important role in the disease-related 
biological functions, these genes were still left in the pSS network to maintain the integrity of the network.

Module detection.  A dense module search (DMS) method implemented in dmGWAS was applied to search 
for modules that were enriched with significant P-value genes in the context of the node-weighted pSS network45. 
DMS starts by transferring each gene P-value into a Z score (zi) by using the inverse normal cumulative distribu-
tion function46. For a module with k genes, the module score ( )Zm  was computed by summing the zi over all 
genes in the module, i.e. = ∑ /Z z km i . The detailed process of module search can be found in this study45. 
Briefly, for a given “seed gene”, module grows by adding the neighboring nodes that can generate the maximum 
increment of a module score ( )Zm . Module growth will stop if the increment is not greater than × .Z 0 1m . The 
process of module searching was conducted taking each node in the pSS interactome as the seed gene except for 
sigMHC-genes.

Module evaluation.  For the proper capture of the connection between genetic association and network 
topology, two steps of tests were performed.

First, to assess the significance of the resultant modules, module P-values were calculated based on the module 
scores by empirically estimating the null distribution, which is assumed to be a normal distribution47. Specifically, 
module scores were median-centered, and then the parameters of mean δ and standard deviation σ were estimated 
for the empirical null distribution using the R package locfdr. The standardized module scores Zs were computed 
and converted to P-values by using the normal cumulative density function. The modules with P-values 
( )P Zm  <  0.05 were selected for the further estimation.

Second, to avoid the bias that nodes with many interactors in the PPI are more probably to be chose by DMS, 
the topology of resultant modules were evaluated as suggested in48. All nodes in the network were divided into 
four groups according to nodes degree, i.e. 0–22, 22–24, 24–26, and > 26. For a given module with k genes, 10,000 
modules with the same number of genes were generated by considering which group each gene located in and then 
randomly picking one gene from the corresponding group (i.e. structurally equivalent random networks). An 
empirical P-value was calculated by π= ( ) ≥ = π# ( ) ≥ +

# +
P P Z Z{ }topo m m

of resamples Z Z
total resamples

{ } 1
1

m m , where π( )Zm  is the 
score of the random module for the π th resample. The modules with P-values Ptopo <  0.05 were selected as the final 
results.

Assessment of the significance of connectivity between module genes.  To evaluate whether mod-
ule genes were densely connected via PPI network, a permutation test was performed to assess the significance 
of connectivity between module genes by using DAPPLE (Disease Association Protein-Protein Link Evaluator) 
algorithm13. Briefly, this approach first generated a random network that has nearly the exact same structure as 
the original one that is derived from the InWeb database36. The node labels (i.e. the protein names) were then 
randomly re-assigned to nodes of equal binding degree. DAPPLE assumes a null distribution of connectivity that 
is entirely a function of the binding degree of individual proteins. We built 10,000 different random networks 
and each of them had the same number of proteins, connectivity and per-protein binding degree as InWeb. The 
significance of our real PPI network formed by module genes was then assessed through permutation. For more 
details, please refer to the article13.

GO enrichment and cell-specific expression of module genes.  In order to discern biological attrib-
utes of the identified module genes, we performed Gene Ontology (GO) enrichment analysis by using DAVID49. 
DAVID bioinformatics resources consist of an integrated biological knowledgebase and analytic tools aimed at 
systematically extracting biologically meaning from a list of genes or proteins. Fisher Exact tests were conducted 
in DAVID to compute the P-value for each GO term. In this case study, only GO terms with an adjusted P-value 
(Benjamini & Hochberg) of less than 0.25 were selected.

Cell-specific expression was assessed with an online tool Gene Enrichment Profiler50. This tool computes the 
expression and enrichment of any set of query genes on the basis of a reference set obtained from 126 normal 
tissues and cell types (represented by 557 microarrays).
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