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A growing body of evidence now proposes that machine learning and deep learning techniques can serve as a vital 
foundation for the pharmacogenomics of antidepressant treatments in patients with major depressive disorder (MDD). 
In this review, we focus on the latest developments for pharmacogenomics research using machine learning and deep 
learning approaches together with neuroimaging and multi-omics data. First, we review relevant pharmacogenomics 
studies that leverage numerous machine learning and deep learning techniques to determine treatment prediction and 
potential biomarkers for antidepressant treatments in MDD. In addition, we depict some neuroimaging pharmacoge-
nomics studies that utilize various machine learning approaches to predict antidepressant treatment outcomes in MDD 
based on the integration of research on pharmacogenomics and neuroimaging. Moreover, we summarize the limitations 
in regard to the past pharmacogenomics studies of antidepressant treatments in MDD. Finally, we outline a discussion 
of challenges and directions for future research. In light of latest advancements in neuroimaging and multi-omics, various 
genomic variants and biomarkers associated with antidepressant treatments in MDD are being identified in pharmacoge-
nomics research by employing machine learning and deep learning algorithms.
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INTRODUCTION

Pharmacogenomics, an interdisciplinary field of phar-
macology and genomics, is progressing into indispensable 
practices in medicine with the prospect of individualized 
clinical care for patients [1]. Namely, pharmacogenomics 
is one of the research fields to further the advances of pre-
cision medicine [2]. In terms of psychiatry, pharmacoge-
nomics aims to adapt medical decisions, treatments, and 

practices to individual patients with psychiatric disorders 
[3]. More precisely, the full population of patients with 
psychiatric disorders are partitioned into multiple sub-
groups by distinct biomarkers, where genomic data is 
available to serve as distinct biomarkers in light of phar-
macogenomics in psychiatry. Accordingly, medications 
can be tailored personally to each specific patient based 
on comparable or applicable genomic biomarkers [3]. 
Nowadays, there are gradually developing genomic bio-
markers that might be linked to adverse drug reactions 
and clinical treatment response for patients with psychi-
atric disorders [4]. For example, it has long been indicated 
that genomic biomarkers such as gene expression profiles 
and single nucleotide polymorphisms (SNPs) can be 
leveraged to assess antidepressant treatment response and 
remission in patients with major depressive disorder (MDD) 
[5,6].

In the field of pharmacogenomics, scientists incorporate 
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various data types such as multi-omics data with state-of- 
the-art machine learning and deep learning models, 
which can subsequently pinpoint complicated patterns 
corresponding to experimental data [7-9]. That is, multi- 
omics data is utilized to represent predictive parameters 
(or biomarkers) to achieve the concept of pharmacoge-
nomics by employing machine learning and deep learn-
ing models. In order to meet the pressing issues we con-
front currently in the field of pharmacogenomics in MDD, 
there is a vast demand for establishing bioinformatics 
frameworks in machine learning and deep learning mod-
els that can forecast antidepressant treatment outcome in 
clinical contexts based on next-generation multi-omics 
data [10].

Due to latest advancements in artificial intelligence re-
search, machine learning and deep learning algorithms 
have affirmed their encouraging merits of learning and 
observing nonlinear and complicated hierarchical pat-
terns corresponding to enormous large-scale multi-omics 
datasets [11-15]. Basically, the goal of deep learning algo-
rithms is to construct artificial intelligence and machine 
learning models which utilize numerous layers of ab-
straction such as artificial neural networks to build a hier-
archical representation for the datasets [16,17]. In other 
words, deep learning models for prediction tasks, such as 
the prediction of antidepressant treatment outcome in 
pharmacogenomics, are computation models for evaluat-
ing the best inference by using artificial neural networks 
with various layers, instead of using artificial neural net-
works with only one single layer [12-15,18]. Moreover, 
deep learning models have achieved state-of-the-art per-
formances on a wide variety of prediction tasks in phar-
macogenomics by using modern computing technologies 
such as the invention of general-purpose computing on 
graphics processing units [8,12-15,19,20].

With the recent advance in neuroimaging tech-
nologies, the integration of research on pharmacoge-
nomics and neuroimaging in psychiatry demonstrates the 
massive growth possibilities of the demands for novel 
therapeutic strategies as well as novel medicine in-
dications for treatment and therapeutic interventions in 
the future [21,22]. In addition, the usage of machine 
learning and deep learning approaches may play a crucial 
role in integrating pharmacogenomics with neuroimaging 
[23]. In the recent past, there were a wide range of rele-
vant research studies for various antidepressant treat-

ments of significance for neuroimaging with consid-
eration of machine learning approaches [24,25]. Hence, 
it would be remarkably intriguing to develop machine 
learning and deep learning models that can forecast anti-
depressant treatment response and remission for MDD 
patients by incorporating pharmacogenomics with neuro-
imaging. To address this challenge, machine learning and 
deep learning models may be able to produce suitable bi-
oinformatics tools to accomplish the promise of pharma-
cogenomics by taking advantage of specific genomic bio-
markers and neuroimaging data for antidepressant treat-
ment response and remission.

At the moment, researchers have been making compel-
ling progress in the interdisciplinary fields of pharmaco-
genomics, machine learning, deep learning, multi-omics, 
and neuroimaging [8,9,23]. The objective of machine 
learning and deep learning algorithms is to implement da-
ta-driven models that can generally learn from the data in 
the present and/or in the past by using the learned ob-
servation into analyzing predictive results (for instance, 
the prediction of antidepressant treatment outcome in 
pharmacogenomics) for any unexplored event and/or for 
any unknown data in the future [26-28]. In the normal 
contexts, the guidance of machine learning and deep 
learning algorithms encompasses the following three 
processes. First, the predictive algorithm is built from the 
initial input data in the beginning process. Second, the 
predictive algorithm is then gauged and fine-tuned in the 
intermediate process. Third, the predictive algorithm is 
utilized for generating predictive results in the final proc-
ess [26-28].

In this review, we describe recent research studies in 
pharmacogenomics, which evaluated drug treatments by 
using artificial intelligence methods such as machine 
learning and deep learning models. Additionally, we es-
pecially focus on the integration of research on pharma-
cogenomics and neuroimaging for antidepressant treat-
ment outcome in patients with MDD. Furthermore, we 
summarize the limitations in these research studies and 
show a discussion of directions as well as challenges in 
the future. Here, in the context of machine learning and 
deep learning algorithms, we present various research 
studies with focus on antidepressant treatment prediction 
in patients with MDD in terms of pharmacogenomics us-
ing multi-omics datasets (Fig. 1). Biological and/or clinical 
implications from this major arena may serve as decision 
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Fig. 1. An example of the machine 
learning framework for forecasting 
antidepressant treatment response. 
The machine learning model comprises 
two major components including a 
feature selection algorithm and a 
predictive algorithm. The feature 
selection algorithm produces a small 
subset of good features, which serves
as the training dataset for subsequent 
analysis. The training dataset serves 
as the input for the predictive 
algorithm. The predictive algorithm 
estimates the prediction of antide-
pressant treatment outcome from 
the training dataset. 
SNPs, single nucleotide polymorphisms.

support aides for treatment prediction in precision psy-
chiatry and translational psychiatry [29]. While this re-
view does not support the full set of related research stud-
ies reported in the literature, it nonetheless demonstrates a 
synthesis of those that can considerably influence pop-
ulation health-oriented and public health-relevant appli-
cations in MDD, antidepressants, and pharmacogenomics 
in the near to mid-term future.

RESEARCH STUDIES IN 
PHARMACOGENOMICS ON 

THE PREDICTION OF ANTIDEPRESSANT 
TREATMENT OUTCOME IN 

PATIENTS WITH MDD

The usage of artificial intelligence and predictive algo-
rithms in terms of predicting antidepressant treatment out-
come has been a focus of attention in pharmacogenomics 
research. Here, we focus on antidepressant treatment out-
come by using traditional machine learning algorithms as 
well as deep learning algorithms in this section (Table 1). 

We first conducted a comprehensive search of the elec-
tronic PubMed database (2015–present) using key words 
such as “machine learning,” “deep learning,” “antidepressant,” 
“major depressive disorder,” “multi-omics,” and “pharmaco-
genomics”. Then, we manually screened the obtained ar-
ticles with a particular focus on MDD. The multi-omics 
data in these studies included SNPs datasets, DNA meth-
ylation datasets, gene expression datasets, and pheno-
typic datasets (such as demographic and clinical datasets). 
In addition, the reader can refer to a recent review by 
Amare et al. [4] for genetic variants of antidepressant 
treatment response in MDD as well as a recent review by 
Perlman et al. [30] for predictors of antidepressant treat-
ment response in MDD.

Traditional Machine Learning Methods
To predict antidepressant treatment response, various 

research studies employed traditional machine learning 
methods, including linear regression models, support 
vector machine, decision tree, random forests, and en-
semble models (Fig. 1, Table 1).
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Table 1. Relevant studies on the predictive models of evaluating antidepressant treatment response and/or remission

Study Model Reference Dataset Results

Pharmacogenomics Decision trees Maciukiewicz et al. [32] SNPs An accuracy of 57% (response)
Pharmacogenomics SVM Maciukiewicz et al. [32] SNPs An accuracy of 64% (response)
Pharmacogenomics Random forest Kautzky et al. [37] SNPs and clinical datasets An accuracy of 25% (response)
Pharmacogenomics Random forest Athreya et al. [38] SNPs and clinical datasets AUC ＞ 0.7 and accuracy ＞ 69% (response)
Pharmacogenomics Ensemble Lin et al. [42] SNPs and clinical datasets AUC = 0.83 (response); 

AUC = 0.81 (remission);
Comparable performance to MFNNs and 

logistic regression; Better performance than 
SVM, C4.5 decision tree, naive Bayes, and 
random forests.

Pharmacogenomics Deep learning 
model

Lin et al. [45] SNPs and clinical datasets AUC = 0.82 (response);
AUC = 0.806 (remission)

Neuroimaging Decision trees Patel et al. [49] Structural MRI and clinical 
datasets

An accuracy of 89% (response)

Neuroimaging 
pharmacogenomics

Linear regression Chang et al. [60] MRI, SNPs, DNA 
methylation, and 
demographic data

An accuracy of 84% (response)

Neuroimaging 
pharmacogenomics

SVM Pei et al. [61] Functional MRI and SNPs An accuracy of 86% (response)

SVM, support vector machine; SNPs, single nucleotide polymorphisms; MRI, magnetic resonance imaging; AUC, area under the receiver operating 
characteristic curve; MFNN, multi-layer feedforward neural network. 

Decision Trees
The decision tree model, a traditional machine learning 

approach, builds up tree structures using top-down proc-
essing and prune the tree structures based on the concept 
of information entropy [31].

For example, Maciukiewicz et al. [32] used a classi-
fication-regression tree model, an example of decision 
tree models, to foresee antidepressant treatment response 
and to achieve an accuracy of 57% based on multi-omics 
data such as SNPs. In the first step, Maciukiewicz et al. 
[32] conducted a genome-wide association study (GWAS) 
to find genetic variants that were associated with anti-
depressant treatment response in a hypothesis-free manner. 
Next, they used the least absolute shrinkage and selection 
operator (LASSO) regression model [33], the regulariza-
tion and variable selection scheme, to identify key pre-
dictive features such as the rs2036270 SNP in the RARB 
gene and the rs7037011 SNP near the LOC105375971 
gene [32]. In other word, the LASSO model serves as a 
feature selection algorithm to provide a small subset of 
good features for treatment prediction.

Support Vector Machines
The support vector machine (SVM) models [34] apply 

kernel functions to transform training datasets into higher 
dimensional data spaces and then determine a linear sep-

arating hyperplane based on the maximal margin [35].
For example, Maciukiewicz et al. [32] also used an 

SVM model, a traditional machine learning approach, to 
foresee antidepressant treatment response and to achieve 
an accuracy of 64% based on multi-omics data such as 
SNPs.

Random Forests
The random forest models construct a collection of 

many decision tree models using a random subset of train-
ing data and then produce the prediction by committee 
among the individual decision trees [36]. Namely, the 
random forest models, which consist of multiple decision 
trees to perform prediction tasks, are an example of en-
semble learning approaches.

For instance, Kautzky et al. [37] employed a random 
forest model, a traditional machine learning approach, to 
correctly predict 25% of responders for antidepressant 
treatment outcome based on multi-omics data such as 
SNPs and clinical datasets. Remarkably, Kautzky et al. 
[37] found several key predictive features including a 
clinical variable known as melancholia and three SNPs 
such as the rs6265 SNP in the BDNF gene, the rs6313 
SNP in the HTR2A gene, and the rs7430 SNP in the 
PPP3CC gene.

In addition, Athreya et al. [38] used a random forest 
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model to forecast antidepressant therapy response and to 
achieve an accuracy of ＞ 69% (with the area under the 
receiver operating characteristic curve [AUC] value of ＞ 

0.7) based on multi-omics data such as SNPs and clinical 
datasets such as total baseline depression severity. In par-
ticular, Athreya et al. [38] identified the top six SNPs in the 
related GWAS analysis as key predictive features, includ-
ing the rs5743467, rs2741130, and rs2702877 SNPs in 
the DEFB1 gene, the rs696692 SNP in the ERICH3 gene, 
the rs17137566 SNP in the AHR gene, and the 
rs10516436 SNP in the TSPAN5 gene.

Ensemble Models
The boosting ensemble algorithm is commonly used to 

solve complex prediction applications in medicine and 
may possess numerous advantages such as greater pre-
diction, better consistency, robust generalization, and the 
prevention of overfitting [39,40]. The LogitBoost algo-
rithm is an example of the boosting ensemble algorithm, 
which organizes the performance of many base predictive 
algorithms (also referred to as weak predictive algorithms) 
to construct a robust prediction algorithm with higher ac-
curacy [41]. Furthermore, the LogitBoost algorithm uti-
lizes a binomial log-likelihood scheme that adjusts the 
predictive error linearly, thereby tending to be robust in 
handling outliers and noisy data [41]. For example, a base 
predictive algorithm can be a multi-layer feedforward 
neural network (MFNN), which may consist of one input 
layer, one hidden layer, and one output layer.

For example, Lin et al. [42] used the LogitBoost model, 
a boosting ensemble algorithm, to predict antidepressant 
treatment response and remission by using multi-omics 
data such as SNPs and clinical datasets in MDD patients 
in the Taiwanese population. In the first step, the wrap-
per-based feature selection algorithm [43] was performed 
to identify a subset of key predictive features from 10 ge-
netic variants and 6 clinical variables, where the feature 
selection algorithm acts as a wrapper around the pre-
dictive algorithm. Particularly, Lin et al. [42] identified 15 
biomarkers out of 16 biomarkers and eliminated one clin-
ical variable, namely marital status, using the wrap-
per-based feature selection algorithm. Moreover, Lin et al. 
[42] compared the performance of the LogitBoost model 
to widely-used machine learning models, including 
MFNNs, logistic regression, SVM, C4.5 decision tree, na-
ive Bayes, and random forests. It is indicated that the 

LogitBoost model with the wrapper-based feature se-
lection algorithm (using fewer biomarkers) led to equal 
performance to MFNNs and logistic regression [42]. In 
addition, the proposed model had better performance 
than SVM, C4.5 decision tree, naive Bayes, and random 
forests [42].

In brief, the best-first search is conducted by the wrap-
per-based method to identify a good subset of biomarkers 
by utilizing the predictive algorithm itself as part of the 
process for evaluating biomarker subsets [31,43]. The 
best-first search starts with an empty set of biomarkers and 
then searches forward to select a likely subset of bio-
markers by a greedy hill-climbing technique extended 
with a backtracking algorithm [31,43].

Logistic regression models often serve as a basis for 
comparison when benchmarking is performed for pre-
dictive modeling applications. The C4.5 decision tree 
models build up tree structures using top-down process-
ing and prune the tree structures based on the concept of 
information entropy [31]. The naive Bayes model esti-
mates the probability that a particular sample appears to 
be in a specific domain (for instance, “non-response” or 
“response”) by using the Bayes’ theorem [41].

Deep Learning
In this subsection, we focus on antidepressant treat-

ment outcome using deep learning strategies. The usage 
of deep learning methods is still in its infancy in terms of 
forecasting antidepressant treatments in MDD because 
scant human studies have been conducted to explore the 
deep learning models.

In general, the deep learning models are comprised of 
MFNNs with more than one hidden layer, where an 
MFNN model consists of one input layer, one or multiple 
hidden layers and one output layer [16,17]. That is, deep 
learning models generally leverage an MFNN model with 
multiple layers, instead of an MFNN model with only one 
single layer. The MFNN model normally utilize the 
back-propagation algorithm [44] in the learning stage. 
The merit of the deep learning framework is that the 
MFNN models have the strengths of nonlinear representa-
tions, integrated structures, fault tolerance, and real-time 
processing [45].

To predict antidepressant treatment response and re-
mission in MDD, Lin et al. [45] leveraged a deep learning 
framework by using multi-omics data including genetic 
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Fig. 2. An example of the integrated approach of pharmacogenomics and neuroimaging. The idea of integrating pharmacogenomics and 
neuroimaging is designated as neuroimaging pharmacogenomics or neuroimaging genomics. The predictive models in integrated approach can be 
traditional machine learning algorithms as well as deep learning algorithms.

datasets such as SNPs, demographic datasets such as mar-
ital status, age, and sex, as well as clinical datasets such as 
suicide attempt status, baseline Hamilton Rating Scale for 
Depression score, and depressive episodes for MDD 
patients. In the first step, Lin et al. [45] conducted a GWAS 
to determine the key predictive SNPs which were sig-
nificantly associated with antidepressant treatment re-
sponse and remission in a hypothesis-free approach. 
Secondly, MFNNs were employed to estimate the possi-
ble sophisticated interaction between predictive variables 
and antidepressant treatment response and remission 
[45]. Remarkably, Lin et al. [45] reported an MFNN mod-
el with 2 hidden layers for antidepressant treatment re-
sponse with the AUC value of 0.82 (sensitivity = 0.75; 
specificity = 0.69). It is also revealed that another MFNN 
model with 3 hidden layers for antidepressant remission 
with the AUC value of 0.81 (sensitivity = 0.77; specificity 
= 0.66) [45].

INTEGRATION OF RESEARCH ON 
PHARMACOGENOMICS AND 

NEUROIMAGING FOR ANTIDEPRESSANT 
TREATMENT OUTCOME IN 

PATIENTS WITH MDD

The integrated approach of pharmacogenomics and 
neuroimaging is still in its infancy in terms of forecasting 
antidepressant treatments in MDD due to the fact that 
scant human studies have explored the integrated ap-
proach of evaluating drug treatment response. Here, we 
focus on antidepressant treatment outcomes using in-
tegrated strategies of pharmacogenomics and neuro-
imaging in this section (Fig. 2).

We first conducted a comprehensive search of the elec-

tronic PubMed database (2015–present) using key words 
such as “machine learning,” “deep learning,” “antide-
pressant,” “major depressive disorder,” “neuroimaging,” 
and “pharmacogenomics”. Then, we manually screened 
the obtained articles with a particular focus on MDD.

Neuroimaging for Antidepressant Treatment 
Outcome

Predicting antidepressant treatment outcome with neu-
roimaging data has been a focus of attention for at least 
two decades, from employing simple statistical approaches 
to using machine learning and deep learning methods 
[24,25]. There are a wide variety of neuroimaging modal-
ities for examining predictive variables of antidepressant 
treatment response, including structural magnetic reso-
nance imaging (MRI), diffusion tensor imaging, electro-
encephalography, functional MRI, positron emission to-
mography, single-photon emission computed tomog-
raphy, near-infrared spectroscopy, and proton magnetic 
resonance spectroscopy [46,47]. By employing these 
imaging modalities, several predictive variables have 
been identified to be associated with antidepressant treat-
ment outcome, such as the prefrontal cortex, anterior cin-
gulate cortex, hippocampus, amygdala, and insula [46].

In brief, several machine learning methods have been 
utilized to evaluate predictive variables for forecasting an-
tidepressant treatment outcome with neuroimaging data 
[48]. These machine learning methods include linear re-
gression, SVM, random forests, and alternating decision 
tree models [48]. For instance, Patel et al. [49] suggested 
an alternating decision tree model, a traditional machine 
learning approach, to forecast antidepressant treatment 
response and to achieve an accuracy of 89% based on 
structural MRI data (such as whole brain atrophy and 
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global white matter hyper-intensity burden) and clinical 
datasets (such as mini-mental status examination scores 
and age). The alternating decision tree model, which is a 
generalized form of decision trees, is compatible to a 
boosting scheme for scaling down variance and bias prin-
cipally [49].

In addition, the reader can refer to a recent review by 
Fonseka et al. [46] for predictive variables on the neuro-
imaging applications of antidepressant treatments in 
MDD and a recent review by Kang and Cho [47] for neu-
roimaging modalities. The reader can also refer to a recent 
review by Janssen et al. [48] for machine learning meth-
ods that were shown to be able to predict antidepressant 
treatment outcome with neuroimaging data.

Integration of Pharmacogenomics and Neuroimaging
The original idea of integrating pharmacogenomics and 

neuroimaging has a long history dating back to at least 15 
years ago with an aim to use the concept of intermediate 
endophenotypes by combining the merits of both neuro-
imaging and pharmacogenomics studies [50,51]. Previously, 
this ensemble approach is known as imaging genetics or 
the interchangeable term, namely imaging genomics. 
Nowadays, it is also known as neuroimaging genomics (or 
neuroimaging pharmacogenomics), which depicts the in-
tersection of the two fields, neuroimaging and genomics 
(or neuroimaging and pharmacogenomics) [22]. A nota-
ble example of neuroimaging genomics is the Enhancing 
NeuroImaging Genetics through Meta-Analysis Consortium, 
which aims to understand how psychiatric disorders af-
fect the brain by integrating neuroimaging and genomic 
data [52]. Another example of neuroimaging pharmaco-
genomics is the Canadian Biomarker Integration Network 
in Depression project, which aims to better forecast anti-
depressant treatment outcome by integrating neuro-
imaging data and multi-omics data such as SNPs and clin-
ical datasets [53].

In psychiatry, the concept of intermediate endopheno-
types was proposed to provide quantitative measures for 
behavioral phenotypes; thereby potentially creating a 
connection between genes and behavioral phenotypes 
[54,55]. In other words, the intermediate endopheno-
types are the quantitative biomarkers of brain activities 
acquired by neuroimaging and can be used to evaluate 
neurobiological changes of brain functions affected by 
psychiatric disorders and/or treatments [56]. It is indi-

cated that the intermediate endophenotypes of neuro-
imaging can be leveraged to overcome the disadvantage 
of small effect sizes in pharmacogenomics studies [51]. 
Moreover, MDD-related genomic variants may manifest 
in the intermediate endophenotypes, which can be as-
sessed using neuroimaging and might be more closely as-
sociated with MDD and/or antidepressant treatment out-
come [57]. On the other hand, it is concerned that there 
are few replicated findings in the previous studies of neu-
roimaging genomics, which may be due to limited sample 
sizes, unreliable study designs, and a lack of corrections 
for multiple testing [58,59].

In the medical literature, such studies in the joint inves-
tigation of pharmacogenomics and neuroimaging (that is, 
neuroimaging pharmacogenomics or neuroimaging ge-
nomics; Fig. 2) are still rare, especially for antidepressant 
treatment outcome in patients with MDD. While this re-
view does not propose to address all related studies in an 
exhaustive manner, it nonetheless is representative of the 
overall trend for current research on neuroimaging phar-
macogenomics for antidepressant treatment outcome in 
patients with MDD.

For example, in order to identify the most effective anti-
depressant for an individual patient, Chang et al. [60] im-
plemented an Antidepressant Response Prediction Network 
(ARPNet) framework which utilized an elastic net model 
to pinpoint key predictive features from patient data in-
cluding MRI data and multi-omics data (such as SNPs, 
DNA methylation, and demographic information). In oth-
er word, the elastic net model serves as a feature selection 
algorithm in the ARPNet framework to generate a small 
subset of good features for subsequent analysis. Furthermore, 
the ARPNet framework employed a linear regression 
model, a traditional machine learning model, and was 
able to achieve an accuracy of 84% by using the selected 
key predictive features from the patient records [60]. It is 
indicated that the ARPNet model was able to assist doc-
tors prescribe the most competent antidepressant for their 
patients by inferencing the similar features among pa-
tients and by recognizing the comparable antidepressant 
treatment records between patients [60].

Moreover, Pei et al. [61] reported that a neuroimaging 
pharmacogenomics approach, a hybrid method combin-
ing functional MRI data and multi-omics data such as 
SNPs, was able to predict early-stage antidepressant treat-
ment response (namely the first 2 weeks). First, the key 
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predictive variables were determined by the SVM-recur-
sive feature elimination model which serves as a feature 
selection algorithm [61]. The key predictive variables in-
cluded 3 SNPs (including HTR2C rs1801412, DRD5 
rs1967550, and TOR1A rs3842225) and six regions of in-
terest in functional MRI data (including left orbital part su-
perior frontal gyrus, left hippocampus, right amygdala, 
right hippocampus, right posterior cingulate gyrus, and 
left anterior cingulate and paracingulate gyri) [61]. Next, 
an SVM algorithm was used to achieve the early-stage an-
tidepressant treatment prediction with an accuracy of 
86% [61].

LIMITATIONS

For the various findings as represented in the afore-
mentioned sections, several shortcomings of these re-
search studies should be taken into account in the inter-
disciplinary fields of pharmacogenomics, neuroimaging, 
artificial intelligence, machine learning, deep learning, 
and antidepressant treatments in MDD. It should be noted 
that the following limitations may be attributed to not only 
the pharmacogenomics of antidepressant treatments in 
MDD but also any pharmacogenomics studies.

One main disadvantage of these past studies is that 
there were no well-defined conclusions because com-
mon benchmark datasets may not be previously available 
to precisely carry out well-thought-out comparisons among 
various machine learning and deep learning frameworks 
in the previous findings [62]. Because universal bench-
mark frameworks have contributed to recent remarkable 
progresses in the field of computer vision, it is believed 
that the field of pharmacogenomics can also take advan-
tages of universal benchmark frameworks [63]. Therefore, 
standardized benchmark frameworks are crucially need-
ed for the pharmacogenomics of antidepressant treatments 
in MDD.

Moreover, it should be emphasized that we should uti-
lize the conventional linear regression models as an es-
sential benchmark when employing deep learning meth-
ods such as the deep MFNN frameworks [64]. In other 
words, deep learning methods such as the deep MFNN 
frameworks should be a compatible method not only to 
the conventional linear regression models but also to con-
ventional non-linear models such as SVMs and random 
forests [63].

Furthermore, a typical pitfall is that the aforementioned 
machine learning and deep learning methods may not uti-
lize the cross-validation approach to prevent the possi-
bility of overfitting during the training procedure. For ex-
ample, the repeated 10-fold cross-validation method and 
leave-one-out cross-validation method could be valuable 
approaches for exploring the generalization of machine 
learning and deep learning methods [41,65]. Concisely, 
the repeated 10-fold cross-validation method randomly 
divides the full data into ten subgroups, and then the ma-
chine learning and deep learning model can be trained by 
nine-tenths of the dataset and tested by the unused tenth 
of the dataset [31]. Then, the previous procedure is re-
peatedly performed nine more times by designating dis-
tinct nine-tenths of the dataset for training and a distinct 
tenth of the dataset for testing. In a similar way, the 
leave-one-out cross-validation method is an extreme case 
of the repeated 10-fold cross-validation method, where 
the number of folds equals the number of cases in the full 
data [66]. In addition, the leave-one-out cross-validation 
method is often leveraged when the number of cases in 
the full data (or in a particular subset) is limited [66]. 
Interestingly, it is hypothesized that the cross-validation 
approach might supposedly affect the long-term archi-
tecture and performance in the consequent machine 
learning and deep learning methods [67].

On another note, the typical concerns in deep learning, 
namely deep neural networks or deep MFNNs, may be in-
cluded in the aforementioned studies [63]. For example, 
the accuracy of the deep learning frameworks would be 
relatively flat when the cohort size is low [68]. Moreover, 
it is pivotal that a number of independent experiments 
would have generalized their findings by using universal 
benchmark datasets [69]. However, it is an open chal-
lenge that universal benchmark datasets may be un-
reachable to expedite successive analysis in deep learn-
ing experiments. Therefore, future deep learning experi-
ments such as pharmacogenomics studies of antidepressant 
treatments in MDD should be accurately reproducible 
based on universally well-established benchmark data-
sets, which should be achieved by the research commun-
ity in the multidisciplinary fields of pharmacogenomics, 
neuroimaging, artificial intelligence, machine learning, 
deep learning, and antidepressant treatments in MDD.

Yet another pitfall is that it is especially troublesome to 
evaluate the interpretation of deep learning methods such 
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as the deep MFNN frameworks. In principal, deep learn-
ing methods are recognized as a “black box”, which is typ-
ically problematic to interpret [70]. It is also worth men-
tioning that not only the deep MFNN frameworks but also 
other deep learning methods (such as convolutional neu-
ral network models and recurrent neural network models) 
have this problem [71]. It is indisputable that future inter-
pretable deep learning methods are warranted; thereby, 
we would identify understandable features elicited from 
the deep learning architectures.

One major open challenge and emerging problem in 
the pharmacogenomics of antidepressant treatments in 
MDD using the machine learning and deep learning 
methods is that open-source software tools are essentially 
warranted due to their relative importance in replicability 
ad reusability [72]. Second, standardized benchmarking 
metrics in the pharmacogenomics of antidepressant treat-
ments in MDD using the machine learning and deep 
learning methods could be very challenging. It should be 
emphasized that the aforementioned challenges and 
emerging problems in the pharmacogenomics of anti-
depressant treatments in MDD using the machine learn-
ing and deep learning methods may also stem from any 
pharmacogenomics studies.

There are major open challenges and emerging prob-
lems in the machine learning and deep learning strategy 
itself. The first open challenge and emerging problem in 
the machine learning and deep learning strategy is to re-
solve the high-dimensionality problem, especially on the 
task of dimensionality reduction for the extremely unman-
ageable large volume of the real-world data [73]. For ex-
ample, the application of new deep learning algorithms, 
such as the generative adversarial network (GAN) archi-
tecture [74], has been contributing to fulfill the task of di-
mensionality reduction for the large-scale single-cell se-
quencing data in the preclinical stage of the drug develop-
ment pipeline [75]. In addition, the reader can refer to a 
recent review by Lin et al. [75] for the relevant applica-
tions of GAN models in drug design and discovery. The 
second open challenge and emerging problem in ma-
chine learning and deep learning strategy is to overcome 
the problem of unstructured data or un-categorized data, 
where the real-world data is prone to have a small quan-
tity of structured data or categorized data [73].

CONCLUSION AND PERSPECTIVES

As indicated by the aforementioned findings, pharma-
cogenomics affirms to provide novel therapeutic and di-
agnostic approaches for antidepressant treatment pre-
diction in MDD using the multidisciplinary approach of 
artificial intelligence, machine learning, deep learning, 
and neuroimaging. First, in terms of artificial intelligence 
techniques, it is of great interest that future prospective re-
search projects should explore machine learning and 
deep learning strategy such as deep MFNNs and GAN 
models to forecast antidepressant treatment response and 
remission with the desired predictive variables of mul-
ti-omics data, which may further advance feasible medi-
cal solutions in global health as well as public health. 
Second, in terms of research on the integration of pharma-
cogenomics and neuroimaging, it is vital to note that ma-
chine learning and deep learning techniques might play a 
key role in predicting antidepressant treatment response 
and remission in MDD. Furthermore, machine learning 
and deep learning strategy such as deep MFNNs and 
GAN models will be undoubtedly established towards the 
field of pharmacogenomics in light of the compelling 
needs of innovative approaches in the fields of public 
health, global health, and population health [9]. In addi-
tion, we would envision that the recent advancements in 
single-cell sequencing technologies and data-intensive 
health sciences may assuredly trigger novel machine 
learning and deep learning software tools for public 
health, global health, and population health over the next 
decade [1,76]. Thereby, the general public and govern-
ments should achieve these challenges and issues with 
high priorities in the up-coming years [7,77]. In the next 
generation to come, pharmacogenomics involving ma-
chine learning, deep learning, and neuroimaging ap-
proaches would eventually become a reality in in-
dividualized clinical care when future extensive studies 
are able to fully investigate the relevant predictive varia-
bles as well as clinical biomarkers [78,79].
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