
INSULIN RECEPTOR BINDING

From venom peptides to a
potential diabetes treatment
Cone snails have evolved a variety of insulin-like molecules that may help

with the development of better treatments for diabetes.
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T
he hormone insulin is produced by the

pancreas and is important for regulating

the sugar levels in the blood. Defects in

the production or function of insulin can lead to

type 1 or type 2 diabetes, which affect millions

of people worldwide. The lives of many of type

1 diabetics are dependent on daily insulin injec-

tions, which is also necessary for many type 2

diabetic patients (Zaykov et al., 2016).

The key to effective insulin treatment is fast-

acting drugs that can quickly deliver insulin to

the target cells and mimic the way that the pan-

creas can regulate blood sugar levels. Natural

insulin is first transported to the liver, where it

inhibits the synthesis of glucose, and it only

reaches the peripheral tissues later, where it

eventually regulates the amount of glucose

entering the cells.

However, insulin injections deliver the hor-

mone directly to the periphery, which delays the

inhibition of liver glucose production and causes

fluctuations of blood sugar levels (Herring et al.,

2014). Moreover, at high concentrations, insulin

can form aggregates that take time to dissolve

and consequently contribute to delaying its

action after injection (Figure 1, upper panel;

Baker et al., 1988). Developing faster treat-

ments that are not prone to aggregation is a top

priority, and although several fast-acting insulins

are in clinical use, they still have not reached the

same pharmacodynamics as natural insulin

secreted by the pancreas (Herring and Russell-

Jones, 2018; Zaykov et al., 2016).

Previous studies were able to identify the

structure of the complex that insulin forms with

its receptor, and the basics of how insulin binds

to the receptor (De Meyts, 2015;

Menting et al., 2013; Menting et al., 2014;

Scapin et al., 2018; Weis et al., 2018). Now, in

eLife, Helena Safavi-Hemami of the University of

Utah School of Medicine and colleagues –

including Peter Ahorukomeye and Maria Diso-

tuar as joint first authors – report how cone

snails could help progress our understanding of

this process (Ahorukomeye et al., 2019).

Cone snails have evolved sophisticated strat-

egies for hunting fish. They produce venomous,

insulin-like molecules, which they release into

the water to paralyze their victim (Figure 1,

lower panel). The insulin-like molecules induce

low blood sugar levels in their prey, which makes

them unable to escape. It has previously been

shown that the insulin-like peptide of a cone

snail species does not form aggregates

(Menting et al., 2016). Therefore, the research-

ers – who are based at institutes in the United

States and Australia – wanted to find out if other

cone snails also produced similar substances.

Ahorukomeye et al. discovered that although

the species they analyzed made a range of
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different versions of these insulin-like peptides,

none of the molecules could form aggregates.

Moreover, the peptides were able to bind to

human insulin receptors, and they were also

effective in fish and mouse models of the dis-

ease, where they reversed high blood sugar lev-

els. Structural and molecular analyses further

revealed that the insulin-like peptides of the

snails bind in an unusual way to the insulin

receptor.

Previous research has shown that a region of

insulin that is involved in the cluster formation,

the C-terminus of the B chain, is also crucial for

binding to the insulin receptor (Figure 1, upper

panel; Baker et al., 1988; Menting et al.,

2014). However, attempts to remove the B chain

to avoid cluster formation have so far compro-

mised the function of insulin.

Ahorukomeye et al. discovered that although

the insulin-like peptides produced by the snails

lacked the C-terminal part of the B chain, they

could still effectively interact with the human

insulin receptor. This might be because some

their peptides contained hydrophobic amino

acid residues that mimic important receptor-

binding regions (e.g., phenylalanine at the posi-

tion B24 of insulin) that had been lost with the

missing C-terminal segment (Figure 1, lower

panel). Moreover, these regions were very simi-

lar among the cone snail species studied. Taken

together, these findings indicate that the C-ter-

minus of the B chain is not necessary for insulin

binding to the receptor. Future research may

build on these results to design potent, fast-act-

ing insulin agonists that are less likely to form

aggregates.

The study of Ahorukomeye et al. highlights

the beauty of evolution and the adaptability of

organisms. We can learn important lessons from

Nature as we seek to develop more patient-

friendly insulin receptor agonists for the treat-

ment of diabetes.

Figure 1. Insulin receptor binding in humans and cone snails. Upper panel: Insulin is secreted by the pancreas in

the form of hexamer aggregates with ions (Zn2+) at their center: these aggregates divide to form dimers, which

then split to form monomers. Each monomer consists of an A chain (red) and a B chain (gray) with a C-terminal

B23-B30 strand. An insulin monomer binds to the L1 domain of an insulin receptor, with the C-terminus of the B

chain partially detaching from the central core of the monomer to avoid a clash with the CT peptide (blue) of the

receptor. A phenylalanine amino acid residue at the position B24 of insulin (PheB24, black) is crucial for insulin

binding. Lower panel: Fish-hunting cone snails secrete insulin-like molecules that do not form aggregates. These

molecules induce low blood sugar levels in fish, which stops them escaping. Although cone snail insulin lacks both

the C-terminal of the B-chain (gray) and PheB24, it can still bind to fish insulin receptors because it contains two

tyrosine amino acid residues (TyrB16 and TyrB20, black) that mimic the missing interactions. The A-chain is shown

in beige.
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