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Abstract

Ultra-low-field (ULF) MRI (B0 = 10–100 mT) typically suffers from a low signal-to-noise ratio (SNR). While SNR can be improved
by pre-polarization and signal detection using highly sensitive superconducting quantum interference device (SQUID)
sensors, we propose to use the inter-dependency of the k-space data from highly parallel detection with up to tens of
sensors readily available in the ULF MRI in order to suppress the noise. Furthermore, the prior information that an image can
be sparsely represented can be integrated with this data consistency constraint to further improve the SNR. Simulations and
experimental data using 47 SQUID sensors demonstrate the effectiveness of this data consistency constraint and sparsity
prior in ULF-MRI reconstruction.
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Introduction

MRI has become an indispensible resource in clinical

medicine because of its non-invasiveness and excellent contrast

between soft tissues without using ionizing radiation. From the

clinical perspective, MRI still faces significant challenges. First,

a strong magnet is usually required to generate a sufficient

magnetization to be detected by NMR techniques. The price of

a high-field magnet (1.5 T and above) constitutes a major part of

the cost of an MRI system. Its weight also excludes MRI

applications in mobile or remote settings, such as ambulance,

space station, or battlefield. Obese patients cannot always

obtain MRI due to the limitation of the bore size of the magnet

(typically 70 cm or less). Second, because of potential mechan-

ical or electrical hazards, taking MRI from patients with

metallic or electronic objects is difficult. However, imaging

patients with wounds caused by metallic objects or together with

interventional devices (for example, in the intensive care unit or

the emergency room) is clinically desirable.

Ultra-low-field (ULF) MRI has been developed (for review, see

[1]) as a potential solution to mitigate the above-mentioned

challenges: ULF-MRI systems use magnetic field strengths in the

range of micro- or milliteslas [2], making possible instrumentation

at low cost, light weight, and open access. ULF-MRI systems have

the advantages of metal compatibility [3] and high T1 contrast [4].

However, one major technical challenge of ULF MRI is its low

signal-to-noise ratio (SNR). To address this issue, a separate

stronger pre-polarization magnet has been suggested (in the range

of tens of milliteslas) for magnetization generation while a weaker

signal detection magnet (in the range of tens of microteslas) is used

for magnetization precession. Additionally, highly sensitive super-

conducting quantum interference devices (SQUIDs) are typically

used to detect the weak magnetic fields [2].

Since a SQUID array with up to tens or even hundreds of

sensors can be used in an ULF-MRI system for signal detection,

here we propose a data-processing procedure to reinforce data

consistency among the collection of all spatially localized

measurements from all SQUID sensors to suppress noise. In fact,

this data consistency has been reported in high-field parallel MRI

aiming at improving the spatiotemporal resolution at the cost of

SNR [5]. However, in ULF MRI the SNR is the most important

resource which cannot be compromised.

Different from aiming at achieving a higher spatiotemporal

resolution, parallel MRI can exploit the redundancy among

channels of a receiver RF coil array to suppress (motion) artefacts

[6,7,8,9,10,11] by pursuing the consistency in either k-space

[6,7,10], image domain [9], or coil sensitivity maps [11]. Here, we

attempt to exploit the redundancy among channels of a receiver

coil array to improve the SNR of ULF MRI. Our method differs

from previous approaches by using a universal kernel to enforce

the data consistency among measurements across receiver coils

iteratively and by adding a priori image sparsity information to
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further suppress the noise. Using simulations and experimental

data, we demonstrate that our proposed method can effectively

improve ULF-MRI image quality.

Theory

The correlation among the channels in parallel MRI
detection

In the following, we use the word ‘coil’ to respectively indicate a

pickup coil in the ULF-MRI system and a radio-frequency (RF)

coil in high-field MRI. Accordingly, a coil array indicates the

collection of pickup coils in ULF-MRI and RF coils in high-field

MRI. Because the sensitivity map for each channel of a coil array

is spatially smooth and distinct, the k-space data from each

channel are locally and linearly correlated with data from other

channels [5,12,13]. Specifically, using di(km) to denote the

complex-valued k-space data at the ith channel and at k-space

coordinate km, we have

di(km)~
X

channels; neighbors of kmf g
pj
:dj(k½m�), j=i, ð1Þ

where k[m] denotes the k-space coordinates in the vicinity of km

(excluding km). pj are the fitting coefficients with the index j

indicating different channels of the coil and neighbors of km. Note

that the vicinity here is related to the spatial smoothness of the coil

sensitivity maps. The formulation above has been used extensively

in high-field parallel MRI to increase the spatiotemporal

resolution of MRI at the cost of SNR reduction (for a review,

see [14]). For example, SMASH replaces the k-space data di(km)

and dj(k[m]) with B1 sensitivity maps and desired spatial harmonic

functions to derive the coefficients pj, which are later used to

interpolate the missing k-space data [13]. GRAPPA uses the ‘auto-

calibrated scan’ k-space data di(km) and dj(k[m]) to first estimate

coefficients pj, which are then used to multiply the acquired k-

space data in order to reconstruct the skipped k-space data [12].

Different from GRAPPA, which uses different k-space kernels to

reconstruct data in different k-space lattice structures, SPIRiT is a

method that synthesizes missing k-space data by using one single

pattern to linearly correlate neighboring k-space data points from

all receiver coils [5].

Eq. [1] has a matrix representation

di~Dai, i~1 � � � nc ð2Þ

where di denotes a vector generated from the vertical concatena-

tion of all k-space data points di(km) in channel i. D is a matrix,

each row of which includes the k-space data points dj(k[m]) from all

RF coils at k-space coordinates k[m] in the neighborhood of km. ai

is a vector including the unknown coefficients. nc is the number of

channels in a coil array.

Suppressing noise using data consistency
Instead of aiming at spatiotemporal resolution enhancement, we

use Eq. [2] to enforce data consistency among channels of a coil

array at all k-space locations. Without any noise contamination,

Eq. [2] describes a linear dependency between a k-space data point

and other k-space data points across all channels of a coil array.

Specifically, given di and D, ai can be estimated. Let âai denote the

estimate of ai. We expect that D âai i&di.

To enforce such data consistency practically, we propose to

iteratively 1) first estimate the coefficients âai, and 2) update all k-

space data D âai. Specifically, at the pth iteration with data Dp and

di
p, we have âa

p
i ~f Dp, d

p
i p

� �
, where f .ð Þ denotes the estimator.

Subsequently, we update the data d
pz1
i ~Dpâa

p
i , i~1 � � � nc and

Dpz1~ d
pz1
i � � � dpz1

nc

n o
. The procedure is repeated until conver-

gence d
pz1
i &d

p
i , i~1 � � � nc.

The estimator f .ð Þ can be based on least-squares fitting for

computational efficiency.

âa
p
i ~ arg min

a
Dpa{d

p
i

�� ��2

2

~ Dp HDp
� �{1

Dp Hd
p
i ,

ð3Þ

where the superscript H denotes complex conjugate and transpose

and .k k2
2 denotes the square of the l2-norm.

In addition, we can incorporate any prior information to

estimate regularized coefficients âa
p
reg,i for channel i at an iteration

step p.

âa
p
reg,i~ arg min

a
Dpa{d

p
i

�� ��2

2
zl TFDpak k1

1, ð4Þ

where F denotes the Fourier transform, and T denotes taking the

difference between a selected voxel and the average of its

neighboring voxels. .k k1
1 denotes taking the l1-norm. l is a

regularization parameter. The cost quantifying the ‘sparsity’ of the

image in the transformed domain TFDpak k1
1 is closely related to

the Total Variation [15,16].

Eq. [4] was calculated in practice by the iterative re-weighted

least-squares algorithm [17], which uses a computationally

efficient weighted least-squares estimator with a diagonal weight-

ing matrix changing over iteration to approximate the exact

solution of Eq. [4]. Specifically, at the jth iteration, we have

Rj~diag 1

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ezTFDpâa

p
reg,i

j

��� ���
r� 	

Wj~RjTFDp

âa
p
reg,i jz1~ Dp HDpzkWj HWj

� �{1
Dp Hd

p
i ,

ð5Þ

where diag .ð Þ denotes generating a diagonal matrix from the

vector argument. e is a very small number to avoid divergence.

The regularization parameter was determined by

k~l Tr Dp H Dpð Þ



Tr Wj HWj
� �

, where Tr .ð Þ denotes the trace

of a matrix. This is based on our previous studies in regularized

parallel MRI reconstructions [18,19,20]. The l used in this study

ranged between 0.03 and 0.5.

Methods

Ethics Statement
All human images were acquired from subjects with written

informed consent under the approval of the Institute Review

Board of Aalto University.

Our ULF-MRI system [21] has 47 SQUID sensors distrib-

uted over the occipital lobe in a helmet-shaped dewar

(Figure 1). The field sensitivity of the sensors was 4 fT/!Hz

for magnetometers and ,4 fT/cm/!Hz for gradiometers. A

constant B0 = 50 mT was applied for magnetization precession

along the z direction in Figure 1. The configuration of this

system was used for the subsequent simulations and empirical

hand and brain imaging.

ULF MRI Noise Suppression by Data Consistency
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In the simulation, the ‘true image’ was based on a high-

resolution T1-weighted head MRI acquired from a 3T MRI (Tim

Trio, Siemens Medical Solutions, Erlangen, Germany). The data

were acquired using a 32-channel head coil array with the

MPRAGE pulse sequence (TR/TE/flip = 2530 ms/3.49 ms/7u,
partition thickness = 1.0 mm, matrix = 2566256, 256 partitions,

FOV = 256 mm6256 mm). One coronal-slice head image

through the center of the brain was taken as the ‘true image’,

which was then multiplied pixel-by-pixel by the individual coil-

sensitivity map calculated by the Biot–Savart law after given the

detection-array geometry (Figure 1) in order to simulate the

noiseless detection si in the ith channel of the coil array. To

simulate acquisitions at different signal-to-noise ratios (SNRs),

complex-valued Gaussian white noise n was scaled and then

added to each channel of the coil array: SNR = !(sHs/nHn),

where s is a vector consisting of si across different channels. We

simulated SNR = 0.5, 1, and 2 in this study.

Figure 1 shows the schematic diagram of the ULF-MRI

system. Experimental data were acquired using a 3D spin-echo

sequence with TE = 80 ms to generate hand images of

6 mm67.1 mm in-plane resolution (slice thickness 10 mm)

using a maximal gradient strength of 85 mT/m. Before each k-

space read-out measurement, the sample was polarized in a 22-

mT field for 1 s. The total imaging time was 35 minutes. For

brain images, we also used a 3D spin-echo sequence with

TE = 122 ms, 4 mm64 mm in-plane resolution (slice thickness

6 mm), and a maximal gradient strength of 130 mT/m. Before

each k-space read-out measurement, the sample was polarized

in a 22-mT field for 915 ms. The total imaging time was

90 minutes.

We also measured saline phantom images in the brain imaging

experiment. This allowed us the estimates of coil sensitivity maps

and consequently to use the non-accelerated SENSE MRI

reconstruction algorithm [22,23] with regularization [18,20,24]

to optimally combine complex-valued coil images. Specifically, the

regularization parameter l was chosen as described in our

previous study [21]. For images without sensitivity maps, we

calculated the sum-of-squares images as the final reconstruction.

To quantify the image quality, we calculate the peak signal-to-

noise ratio (pSNR) of the image as the ratio between the largest

pixel value and the background noise fluctuation, which was the

square root of the mean of the image pixel values outside the

imaging object. Since there is no golden standard in the empirical

data, we also calculate the mean-square-error (MSE) of the

reconstruction with respect to the reconstruction using all available

averages. Data were reconstructed with Matlab (Mathworks, Natick,

MA, USA) using in-house codes on a PC (two quad-core

processors with 16 gigabytes of memory).

Results

Simulations
Figure 2 shows the simulation results of reconstructing sum-of-

squares (SoS) images. For comparison, a noiseless SoS reconstruc-

tion is also shown. Generally, these results show that the images

become less distinguishable as SNR degrades. Using the data

consistency constraint alone without any prior (l= 0), we observed

that the residual errors, quantified by the sum of the squares of the

difference image between each reconstruction and the noiseless

SoS image, decrease at all SNRs. The residual errors are also

shown in the lower right corner of each reconstructed image. We

also used the prior information of image sparsity to further

suppress noise with three l’s (l= 0.03, 0.1, and 0.5). The l
corresponding to the minimal residual error was found at different

SNRs. At SNR = 2, the prior did not help reduce the residual

error, because image features of lower intensity, such as the skull

and muscles outside brain parenchyma, were also suppressed. At

SNR = 1, data consistency constraint shows a smaller residual

error. Using the sparsity prior, we found that l= 0.03 gives the

least residual error (approximating the best reconstruction at

SNR = 2 with l= 0) by showing some brain structures and low

background noise. At SNR = 0.5, although the data consistency

constraint and the prior of image sparsity can reduce the noise,

the reconstruction is generally too noisy to discern the actual

image features. However, surprisingly, with l= 0.5, we can still

delineate the brain parenchyma, which cannot be recognized in

the original SoS and the SoS reconstruction using data

consistency constraint alone. Taken together, at SNR.2 the

data consistency constraint can suppress the noise. At SNR ,1,

the image can be better reconstructed using both the data

consistency constraint and the prior information, assuming the

image can be sparsely represented.

Hand images
Figure 3 shows experimental images of the right hand of a

subject. Without coil sensitivity measurement, we showed the sum-

of-squares (SoS) image of five digits and the palm. Notably, there

was a clear vertical strip artifact in the SoS image, potentially due

to the SQUID noise at 3 kHz in our system. The background

noise s was 0.021. Using the data consistency constraint alone

Figure 1. A: Our ULF-MRI system, which includes the x-, y-, and
z-gradients (orange, red, and blue, respectively) and the
magnet to generate the measurement field (green). The
polarizing and excitation coils are not shown in the figure. B: The
posterior view of the system shows 47 SQUID sensors covering the
posterior parts of the head.
doi:10.1371/journal.pone.0061652.g001

Figure 2. The simulated noiseless sum-of-squares (SoS) image
from all 47 channels of the ULF-MRI system (left). At different
SNRs compared to the direct SoS reconstruction, SNR can be improved
by incorporating the data consistency constraint (l= 0). Using the
sparsity prior (l= 0.03, 0.1, and 0.5), the residual error can be further
reduced with low SNR acquisitions. The residual errors are reported at
the lower-right corner of each reconstruction.
doi:10.1371/journal.pone.0061652.g002

ULF MRI Noise Suppression by Data Consistency
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(l= 0) reduced the vertical strip artifact and the background noise

(s= 0.012) significantly. Applying the data consistency constraint

also increased the pSNR from 7.7 to 14.0. Further, the use of the

sparsity prior (l= 0.1) gave a similar reconstructed image as the

reconstruction with l= 0. The pSNR was further improved to

57.6 because of the strong suppression of the background noise.

Brain images
Six coronal slices of brain images from our ULF-MRI system

with 22-mT polarization, 130-mT/m maximum gradient, and 90-

minute imaging time (eight averages) are shown in Figure. 4. The

shapes of the skull and brain parenchyma were observed in the

regularized SENSE reconstructions. We found that signals

potentially from gray and white matter increased as the data

consistency constraint was applied (l= 0). The average pSNR

across six images increased from 11 to 26. Furthermore, when the

sparsity constraint was added, the average pSNR dramatically

increased to 296. This was due to strong suppression of the

background noise. However, applying the sparsity constraint also

decreased the image intensity at the FOV center. Figure 5 shows

the regularized SENSE reconstruction of slice 4 using data with 1,

2, 4, and 8 averages. The pSNR increased in proportion to the

number of averages for the original data. Using the same data,

reconstructions that applied the data consistency constraint with

l= 0 had a 2.2-folds pSNR improvement. Specifically, the pSNR

of the reconstruction with four averages gave similar pSNR to the

reconstruction using unaveraged data with the data consistency

constraint. This is similar to the 8-average data and 2-average data

with the data consistency constraint. Using the sparsity constraint

with l= 0.01 further improved the pSNR by a factor of 12.

However, one should be cautious that a higher pSNR should be

further validated by golden standard images if possible. The MSE

with respect to the regularized SENSE reconstruction with eight

averages were also reported in Figure 5. Similar MSE results can

be obtained by either the data consistency constraint or double the

measurement time.

Discussion

Our simulation and empirical results demonstrate that the use

of the data consistency constraint in multiple-sensor ULF MRI can

reduce the noise level and thus increase the (peak) SNR of the

reconstructed images. Parallel imaging at high field using this data

consistency constraint has been previously explored for imaging

acceleration, where SNR is traded-off for the enhanced spatio-

temporal resolution [5]. Without acceleration, the data consistency

constraint has also been used to suppress motion artifacts in high-

field MRI [6,7,8,9,10,11]. While our method similarly keeps all

the measurements in order to minimize the SNR loss, the

algorithm is different from previous methods because 1) a

Figure 3. A hand sum-of-squares (SoS) image (left). The data
consistency constraint (l= 0) reduces significantly the noticeable
vertical strip artifact (middle). Further, the sparsity prior (l= 0.1)
improves the reconstruction only marginally (right). The pSNR was
indicated in each image.
doi:10.1371/journal.pone.0061652.g003

Figure 4. Brain images reconstructed by the regularized SENSE
reconstructions with no acceleration (left column). The data
consistency constraint (l= 0) improves the image by showing a strong
signal in the brain parenchyma (middle column). Further, the sparsity
prior (l= 0.1) suppresses the background noise significantly to better
delineate the skull and the brain (right column). The pSNR was
indicated in each image.
doi:10.1371/journal.pone.0061652.g004

Figure 5. A brain image with different number of averages
reconstructed by the regularized SENSE reconstruction with no
acceleration. The pSNR (cyan) and MSE (green) were reported in each
image.
doi:10.1371/journal.pone.0061652.g005

ULF MRI Noise Suppression by Data Consistency
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universal kernel is used to enforce k-space data consistency, 2) an

iterative procedure is used to enhance the data consistency

progressively, and 3) prior information about image sparsity is

included in the processing. Different from high-field MRI, where

the dominant noise source is the imaging object, ultra-low-field

MRI has dominant noise source from the instrument, including

sensors and the dewar [1]. However, it should be noted that our

algorithm is completely data-driven and does not depend on

whether the noise comes dominantly from the instrument or the

imaging object: any fluctuation deteriorating the k-space data

consistency is suppressed by our method. One limitation of our

method is that SNR cannot be improved when noise is correlated

between channels, because the k-space data consistency is not

disturbed in this special case. Without discarding any acquired

data, the reconstructed image does not lose any SNR. By further

adjusting the dependency among k-space measurements, we can

even suppress the noise and thus obtain a higher SNR than in the

original measurements.

It should be noted that since our algorithm only adjusts a given

data set iteratively, the results will not be improved if the input is

very noisy (Figure 2). The other limitation is that our method will

not improve the image indefinitely over the iterations. Note that

while our reconstructed images still contain noise, the algorithm

does not introduce any distortion, because neither the B0 field nor

the k-space sampling grid, two common factors introducing

distortion in high-field MRI, was changed.

Our ULF-MRI system is based on a magnetoencephalography

(MEG) system, which uses an array of SQUID sensors to detect the

extracranial weak magnetic fields elicited by synchronous post-

synaptic currents from mainly pyramidal cells [25]. Noise suppres-

sion is a critical procedure in both ULF-MRI and MEG data

processing. Our method is different from the signal-space projection

(SSP) [26] and signal-space separation (SSS) [27,28] methods in

MEG processing, both of which are spatial filtering methods to

separate measurements into signal and noise components and to

remove the latter. The data consistency constraint, however, is

based on the k-space formulation, which is a unique property in

MRI (MEG does not have similar spatial encoding). However, we

expect that this method can be integrated with SSP and SSS to

further suppress noise and thus to improve the quality of ULF MRI.

By adding the a priori information that an image can have a

sparse representation, the image noise can be further suppressed.

This is particularly advantageous for low-SNR images (Figure 2).

The sparsity assumption was first incorporated to MRI as

compressed sensing [15] and recently has been applied to MR

angiography [15,29,30,31], dynamic imaging [32,33,34], hyper-

polarized MRI [35,36,37], chemical shift imaging [35,38,39], and

relaxometry mapping [40,41]. Our results suggest that such a

sparsity assumption can be appropriately integrated with the data

consistency constraint to further suppress the noise level in highly

parallel MR signal detection. However, the over-reliance on the

sparsity constraint (a larger l parameter in our study) causes the

loss of image features with a lower contrast (Figure 2),

corroborating the side-effect reported in an earlier compressed

sensing MRI study [15].

Accordingly, tuning of the regularization parameter can be

critical to obtain optimal performance. Previously, in parallel MRI

reconstruction with Tikhonov regularization, aiming at simulta-

neously minimizing the measurement error and deviating from the

prior based on the l2-norm measure, we suggested the L-curve

approach [24] and data-driven variance-partitioning approach

[20] to optimize l. However, the present study uses the l1 norm in

evaluating the image sparsity (Eq. 4) and thus, for example, an L-

curve cannot be calculated efficiently. Based on our heuristic

simulations, we suggested that l between 0.03 and 0.5 can

generate satisfying results, yet the optimal l depends on the SNR

of the acquisitions. Other methods, such as L-curve [24],

partitioning of the covariance matrix [20], and generalized cross

validation [42,43] may be used to estimate the appropriate

regularization parameter.

Another issue related to incorporating the sparsity prior is the

choice of a transformation to sparsify the image. Here we used the

Total Variation based on a local Laplacian operator to sparsify the

image. It is also possible to use the wavelet transform to achieve a

sparse representation [15]. However, we found that the difference

is marginal (not reported).

Our method is expected to be applicable to other MR

measurements contaminated by noise. Thus, not only ULF

MRI, but also other MRI applications suffering from noise

contamination may benefit from this data consistency constraint.

Yet the degree of improvement needs more systematic investiga-

tions.
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4. Lee SK, Mößle M, Myers W, Kelso N, Trabesinger AH, et al. (2005) SQUID-

detected MRI at 132 microT with T1-weighted contrast established at 10

microT–300 mT. Magn Reson Med 53: 9–14.

5. Lustig M, Pauly JM (2010) SPIRiT: Iterative self-consistent parallel imaging

reconstruction from arbitrary k-space. Magn Reson Med 64: 457–471.

6. Fautz HP, Honal M, Saueressig U, Schafer O, Kannengiesser SA (2007) Artifact

reduction in moving-table acquisitions using parallel imaging and multiple

averages. Magn Reson Med 57: 226–232.

7. Bydder M, Atkinson D, Larkman DJ, Hill DL, Hajnal JV (2003) SMASH

navigators. Magn Reson Med 49: 493–500.

8. Bydder M, Larkman DJ, Hajnal JV (2002) Detection and elimination of motion

artifacts by regeneration of k-space. Magn Reson Med 47: 677–686.

9. Atkinson D, Larkman DJ, Batchelor PG, Hill DL, Hajnal JV (2004) Coil-based

artifact reduction. Magn Reson Med 52: 825–830.

10. Huang F, Lin W, Bornert P, Li Y, Reykowski A (2010) Data convolution and

combination operation (COCOA) for motion ghost artifacts reduction. Magn

Reson Med 64: 157–166.

11. Winkelmann R, Bornert P, Dossel O (2005) Ghost artifact removal using a

parallel imaging approach. Magn Reson Med 54: 1002–1009.

12. Griswold MA, Jakob PM, Heidemann RM, Nittka M, Jellus V, et al. (2002)

Generalized autocalibrating partially parallel acquisitions (GRAPPA). Magn

Reson Med 47: 1202–1210.

13. Sodickson DK, Manning WJ (1997) Simultaneous acquisition of spatial

harmonics (SMASH): fast imaging with radiofrequency coil arrays. Magn

Reson Med 38: 591–603.

14. Sodickson DK, McKenzie CA (2001) A generalized approach to parallel

magnetic resonance imaging. Med Phys 28: 1629–1643.

15. Lustig M, Donoho D, Pauly JM (2007) Sparse MRI: The application of

compressed sensing for rapid MR imaging. Magn Reson Med 58: 1182–1195.

16. Knoll F, Bredies K, Pock T, Stollberger R (2011) Second order total generalized

variation (TGV) for MRI. Magn Reson Med 65: 480–491.

17. Gentle JE (2007) Matrix algebra : theory, computations, and applications in

statistics. New York, N.Y.; London: Springer. xxii, 528 p.

18. Lin FH, Huang TY, Chen NK, Wang FN, Stufflebeam SM, et al. (2005)

Functional MRI using regularized parallel imaging acquisition. Magn Reson

Med 54: 343–353.

ULF MRI Noise Suppression by Data Consistency

PLOS ONE | www.plosone.org 5 April 2013 | Volume 8 | Issue 4 | e61652



19. Lin FH, Kwong KK, Belliveau JW, Wald LL (2004) Parallel imaging

reconstruction using automatic regularization. Magn Reson Med 51: 559–567.
20. Lin FH, Wang FN, Ahlfors SP, Hamalainen MS, Belliveau JW (2007) Parallel

MRI reconstruction using variance partitioning regularization. Magn Reson

Med 58: 735–744.
21. Vesanen PT, Nieminen JO, Zevenhoven KCJ, Dabek J, Parkkonen LT, et al.

(DOI: 10.1002/mrm.24413) Hybrid ultra-low-field MRI and MEG system
based on a commercial whole-head neuromagnetometer. Magn Reson Med.

22. Roemer PB, Edelstein WA, Hayes CE, Souza SP, Mueller OM (1990) The

NMR phased array. Magn Reson Med 16: 192–225.
23. Pruessmann KP, Weiger M, Scheidegger MB, Boesiger P (1999) SENSE:

sensitivity encoding for fast MRI. Magn Reson Med 42: 952–962.
24. Lin F-H, Kwong K, Belliveau J, Wald L (2004) Parallel imaging reconstruction

using automatic regularization. Magn Reson Med 51: 559–567.
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