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a b s t r a c t 

Thermal cyclers are used to perform polymerase chain reaction runs (PCR runs) and Peltier modules are the key 

components in these instruments. The demand for thermal cyclers has strongly increased during the COVID-19 

pandemic due to the fact that they are important tools used in the research, identification, and diagnosis of the 

virus. Even though Peltier modules are quite durable, their failure poses a serious threat to the integrity of the 

instrument, which can lead to plant shutdowns and sample loss. Therefore, it is highly desirable to be able to 

predict the state of health of Peltier modules and thus reduce downtime. In this paper methods from three sub- 

categories of supervised machine learning, namely classical methods, ensemble methods and convolutional neural 

networks, were compared with respect to their ability to detect the state of health of Peltier modules integrated 

in thermal cyclers. Device-specific data from on-deck thermal cyclers (ODTC®) supplied by INHECO Industrial 

Heating & Cooling GmbH (Fig 1), Martinsried, Germany were used as a database for training the models. The 

purpose of this study was to investigate methods for data-driven condition monitoring with the aim of integrating 

predictive analytics into future product platforms. The results show that information about the state of health can 

be extracted from operational data - most importantly current readings - and that convolutional neural networks 

were the best at producing a generalized model for fault classification. 
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The ongoing coronavirus pandemic has led to a high demand for lab-

ratory equipment needed for diagnosing and studying the virus. Even

hough business is booming for companies in the life sciences and labo-

atory automation industry, and laboratory devices are being produced

n high numbers, their reliability remains the highest priority. Any small

eviation from the specified functionality could adversely affect sample

uality and lead to inconsistencies and subsequent rejection of test re-

ults. In the case of unforeseen technical defects, the whole workstation

nd test process would need to be put on hold. To prevent financial

osses caused by sample loss and downtime, predictive analytics can

e used to monitor the device’s health and warn the operator in case

 high failure probability is detected. Predictive maintenance (PdM)

s one cost-effective option for that task, which commonly makes use

f machine-learning techniques for analyzing the machinery’s overall

ealth or the life expectancy of certain machine parts. Carvalho et al.

ive a systematic review on classical machine-learning methods for PdM

nd discuss in detail the advantages and drawbacks of random forests,

rtificial neural networks, support vector machines or k-Means Classifi-

ation [1] . They point out that the success of PdM methods for specific
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pplications is dependent on the choice of the appropriate machine-

earning technique. Recently, methods from the field of deep learning

uch as deep convolutional neural networks have also been considered

or PdM applications as they are supposed to reduce the amount of fea-

ure engineering and preprocessing. However, these methods can only

e trained effectively whenever a substantial amount of training data is

vailable [2] . Many PdM applications are specifically condition-based

aintenance (CBM) systems. CBM was reviewed e.g., by Jardine et al.

3] and described by Ahmad and Kamaruddin as a system that “recom-

ends maintenance actions (decisions) based on the information col-

ected through condition monitoring process ” [4] . In that context, con-

ition monitoring can be understood as a continuous assessment of a

achine’s health by monitoring various parameters, such as vibration,

emperature, lubricating oil, contaminants, and noise levels [4] . In the

ase of rotary machines, condition monitoring using machine-learning

odels trained on features extracted from vibration data has become a

opular technique (e.g. Ahmad et al. [5] ). 

Pinheiro et al. developed an automatic predictive maintenance

odel for the diagnosis of incipient failures in rotary machines, based on

upport vector machines (SVM) [6] . Dhanraj and Sugumaran employed

 machine-learning approach using vibration signals through statistical
ly 2022 

aboratory Automation and Screening. This is an open access article under the 
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Fig. 1. Thermal unit of the ODTC without casing. 1 & 2: VCM sensor 1 & 2, 3 & 

7: Heatsink sensor 1 & 2, 4: Peltier element, 5: Heatsink, 6 Block-PCB (Printed 

Circuit Board), 8: Power bridge (HBridge); Contact points for ACR measurement, 

9: VCM, 10: Disposable which holds the samples. 

 

i  

h  

i  

N  

h  

d  

f  

w  

i  

s  

5  

r  

b  

o  

n  

f  

m  

t  

i  

(  

t  

v  

R  

s  

p  

F  

c  

o  

b  

t  

e  

F  

t  

o

eatures for condition monitoring of wind turbine blades [7] . The study

nvolved the classical three steps: feature extraction, feature selection

nd classification by machine learning. They investigated algorithms

uch as K-star (KS), locally weighted learning (LWL), nearest neighbor

NN), k-nearest neighbor (kNN), instance-based K-nearest neighbor us-

ng log and Gaussian weight kernels (IBKLG) as well as lazy Bayesian

ules classifiers (LBRC). The results were compared with respect to the

lassification accuracy and the computational time of the classifier. In a

omprehensive overview of recent research trends and development of

ubrication condition monitoring (LCM)-based approaches for mainte-

ance decision support, Wakiru et al. discussed approaches applicable

or analyzing data derived from lubricant analysis [8] . The study in-

luded several machine-learning algorithms: traditional ones like Logis-

ic Regression, Decision Trees and Support Vector Machines as well as

ore recent approaches such as Genetic Neural Networks, Fuzzy Neu-

al Networks and General Regression Neural Networks. With increas-

ng amounts of data, collected during manufacturing or production pro-

esses, the use of machine-learning methods for PdM gets more and

ore attractive. This is highlighted by a significantly increasing num-

er of publications in the field of machine-learning-based PdM over the

ast years (e.g. Cioffi et al. [9] , Zonta et al. [10] , Sajid et al. [11] , Çı nar

t al. [12] or Leukel et al. [13] ). However, for real world applications in

ndustry it is often hard to decide how the results from scientific bench-

arks can be transferred to existing technical systems. 

The aim of this work was therefore to implement a PdM system in the

volution of laboratory equipment produced by the company INHECO

mbH. We explored the possibilities of incorporating machine-learning

lgorithms into the design of future generation products, with the ulti-

ate goal of developing a PdM system that facilitates servicing of labo-

atory instruments and enhances customer experience. We investigated

he ability of condition monitoring techniques to make accurate pre-

ictions of the state of health of a subsystem of one selected product of

NHECO GmbH, namely Peltier modules integrated in On-Deck Thermal

yclers (ODTC) [INHECO Industrial Heating & Cooling GmbH, Martin-

ried, Germany]. Various machine-learning (ML) algorithms were set up

o classify and predict three different health states of said Peltier mod-

les. For this specific use case, the conventional inspection of the Peltier

odules is done by means of external measurement instruments, which

equires the casing to be removed. This procedure can be somewhat

umbersome, considering that the ODTC in many cases is installed on

 deck together with several other instruments. With data-driven mon-

toring, these circumstances can be avoided. To study the feasibility of

BM for this use case, the first thing was to investigate whether opera-

ional data generated by the ODTCs, and subsequently derived features

ontain enough information for ML models to reliably differentiate be-

ween three predefined health states of the Peltier modules. The insights

on from this investigation could then be used to develop a scaled-up

dM system, which covers other ODTC components and even different

roducts. 

aterials and methods 

echnical background 

The On-Deck Thermal Cyclers are primarily used for Polymerase

hain Reaction (PCR), which is a method to replicate DNA sequences.

he PCR procedure follows a specific temperature profile, where one

ycle consists of steps for template denaturation, primer annealing and

rimer extension [14] . Such a PCR Profile can be seen in Fig 2 , where

he three steps appear in the same order as mentioned before on the up-

ermost graph of the figure (healthy state represented by the blue line).

epending on the case, the exact temperature and length of each step

an vary. The over- and undershoots before each temperature plateau

n the top of Fig 2 , roughly at times 7, 43 and 65 seconds, have been

mplemented by INHECO GmbH, so that the probe samples reach the

arget temperature as rapidly as possible. 
320 
Fig 1 shows the thermal unit of the ODTC, and the numbers named

n the further course of this chapter refer to the labels in said figure. For

eating and cooling the samples, an array of six Peltier modules (Nr. 4)

s used, which is located between the Vapor Chamber Mount (VCM®,

r.9) and the heatsink (Nr. 5). The VCM is the thermal interface that

olds the disposable labware (Nr. 10) with the samples and has been

eveloped by INHECO GmbH to achieve a quick and uniform heat trans-

er. The VCM can be understood as a three-dimensional heat pipe, which

orks with extremely fast internal heat transfer (at the speed of sound)

n every direction. The Peltier modules form the core of the thermal

ystem of the ODTC. These components are durable, with a lifespan of

00.000 cycles guaranteed by the manufacturer (II-VI Inc. [15] ) but rep-

esent one of the few wearing parts of the ODTC. An analysis completed

y the INHECO GmbH R&D department, shows the internal resistance

f Peltier modules to be the main indicator of their state of health (data

ot shown). Measuring the internal resistance of Peltier modules by a

our-point alternating current resistance measurement (four-point ACR

easurement) throughout their lifespans, showed a general increase of

he ACR readings with time. To perform an ACR measurement, the cas-

ng of the ODTC must be removed to expose the printed circuit board

PCB, Nr. 6), so that the measurement instrument can be connected to

he power bridge (Nr. 8). Further investigations revealed that if the ACR

alue of new Peltier modules exceeded a certain threshold, referred to as

th , within a certain number of thermal cycles, the modules will break

hortly after (data not shown). During operation of the ODTC, several

arameters are continuously recorded by the control unit of the ODTC.

rom these parameters a specific subset has been selected which was

onsidered to be either directly or indirectly related to the thermal unit

f the ODTC. These variables were temperature measurements provided

y five sensors, two of which were fitted inside the VCM (Nr. 1 & 2),

wo inside the heatsink (Nr. 3 & 7) and one, for recording the ambi-

nt temperature, on the inner side of the casing (not shown in Fig 1 ).

urthermore, current and voltage readings from the Peltier modules and

emperature control parameters were taken into account. This collection

f features is referred to as raw data in the next chapters. 
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Fig. 2. Comparison of three signals recorded from a device in states 0 and 2. The 

Plots show the signal for one PCR cycle. Top: Temperature at the VCM. Middle: 

PWM signal of the temperature control. Bottom: electric current through all 

Peltier modules. 

Fig. 3. Reduced model of the temporal development of the health index of 

Peltier Modules. State 0 at the upper plateau, State 1 at the slope from the 

beginning of degradation until end of life and State 2 at bottom plateau. 
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ata acquisition and labeling 

The ML models, discussed below (see section 3.4), were trained to

istinguish between the following three health states: 

State 0 (Label 0): Healthy state, all Peltier modules are fully opera-

ional. 

State 1 (Label 1): Degrading state, one or more Peltier modules are

eyond a certain functionality specification. 

State 2 (Label 2): Defective state, one or more Peltier modules are

roken. Heating and cooling function is compromised. 

For the training of neural networks, the labels were one-hot-encoded.

his coding process transforms integer labels (starting at zero) into a

ector with the length of the number of classes used in the classifica-

ion. The vector contains only zeros except at the position which cor-

esponds with the integer value of the label. These types of labels are

alled categorical labels: 

Label 0: [1,0,0] 

Label 1: [0,1,0] 

Label 2: [0,0,1] 

This trinary classification can be seen as a simplification of the task of

onstructing a continuous health indicator which is necessary to make

redictions on the remaining lifetime of a machine component. A re-

uced model of the temporal development of the component’s health

ver its lifetime can be seen on Fig 3 . 

States 0 through 2 would be snapshots in time, first at the start of

peration, then after degradation has started and lastly at its end of life

EOL). From previous experience it is known that even under extreme

onditions applied during an accelerated life testing, the devices can

un for several months before a Peltier module would reach EOL. Data

rom three of the cyclers, which were subjected to this test, were re-

rieved and the cyclers were marked with the serial numbers (SN) 1-3.

CR measurements which were taken at regular intervals during the en-

urance test, were used as reference values for labeling. To supplement

ata from SN 1-3, three different devices (SN 4-6) were used to generate

ata in all three states. The ODTCs started data generation in State 0, but

ue to time restraints, States 1 and 2 were simulated using the physical

roperty that the internal resistance of Peltier modules increases as they

tart to age. State 1 was simulated by putting a resistor with the value

f Rth in series with one of the Peltier modules. State 2, which refers

o an electrical interruption within one of the Peltier modules, could be

asily reproduced by disconnecting one of the modules from the power

upply. This electrical interruption translates to an infinitely large ACR

alue. In short, the internal resistance values of SN 4-6 were artificially

nduced to replicate States 1 and 2. 

eature engineering 

Most of the work was put into extracting features from the raw data,

hich show a dependency to the actual state of health of the device.

his was a process needed solely for the classical ML methods and not

ecessary for convolutional neural networks (CNNs) since the architec-

ure of the CNN would be designed to take the raw data as input and

xtract information about the state of health during the training pro-

ess by itself. The approach of selecting features was based on physical

roperties as well as the experience and intuition of experts. 

When one of the Peltier modules in an ODTC breaks down, it can

e easily recognized by looking at the temperature signature of a PCR

ycle ( Fig 2 , top graph). When a device enters State 2 (orange, dashed

ine) due to a Peltier module breaking, the remaining modules struggle

o keep up the heating rate. This can be seen in the first few seconds of

he graph. However, a flattening of the heating slope may indicate other

easons, such as a high filling level of the mount combined with extreme

mbient temperatures. To clear up this discrepancy, the ambient tem-

erature, recorded by a sensor on the side of the casing (not shown in

ig 1 ), was used as a feature. 
321 
Another challenge was to find indications within the data, that the

odules are in the degrading state without yet being broken (State 1).

or that, the temperature readings weren’t enough since the tempera-

ure control was able to compensate for a considerable declination in

he performance of one or more modules. Thus, temperature control pa-

ameters, like the PWM signal (middle graph in Fig 2 ), were taken into

onsideration. Lastly and even though it was known that they were re-

ated to the PWM signal, voltage, and current readings (bottom graph

n Fig 2 ) of the Peltier Modules were also regarded. 

Feature engineering was done by analyzing all the signals considered

nd comparing those recorded from a cycler in State 0 to another one

n State 2 (see Fig 2 ). 

The final features were formed by extracting local minima and max-

ma (green dots, Fig 4 ) from selected regions and averaging them over

 period of four PCR cycles (red, dashed line, Fig 4 ). The regions where

ocal minima and maxima were extracted from, were chosen based on

here the largest deviation was visible when comparing the signals of

 device in a healthy state and one in a defective state (State 0 vs State

 in Fig 2 ). The process of extracting features from locations within the

ata where the largest changes occur throughout the lifetime of a de-
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Fig. 4. Example of the feature extraction process. Features were formed by ex- 

tracting local minima and maxima (green dots) from selected regions, and aver- 

aging over four PCR cycles (red, dashed line). The Figure shows three signals for 

the time period of one PCR cycle. Top: Temperature at the VCM. Middle: PWM 

signal of the temperature control. Bottom: electric current through all Peltier 

elements. 
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ice, was inspired by the work of Mazaev et al. [16] . In a similar way,

ine more features were extracted from the raw data to form one feature

ector, or sample. This process was repeated for every four PCR cycles

n the raw data, so that 529 samples were created from the generated

ata and 381 from the collected data from past examinations, making a

otal of 910 samples in the dataset. It was ensured that the number of

amples was balanced for the three states. 

The data preparation for the CNNs was quite different and much less

aborious. All the signals for each cycle in the raw data were concate-

ated to form a 2D matrix with the dimensions 500 × 10 (10 equals the

umber of signals and 500 the number of measurements in each signal).

he matrix was then scaled between 0 and 1 along the time dimension

sing the maximum and minimum values of all signals in the dataset

s upper and lower limits for the scaling. The result was a long gray

cale picture, as can be seen in Fig 5 (displayed in viridis color-scale for

reater clarity). 

For the CNN classifier one PCR cycle was used to form a sample.

herefore, the length of the dataset was quadrupled compared to the

ataset used for the classical ML methods. The procedure resulted in

656 samples in total. 

odel selection and assessment 

Listed below are the ML methods that were investigated in this work.

he comparison includes methods from classical machine learning, en-

emble methods (for the sake of simplification also referred to as clas-

ical methods) and neural networks. For all implementations, the open-

ourced Python libraries Scikit-Learn and Keras (with TensorFlow as

ackend) were used. Table 1 contains the links to the official documen-

ation for each method. 

KNN: K Nearest Neighbor Classifier 

LSVC: Linear Support Vector Classifier 

SVC: Support Vector Classifier - Kernel Method 

DT: Decision Trees Classifier 

RF: Random Forest Classifier 
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Fig. 5. Top: single sample for the CNN. Bot- 

tom: zoomed-in section of the sample. X-axis: 

Time, Y-axis: 10 signals containing tempera- 

ture, current and voltage readings, as well as 

temperature control parameters. Original di- 

mensions: [500 × 10]. Image rotated for better 

visualization. 
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GDB: Gradient Boosting Classifier 

CNN: Convolutional Neural Network 

As the models need to differentiate between three health states,

ulti-label classification accuracy was used as a metric for estimating

he model’s performance, which is defined as: 

𝑐 𝑐 𝑢𝑟𝑎𝑐 𝑦 ( 𝑦, ̂𝑦 ) = 

1 
𝑁 

𝑁−1 ∑

𝑖 =0 
1 
(
𝑦 𝑖 = 𝑦 𝑖 

)
(1)

Accuracy(y,yˆ(hat)) = 1/n_(samples) ∗ SUMˆ(n_samples-

)_(i = 0)(1(yˆ(hat)_i = y_i)) with 1( ̂𝑦 𝑖 = 𝑦 𝑖 ) being the indicator function

returns 1 if the predicted label 𝑦 𝑖 equals the true label 𝑦 𝑖 , and 0

therwise) and N the number of samples [17] . In the case of the

lassical methods, the adjustment of the hyperparameters was done

sing the "GridSearchCV" function from the Scikit-Learn library [18] .

his function carries out an exhaustive search of all the combinations of

yperparameters within a given range and calculates a cross-validation

core for each combination. The training set was given as an input to

he GridSearchCV function and a cross validation with three folds was

pecified. The function yields the hyperparameters which achieved the

ighest cross validation score. With these optimized hyperparameters,

he models were again trained using the entire training set and were

valuated afterwards using the test set. The accuracies which resulted

rom the final testing were used as performance measure for the models.

The optimization of the hyperparameters of the neural network was

one using a self-programmed randomized grid search. Similar to the

rid-search function, cross-validation scores for every combination of

arameters within a given range were calculated, with the difference

hat only a random subset of the parameter grid was evaluated because

f the long training times of the neural networks. With the results of the

rid search, small manual adjustments were made to further improve

he network’s performance. In addition to the multi-label accuracy, the

ategorical cross-entropy loss was used to evaluate the performance of

he CNN. This loss function gives a measure of the confidence that a

orrect prediction was made and is defined as: 

 𝑜𝑠𝑠 ( 𝑦, ̂𝑦 ) = − 

1 
𝑁 

𝑁−1 ∑

𝑖 =0 

𝑀−1 ∑

𝑗=0 
𝑦 𝑗 𝑙 𝑜𝑔 

(
𝑦 𝑗 
)

(2)

oss(y,yˆ(hat)) = 1/N 

∗ SUMˆ(N-1)_(i = 0)(SUMˆ(M-

)_(j = 0)(y_j ∗ log(yˆ(hat)_j))) with N being the number of samples,

 the number of classes, 𝑦 𝑗 the true label and 𝑦 𝑗 the predicted label

19] . Since the CNN takes categorical labels (see section 3.2) as inputs,

he predictions made are also three-dimensional and represent the

robability of each class being the correct one. Due to the “softmax ”

utput layer, the prediction vector sums up to one. 

The cyclers SN 1-3 and SN 4-6 were operated in different modes,

eaning slightly different cycle periods caused by varied plateau times.

o test the model’s behavior on different training data, two partitions

f the dataset were made. In the first one (Split 1), the whole dataset
323 
ncluding the generated samples, as well as the samples from the histor-

cal data, was randomly shuffled and split with a ratio of 58/42 leaving

8% of the data for hyperparameter optimization and training and 42%

or testing. For the second partition (Split 2) only the generated samples

from serial numbers 1, 2 and 3) were used to find the best hyperparam-

ters and train the models, while exclusively samples from the historical

ata (from serial numbers 4, 5 and 6) were used for testing. The relation

f the number of the generated samples and the historical samples gives

he same ratio of 58/42. This splitting ratio was applied overall to keep a

ethodological consistency between Split 1 and Split 2. The purpose of

plit 1 was to analyze whether the raw data and the extracted features

ontained enough information for the models to successfully separate

he three classes, whereas the second Split served to test the model’s

bility to generalize between different operation modes. 

The architecture of the CNN remained unchanged for both Splits, as

ifferent settings of architecture-specific parameters did not influence

he classification results during preliminary test runs. The result was

 shallow convolutional neural network consisting of two convolution

nd max-pooling steps, followed by a dense layer and an output-layer.

he first convolution had 16 filters, a kernel size of 2 × 2, a step size

f 1 and "same" for padding. The second convolution was identical with

he difference of having 32 filters. Both max-pooling layers had a kernel

ize of 2 × 2, step size of 2 and no padding. The dense layer contained

0 neurons with a "ReLU"-activation and the output-layer had three neu-

ons with a "softmax"-activation. For model training the Adam-optimizer

as used. 

esults and discussion 

esults 

The hyperparameters for each model, which were optimized per-

orming a grid search as described in section 3.4., can be seen in Table 2 .

yperparameters not listed in Table 2 are meant to have default values,

hich can be looked up in the respective documentation (follow links in

able 1 ). For the sake of reproducibility, the random state of the meth-

ds that contain a random process in the fitting of the models (Decision

ree, Random Forest, Gradient Boosting and Support Vector Classifier),

as set to 0. Due to that setting the training and testing of those mod-

ls can be repeated arbitrarily often without changing the results. In

ontrast, due to the random initialization of the weights of the CNN at

he beginning of training [ 20 ],[ 21 ],[ 22 ], the optimization of the error

unction can converge at different local minima on subsequent trials,

ielding different results [23] . The results in Table 3 were achieved by

unning the training procedure inside a loop which was stopped if the

nal test accuracy and loss reached a certain threshold value. For Split

 signs of overfitting could be seen after a few epochs, meaning that the

rain loss decreased, while the validation loss increased steadily [24] .
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Table 2 

Best hyperparameters for investigated models. 

Hyperparameter Split 1 Split 2 

K Nearest Neighbor Classifier 

n_neighbors 1 2 

Weights uniform uniform 

Decision Tree Classifier 

criterion gini gini 

max_depth 10 None 

Random Forest Classifier 

criterion entropy gini 

max_depth None None 

max_features auto auto 

n_estimators 20 10 

Gradient Boosting Classifier 

criterion mse mae 

max_depth 20 18 

n_estimators 21 13 

loss deviance Deviance 

Linear Support Vector Classifier 

C 126 2 

Support Vector Classifier – Kernel Method 

C 4 5 

gamma 1 1 

kernel poly rbf 

Convolutional Neural Network 

batch_size 300 305 

epochs 70 14 

learning_rate 0.016667 0.0175 

beta_1 0.89999 0.79999 

beta_2 0.96666 0.99999 

Table 3 

Test accuracies of all models 

Split 1 Split 2 

Method Test 

accuracy 

Method Test 

accuracy 

Random 

Forest 

Classifier 

0.9684 

Convolutional 

Neural 

Network 

0.8136 

K-Nearest 

Neighbors 

Classifier 

0.9620 Random 

Forest 

Classifier 

0.7585 

C-Support 

Vector 

Classifier 

0.9578 K-Nearest 

Neighbors 

Classifier 

0.7139 

Convolutional 

Neural 

Network 

0.9513 C-Support 

Vector 

Classifier 

0.6640 

Gradients 

Boosting 

Classifier 

0.9241 Decision 

Tree 

Classifier 

0.3937 

Decision 

Tree 

Classifier 

0.9219 Linear 

Support 

Vector 

Classifier 

0.3281 

Linear 

Support 

Vector 

Classifier 

0.8945 Gradients 

Boosting 

Classifier 

0.3071 
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o reduce overfitting and ensure a more generalized model, an early

topping call back was implemented. The call back was triggered when

he validation accuracy reached a value above 65% and the loss a value

elow 0.5. For consistency, the early stopping call back was also applied

o Split 1, however with the thresholds of 95% for accuracy and 0.2 for

oss. 

The final models were assessed by estimating their classification ac-

uracy based on the test set of each Split of the dataset. An overview of

ll test accuracies can be found in Table 3 . 
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Almost all Classifiers which received data of all six cyclers during

raining (Split 1), managed to place above the 90% accuracy mark after

esting. The random forest classifier (RF) achieved the highest perfor-

ance of 96.84% followed by the k nearest neighbor classifier (KNN)

ith 96.20% accuracy and the support vector classifier (SVC) in third

lace performing at 95.78% accuracy. The CNN reached fourth place

ith an accuracy of 95.13% and a loss of 0.1467. Positioned last were

he gradient boosting (GDB), the decision tree (DT) and the linear sup-

ort vector classifier (LSVC) with 92.41%, 92.19% and 89.45% accu-

acy, the last one being the only classifier to perform below 90% accu-

acy. 

For the generalization test (Split 2), the accuracies of all models sig-

ificantly dropped. The CNN could maintain a test accuracy of 81.36%,

nd thus moved up to first place in ranking. With a new loss of 0.4921,

owever, the confidence of the predictions significantly deteriorated.

he RF moved down to second place with an accuracy of 75.85%, the

NN to third with 71.39% and the SVC to fourth with 66.40% accuracy.

laced last were the DT, LSVC and GDB classifiers, all with accuracies

elow 40%. 

The random forest classifier allows to evaluate the importance of the

ndividual features based on the structure of the decision tree ensemble.

his property was exploited to examine which features made the largest

ontribution to the predictions. It was found that the features with the

ighest importance were those that were extracted from current read-

ngs of the Peltier modules. This was consistent with the findings of the

esearch department that the internal resistance was the most signifi-

ant indicator for the health state of Peltier modules, because the cur-

ent can be computed from it. The next most influential features were

hose derived from the mount temperature measurements. Features de-

uced from control parameters showed an even lower contribution to

he predictions and features from the heat sink and ambient temperature

roved as least significant. 

iscussion 

In this study, all the models investigated were able to separate

he three predefined health states (healthy, degrading, or defective) of

eltier modules with an overall accuracy above 89%, provided that data

rom all the test objects were used for training. The generalization ability

f the ML models on operational data not seen before was significantly

ower. To analyze misclassifications, the confusion matrices of the CNN

nd the RF models, each generated from both splits, were examined

 Fig 6 ). 

On the left-hand side of Fig 6 the results of the CNN (sub figure a))

nd of the RF (sub figure c)) can be compared. In sub figures a) and c)

ost of the predictions lie in the main diagonal, which indicates a high

verall accuracy. In both cases, particularly in a), classification errors

or label 1 can be seen. This behavior is amplified in both confusion

atrices of the Split 2 (sub figures b) and d)), where the spread of pre-

ictions across the upper left corner is more evident. For the ML models

rom Split 2 which ranked lower for classification accuracy, even more

redictions moved from the center of the confusion matrix to the left

not shown here), meaning that more samples with the true label of 1

ere recognized as 0. The results suggest that the models had difficulties

ith distinguishing between State 0 and State 1, or more specifically,

hey often confused State 1 with State 0. On the other side, State 2 was

redicted correctly almost all the times with accuracies above 98% in

ll the cases shown in Fig 5 . 

The distribution of the classification errors can be traced back to

he definition of the health states. State 1 (Label 1) was simulated in

he devices SN 4-6 to imitate a point during its life cycle in which the

egradation of the Peltier modules has already begun, by connecting a

esistor ( Rth ) to the power supply of one of the modules. An increase

n the internal resistance of Peltier modules by the value of Rth was

roven to mark the beginning of the degradation phase, whereby the

oundary is not sharp but rather blurred. Contrarily, the defective state
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Fig. 6. Confusion matrices. a) CNN Split 1. b) 

CNN Split 2. c) RF Split 1. d) RF Split 2. X-axis: 

predicted labels, Y-axis: true labels. Numbers 

inside cells are the number of samples whose 

labels were predicted for each true label of the 

test samples. 
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an be identified by an infinitely large resistance due to the electrical

ircuit being interrupted. This consequently results in a clear boundary

etween State 1 and State 2. 

Furthermore, a closer look at the test data revealed another issue,

hich explains the classification errors. These data were collected from

ast examinations where the ODTCs were operated under extreme exter-

al conditions, which are known to cause a high amount of condensation

o accumulate around the Peltier modules. This effect has been proven

o lead to a sudden destruction of single Peltier modules contrary to the

reeping process of natural aging that is known to go on during correct

peration. The samples for a degrading state were extracted from a time

nterval shortly before the defect of the Peltier module was detected, as-

uming that a continuous wear had occurred prior to it. With this in

ind, it is reasonable to suspect some cases of mislabeling. Because of

he rapid transition from State 0 to State 2, data were taken from devices

hich were de facto still healthy and falsely labeled with 1, leading to

 subsequent error in classification. 

onclusion 

To conclude, the results of this work show a promising potential

or ML models like the random forest classifier or convolutional neural

etworks to predict the state of health of the Peltier Modules Integrated

n ODTCs. 

The neural network performed better in generalization and didn’t re-

uire time-consuming feature engineering. Contrary to the CNN “black-

ox ”, decision-tree-based models like the random forest or simple clas-

ifiers like k-nearest neighbor can be easily interpreted. 
325 
It must be noted that PCR runs can vary substantially in their temper-

ture profile depending on the application, which subsequently leads to

verfitted models, when data from only one specific operation mode is

sed for training. To reach a degree of generalization, which allows an

ccurate prediction of the health state across a wide range of different

peration modes, a lot more data needs to be collected, ideally directly

rom the field. An alternative approach would be to train specialized

odels, which are very good at predicting the health state at one spe-

ific operation mode. The drawback of this option is that the customer

ould have to carry out an inspection run while the plant is not being

sed. 

Because of time constraints and limited data, the task investigated in

his work was formulated as the classification of three different health

tates, namely healthy, degrading, and defective. However, in reality

he health of Peltier modules is of a continuous developing nature, with

he exception of the defective state, which is discrete. To predict the

emaining useful life of Peltier modules, training data needs to be sam-

led during the complete life cycle. Even though its limitations, the

tudy presented in this work was able to provide valuable insights. It

as found that the information contained in operational data generated

y the current design of the ODTCs is sufficient to identify deviations

rom a healthy condition of its Peltier Modules. This means that no ad-

itional sensors are necessarily needed in the next generation ODTCs for

his specific task. Furthermore, it was found that to develop a system of

ondition-based monitoring, which is able to predict the remaining use-

ul life of Peltier modules integrated in ODTCs in a generalized manner,

he biggest challenge will be to collect operational data from customers

n the field. 
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INHECO GmbH is invested to adapt their future product platforms

o the standards of modern industry and recognized data-driven appli-

ations like condition-based predictive maintenance to be an important

art of the development. 
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