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ABSTRACT

The RNAworld hypothesis relies on the ability of ribonucleic acids to spontaneously acquire complex structures capable of
supporting essential biological functions. Multiple sophisticated evolutionary models have been proposed for their emer-
gence, but they often assume specific conditions. In this work, we explore a simple and parsimonious scenario describing
the emergence of complexmolecular structures at the early stages of life. We show that at specific GC content regimes, an
undirected replication model is sufficient to explain the apparition of multibranched RNA secondary structures—a struc-
tural signature of many essential ribozymes. We ran a large-scale computational study to map energetically stable struc-
tures on complete mutational networks of 50-nt-long RNA sequences. Our results reveal that the sequence landscape
with stable structures is enriched with multibranched structures at a length scale coinciding with the appearance of com-
plex structures in RNA databases. A random replication mechanism preserving a 50% GC content may suffice to explain a
natural enrichment of stable complex structures in populations of functional RNAs. In contrast, an evolutionary mechanism
eliciting themost stable folds at each generation appears to help reachingmultibranched structures at highest GC content.
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INTRODUCTION

RNA are versatile molecules that can fulfill virtually all fun-
damental needs and functions of the living, from storing in-
formation to catalyzing chemical reactions and regulating
gene expression. The RNA world hypothesis (Gilbert
1986; Eddy 2001) builds upon this observation to describe
a scenario of the emergence of life based on RNAs.
Despite criticisms (Orgel 2004; Shapiro 2007; Robertson
and Joyce 2012), recent studies presented plausible paths
toward an early assembly of RNA molecules, which has
contributed to strengthening this hypothesis (Powner
et al. 2009; Ritson and Sutherland 2012; Becker et al.
2016; Horning and Joyce 2016; Pearce et al. 2017). Yet,
the emergence of nucleic acids is only one part of this
problem. We also need to elucidate the mechanisms that
enabled the discovery of functional molecules and the
transmission of genetic information (Szostak 2012).
Many noncoding RNAs acquire functions through struc-

tures. Classically, we describe these structures at two levels
of abstraction. The secondary structure encompasses the
Watson–Crick and wobble base pairs, while the tertiary
structure describes the 3D coordinates of all atoms.

Noticeably, RNA secondary structures aremore conserved
than sequences and thus provide a reliable signature of
RNA function (Nawrocki et al. 2015). Moreover, many es-
sential molecular functions are supported by nucleic acids
with complex shapes often characterized by the occur-
rence of a k-way junction (a loop connecting three or
more stem-like regions also known as multiloop (ML); see
Fig. 1C) in their secondary structure (e.g., 5s rRNA, tRNA,
hammerhead ribozyme). A theory describing how RNA
populations evolve to “discover” these functional multi-
branched secondary structures is, therefore, an important
step toward a validation of the RNA world hypothesis
(Higgs and Lehman 2015).
Since the first analysis of RNA neutral networks (i.e., net-

works of RNA sequences with identical structures) (Reidys
et al. 1997), computer simulations are the method of
choice for characterizing the evolutionary landscape and
population dynamics of structured RNA molecules.
Indeed, secondary structures can be reliably predicted
from sequence data only (Lorenz et al. 2011), allowing
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fast and accurate prediction of phenotypes (i.e., secondary
structure) from genotypes (i.e., sequence).

A large body of literature has been dedicated to the
computational analysis of RNA sequence–structure maps
(i.e., genotype–phenotype maps) and properties of RNA
populations evolving under natural selection. In a seminal
series of papers Schuster and coworkers set up the basis of
a theoretical framework to study the evolutionary land-
scape of RNA molecules, and used it to reveal intricate
properties of networks of sequences with the same struc-
ture (a.k.a. neutral networks) (Fontana et al. 1991;
Schuster and Stadler 1994; Gruner et al. 1996; Reidys
et al. 1997; Schuster and Fontana 1999; Schuster 2001).
This work inspired numerous computational studies that
refined our understanding of neutral models (van
Nimwegen et al. 1999; Ancel and Fontana 2000; Wilke
2001; Aguirre et al. 2011; Dingle et al. 2015), as well as ki-
netics of populations of evolving nucleic acids (Kupczok
and Dittrich 2006; Stich et al. 2007, 2010).

In this paper, we perform computer simulations to study
the evolutionary mechanisms that enabled the emergence
of multibranched secondary structures. This feature turns
out to be relatively common even for short RNAs. An anal-
ysis of the consensus secondary structures available in the
Rfam database reveals that MLs can be found in ∼10% of

RNA families whose average size of sequences ranges
from 50 to 100 nt (see Fig. 1A). This observation contrasts
with earlier studies that revealed that the vast majority of
predicted minimum free energy (MFE) secondary struc-
tures obtained from a uniform sampling of shorter RNA se-
quences (i.e., 35 nt) are stem-like structures (i.e., no ML)
(Stich et al. 2008), which render a spontaneous emergence
of complex structures (i.e., secondary structures with a ML)
unlikely on such short sequences.

Nonetheless, computational studies of RNA sequence–
structuremaps showed that neutral networks percolate the
whole sequence landscape (Schuster et al. 1994; Fontana
and Schuster 1998). Even though this property undeniably
augments the accessibility of target structures, the size and
connectivity of neutral networks also decreases drastically
with the complexity of structures.

In the most commonly accepted scenarios, the estab-
lishment of a stable, autonomous, and functional self-
reproductive molecular system subject to natural selec-
tion, relies on the presence of polymerases (Higgs and
Lehman 2015). Such molecules are long (200 nt) and
thus unlikely to be discovered randomly. Instead, it has
been suggested that evolution proceeded in stages
(Levy and Ellington 2001). Polymerases were assembled
from smaller monomers (∼50 nt) that are more likely to

A
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FIGURE 1. Statistics on Rfam families (Nawrocki et al. 2015). (A) We plot the number of families with respect to the average length of the sequenc-
es in these families. Red dots show the numbers of families with a consensus structure that contains a ML, while blue dots show those without. (B)
Weplot the average folding energy and length of sequences for each Rfam family havingmultibranched consensus structures. The color indicates
the averageGC content of the family. (C ) An illustration of an RNA2D fold (generated using VARNA [Darty et al. 2009]) with its secondary structure
elements labeled as internal loop (IL), ML, and hairpin (HP).
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emerge from prebiotic chemistry (Hayden and Lehman
2006; Vaidya et al. 2012). At this point, and not before, par-
allel natural selection processes of specific functional struc-
tures could be triggered.
Interestingly, in vitro experiments revealed the extreme

versatility of random nucleic acids (Beaudry and Joyce
1992; Bartel and Szostak 1993; Schultes et al. 2005;
Pressman et al. 2017), and suggested that essential RNA
molecules such as the hammerhead ribozyme could have
multiple origins (Salehi-Ashtiani and Szostak 2001). All to-
gether, these observations reinforce the plausibility of a
spontaneous emergence of multiple functional subunits.
But they also question us about the likelihood of such
events and the existence of intrinsic forces promoting
these phenomena.
Various theoretical models have been proposed to high-

light mechanisms that may have favored the birth and
growth of structural complexity from replications of small
monomers. Computational studies have been of tremen-
dous help to explore various scenarios. In particular, nu-
merical simulations enabled us to study the effects of
polymerization on mineral surfaces (Szabó et al. 2002;
Briones et al. 2009) or the importance of spatial diffusion
(Shay et al. 2015). Noticeably, the majority of these scenar-
ios are proposing a development of RNA structural com-
plexity outside a cellular barrier. But this assumption
results in major challenges. The first of them is to explain
how a system that evolved and adapted in an exposed mi-
lieu would transition to a membrane-protected environ-
ment. In particular, the presence of a membrane would
radically change the tradeoff between stability and com-
plexity of RNA structures. Indeed, stable folds often lack
the complexity necessary to support novel functions but
are more resilient to harsh precellular environments (Ivica
et al. 2013).
In this work, we aim to characterize the structural reper-

toire accessible by replicating RNA populations. This sce-
nario is compatible with the hypothesis of an early
development of membranes (Chen et al. 2005; Szostak
2012; Adamala and Szostak 2013; O’Flaherty et al. 2018)
and does not require invoking hybridization on surfaces,
or the presence of large self-replicating ribozymes (Paul
and Joyce 2002). Importantly, we exclude directed evolu-
tion scenarios characterized by a progressive adaptation to
a phenotype (e.g., replication with errors minimizing the
distance of MFE structures to a target structure [Schuster
2006]). Instead, we rely on intrinsic forces (i.e., increasing
secondary structure stability) for driving the evolutionary
process and study the impact of GC content bias.
We apply customized algorithms to study the distribu-

tion of structures accessible to all mutant sequences
with 50 nt (Waldispühl et al. 2008; Waldispühl and
Ponty 2011). This approach considerably expands the
scope and significance of comprehensive RNA evolution-
ary studies that were previously limited to sequences with

<20 nt (Gruner et al. 1996; Cowperthwaite et al. 2008), or
restricted to explore a small fraction of the sequence land-
scape of sequences (Stich et al. 2008; Dingle et al. 2015).
Our simulations reveal that based on the strength of the
selective pressure applied on the replicating population,
different GC content biases facilitate the emergence of
complex secondary structures with k-way junctions. In
the absence of selective pressure, low to medium GC
contents (0.3–0.5) may suffice to explain the distribution
of ML structures observed in databases. In contrast, high
GC contents help populations eliciting sequences with
stable folds to discover structure with k-way junctions.
These results provide valuable insights into previous con-
tributions studying GC content biases in stability–flexibil-
ity tradeoffs (Leu et al. 2011), prebiotic nucleotide
distributions (Penny and Poole 1999; Gardner et al.
2003) and the accessibility of complex phenotypes
(Stich et al. 2008).

RESULTS

Our approach

We apply complementary techniques to explore the RNA
mutation landscape and characterize the structures acces-
sible from an initial pool of random sequences under dis-
tinct evolutionary scenarios (see Fig. 2). Importantly, our
analysis explicitly models GC content bias to understand
the effect of potential nucleotide scarcity in prebiotic con-
ditions (Penny and Poole 1999; Gardner et al. 2003).
Our first algorithmRNAmutants (see the “RNAmutants”

section) enumerates all mutant sequences and samples
the ones with the globally lowest folding energy (Waldis-
pühl et al. 2008). It enables us to identify the most stable
structures accessible through mutation processes. Notice-
ably, RNAmutants sorts the sequences by the number of
mutations separating them from the initial population. We
note that RNAmutants does not constitute a model of
replicating populations but rather a sampling method to
obtain representative statistics on the space of stable mu-
tant sequences.
An important element of this work is the interpretation of

RNAmutants curves where the x-axis shows the number of
mutations (e.g., Fig. 3). When this number of mutations is
null or very low, the data represents the values we expect
from uniformly sampled sequences. In contrast, large num-
bers of mutations (50 being the maximum number of mu-
tations on sequences of length 50 since it is possible that
all positions contain a mutation) are associated with an in-
creased preference for mutants with stable folds and a loss
of sequence specificity. The largest hamming neighbor-
hoods (see Supplemental Fig. S7) are therefore the ones
with strongest thermodynamical pressure.
Equippedwith a global viewof themutational landscape

from RNAmutants, we implemented replication-based
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algorithms to understand how such a landscape could be
traversed by populations. We present mateRNAl which
has been developed for this study. mateRNAl simulates
the evolution of a population of replicating RNA sequences
that preferentially selects the most stable structures under
GC content bias. We also developed variants of this algo-
rithm enabling us to study the antagonistic effect of a

negative selection pressure against
themost stable structures. Since initial
pools of random 50 nt sequences are
unlikely to contain self-replicating
RNA, we frame our experiments in
the context of noncatalytic replication
(Szostak 2012; O’Flaherty et al. 2019)
which could have been at play until
structureswith self-replicating abilities
are discovered (Robertson and Joyce
2014).
We study the evolutionary land-

scape of RNA sequences of length
50 preserving GC contents varying
between 0.1 and 0.9 (1 being full G
or C sequences). The size of mole-
cules is of particular interest as 50 nt
appears to be the upper limit for non-
enzymatic self-replicating processes
(Higgs and Lehman 2015), but
also because multibranched struc-
tures occur only on RNAs with sizes
above 40 (see Fig. 1). It also turns
out to be the minimal known size for
a natural ribozyme (Ferré-D’Amaré
and Scott 2010). Shorter ribozymes
have been synthesized (Turk et al.
2010) yet these would not feature

complex secondary structure motifs characteristic of most
ribozymes.

Energy landscape of RNA mutational networks

We start by characterizing the distribution of folding ener-
gies of stable structures accessible from random seeds in

k-mutant space

structure space

low

high

energy (kcal/mol)

k=1

k=2

k=3

k=4

mateRNAl

RNAmutants

FIGURE 2. Illustration of mutational sampling methods. Concentric ellipses represent the
space of sequence k-mutant neighborhoods around a root sequence pictured at the center
of the ellipses. Each ring holds all sequences that are k mutations from the root. We show
the contrast between an evolutionary trajectory (mateRNAl) along this space and mutational
ensemble sampling (RNAmutants) represented, respectively, as circles and triangles. The lay-
er below the mutational space represents the space of all possible secondary structures, and
dotted lines illustrate themapping from sequences to structures. The color of the sampledmu-
tants denotes the energy of the sequence–structure pair sampled. In both sampling methods,
sequence–structure pairs with lower energies are favored. Evolutionary sampling is always lim-
ited to explore sequences accessible from the parental sequence and sowe have arrows point-
ing from parents to children over various generations yielding an adaptive trajectory.
RNAmutants considers the entire ensemble of k mutants to generate independent samples
of stable sequence–structure pairs and thus reveals features such as complex structures that
are hard to reach by local methods such as mateRNAl.

A B

FIGURE 3. (A) Energy of RNAmutants and mateRNAlmutational landscape. Shaded regions include one standard deviation of RNAmutants
energy per mutational distance. Dashed lines mark mean values for mateRNAl energies binned by mutations from starting sequence using mu-
tation rate µ=0.02. (B) Fraction of unique structures at every k neighborhood found by RNAmutants.
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themutational landscape using RNAmutants. Our simula-
tions show that, initially, increasing mutational distances
from random seeds results in more stable structures at all
GC content regimes (see solid lines in Fig. 3). We observe
that the folding energies of the samples represent at least
80% of the global minimum energy attainable overall k
mutations within <10 mutations from the seed (see
Supplemental Fig. S3). This suggests that over short evolu-
tionary periods, mutations can play an important stabiliz-
ing role as stable structures are likely to be found near
the seed.
In contrast, at larger mutational distances (i.e., 15 muta-

tions and above) we notice an increase in the ensemble en-
ergy for all GC content regimes. This behavior is likely due
to the exponential growth in sequence space that accom-
panies higher mutational distances, which results in amore
uniform sampling of the ensemble. In this case, less stable
sequences outnumber lower energy sequences with high
Boltzmann weights (see Supplemental Fig. S2).
As expected, we observe that the nucleotide content is

an important factor in determining the stability of achieved
sequence–structure pairs across mutational networks. The
accessible sampled energies are strongly constrained by
the allowed GC content of sequences in all GC content re-
gimes, whereby higher GC contents favor the sampling of
more stable states. However, despite these constraints, all
mutational ensembles effectively produce more stable
states than the initial state.
Next, we characterize the diversity of structures sampled

by RNAmutants. First, we calculate the number of unique
structures found in each mutant neighborhood. Figure 3B
shows two distinct regimes. At low to intermediate GC
contents (≤0.5), the immediate neighborhood (≤10 muta-
tions) of seed sequences is dominated by a few stable
structures, after that the percentage of unique structures
suddenly increases. This sudden change of regime accom-
panies the increase of the average folding energies ob-
served in Figure 3A. In contrast, at higher GC contents
(≥0.7) the structural diversity increases only at very large
mutational distances (≥40), when the footprint from the
seed is almost fully lost.
We also explore the repertoire of secondary structure el-

ements represented in the low energy mutational neigh-
borhoods. Figure 4A and Supplemeental Figure S5 show
the percentage of secondary structures with an IL or ML.
Although these structural elements are relatively frequent
in random sequences (i.e., seeds), they are also not very
stable (Fig. 3A). When the mutational distance increases,
mutations tend to create stable stem–loop structures and
erase irregularities in the original phenotypes. Although,
after this stabilization phase, the fraction of internal and
multibranched loops rises again explaining the structural
diversity discussed above.
In this work, we focus on the occurrence of multi-

branched secondary structures because this motif is often

found in functional RNAs such as the hammerhead ribo-
zyme. While previous studies of short randomly sampled
RNA sequences (<35 nt) have shown that simple HP struc-
tures dominate the low-energy structural landscape, we
find that for longer molecules (i.e., 50 nt) this landscape
is enriched with complex multibranched structures. This
finding is in good qualitative agreement with databases
of evolved structures where ML structures emerge in fam-
ilies slightly under 50 nt long (Fig. 1A).
Across all runs, we sampled a total of 9419 sequences

containing a ML (no more than 1 ML per structure was
ever observed as is to be expected for such length scales).
Interestingly, we find that unlike ILs, MLs occur under very
specific conditions in our sampling. We identify a clear
surge in ML frequency at a mutational distance of ∼35
(see Fig. 4A), with a mean GC content of ∼0.45 (see Fig.
4C). Furthermore, their energy distribution is tightly cen-
tered around −15 kcal mol–1 (see Fig. 4B). These values
are remarkably close to those of multibranched structures
of similar lengths observed in the Rfam database (see Fig.
1A). In particular, the latter shows a clear bias toward me-
dium GC contents as we identified 148 Rfam families
with MLs with a GC content of 0.5 (among all Rfam families
with sequences having at most 200 nt), but only 80 with a
GC content 0.3 and 40 with a GC content of 0.7. This
serves as further evidence that GC content is an important
determinant of the evolution of structural complexity. It
also appears that these features are a general property of
the distribution of MLs in the mutational landscape given
the sequence entropy of the set of sequences containing
MLs is quite high (0.945 out of 1). This indicates that the
observed properties are likely a feature of the GC content
bias and not due to overrepresentation by isolated groups
of similar sequences. Further analysis carried out in the
“Random replication without selection” section suggests
that this enrichment of complex structures is not simply
an artifact of larger Hamming neighborhoods that accom-
panies deeper mutational explorations.
We also note a smaller peak of ML occurrences closer to

the seed sequences (∼6mutations) for higher GC contents
around 0.7. Interestingly, with folding energies ranging
from −25 to −40 kcal mol–1, these multibranched struc-
tures are significantly more stable than those present in
the main peak (see Fig. 4B). This is also in agreement

Observation 1

• Low and intermediate GC contents (≤0.5) promote structural
diversity.

• Internal and multibranched loops are relatively frequent in
the low-energy landscape.

• The frequency of stable multibranched loops in the low-
energy landscape is in good qualitative agreement with the
Rfam distribution.
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with the energies observed in the Rfam database for struc-
tures within this range of GC content values (see Fig. 1B).

Random replication without selection

In the previous section, we observed that the low-energy
structural landscape is enriched with ML architectures at
specific GC contents. We must next determine under
which conditions a replicating population can reach this
reservoir. Our first scenario aims to study the behavior
and outcome of random replication process without natu-
ral selection. Here, we consider a simple model in which
RNA molecules are duplicated with a small error rate, but
preserving the GC content (Tamura 1992). In our simula-
tions, we use an error rate of 0.02 (probability of introduc-
ing a point mutation) to allow immediate comparison of
the number of elapsed generations, and identical transi-
tions and transversions rates. Under these assumptions,
we can directly compute the expected number of muta-
tions in sequences at the ith generation (see Materials
and Methods). Supplemental Figure S6 shows the results
of this calculation for GC content biases varying from 0.1
to 0.9. Noticeably, our data reveals that after a short initial-
ization phase (i.e., after approximately 50 generations), se-
quences with a GC content of 0.5 have on average slightly

more than 35 mutations. This observation is in good ade-
quacy with the peak of multibranched structures identified
in Figure 4A,C. This combination of events suggests that
the population is randomly exploring the sequence land-
scape and gets fixed once stable structures are discovered.
Indeed, the mutation distance where MLs are observed
coincides with the largest mutational neighborhood (see
Supplemental Fig. S7), thus where the sequence specific-
ity pressure is minimal. We conclude that a simple
undirected replicationmechanism could explain an enrich-
ment of RNA populations with stable multibranched
structures.

To complete this analysis and assess the different struc-
tural compositions between the uniform and low-energy
landscapes, we sample sequences at each mutational
neighborhood uniformly at random and compute their
MFE value and secondary structure. We compare in
Figure 5 the average MFE and frequency of MLs in MFE
structures between the uniform (“Random”) samples and
sequences sampled from the RNAmutants low-energy
ensemble. Importantly, we report separately the statistics
for sequences with or without MLs.

Unsurprisingly, the accumulation of mutations does not
impact the results in random populations. First, we note
that although multibranched structures are relatively

A B

C D

FIGURE 4. Analysis of the distribution ofmultibranched structures in the RNAmutational landscape sampled by RNAmutants. (A) The frequency
of multibranched structures with respect to the number ofmutations from the seed sequence. (B) Plot of folding energies andGC contents of each
individual multibranched structure. (C ) Distribution of the GC content of multibranched structures. (D) Distribution of folding energies of multi-
branched structures.
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frequent in random populations (on average between 1%
and 10%), they also have higher folding energies than se-
quences in the low-energy landscape. Higher GC contents
tend to increase these trends. This data supports previous
observations made on shorter sequences showing that
multibranched structures are rare and relatively unstable
in random pools of sequences (Stich et al. 2008).
In contrast, RNAmutants samples exhibit a different

pattern. While multibranched structures are rare in ran-
dom populations (i.e., no mutations), their frequency in-
creases with the number of mutations (i.e., increased
preference toward stable structures). Interestingly, the
frequency of stable multibranched structures almost
matches those obtained with random sequences at GC
contents between 0.3 and 0.5 and mutational distances
from 30 and 40 (second row in the third and fourth col-
umns of Fig. 5).
The analysis of folding energies reveals another inter-

esting phenomenon. While the average energies of
multibranched structures remain steady at all mutational

distances, this is not the case of other structures with sim-
pler architectures (first row of Fig. 5). Lower GC content re-
gimes from 0.3 to 0.5 are characterized by a clear increase
of average energies at mutational distances over 20 (i.e.,
MFE structures are less stable), which is not observed at
higher GC contents. We conclude from these observations
that the relative weight of multibranched structures in the
low energy ensemble (i.e., RNAmutants) increases due
to a better (collective) resilience of this architecture to
point-wise mutations and/or more uniform distribution in
the sequence landscape. In turn, it increases their density
in the large/distant mutational neighborhoods. Moreover,
it is worth noting that the values of the folding energies at
these GC regimes are also close to those observed in
Rfam.
Eventually, we also distinguish a secondary peak of oc-

currences of multibranched structures in the vicinity of
the seeds (i.e., 5–10 mutations) at higher GC regimes
(0.7). In contrast, this higher density appears to result
from mutants folding with marginally lower energies. It
suggests the presence of mutants with improved fitness
to the structures of the seeds rather than a global enrich-
ment of multibranched structures in these neighbor-
hoods. We discuss this phenomenon in the section
below.

Random replication with selection for stable
structures

Our RNAmutants and random replication simulations
suggest that mutational networks contain reservoirs of

FIGURE 5. Analysis of ML distributions in uniform and low energy populations. First row: average minimum free energies of uniformly sampled
mutants (“Random”; dotted lines) and sequences from the low energy ensemble (“RNAmutants”; plain lines). Sequences with a MFE structure
having a multiloop (“ML”; blue) are separated from the others (“no ML”; orange). Second row: frequency of multibranched structures in the MFE
structure of uniformly sampled mutants (“Random”; dotted gray lines) and sequences sampled from the low energy ensemble (“RNAmutants”;
purple lines)

Observation 2

• Multibranched structures are relatively common but unstable
in random populations.

• At intermediate GC contents (0.3–0.5), multibranched loops
are frequent among the most stable structures.

• The folding energies of stable ML are similar to those ob-
served in databases.
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complex structures accessible by undirected replica-
tion mechanisms. At this point, our main question is to
determine if a natural selection process, independent of
a particular target, could help populations reach these
regions.

To address this question, we build an evolutionary algo-
rithm (EA) named mateRNAl, where the fitness is propor-
tional to the folding energies of the molecules. Intuitively
mateRNAl, simulates the behavior of a population of
RNAs selecting at each generation the most stable se-
quences regardless of the structure adopted to carry func-
tions (see Materials and Methods). This setting is similar to
the energy-based selection described by Fontana and
Schuster (1987) on binary sequences. These selected
structures are therefore by-products of intrinsic adaptive
forces.

We start all simulations from random populations of
size 1000 and sequences of length 50, and performed
50 independent simulations for each GC content and vary-
ing mutation rates. Importantly, we also vary the strength
of the selective pressure applied on the population (i.e.,
the β in Equation 1). All simulations were run for 1000
generations.

We show the frequency and folding energy of multi-
branched structures observed during our simulations
with mateRNAl (Fig. 6). Here, a higher selective pressure
(i.e., larger values of β) and GC content reduces the fre-
quency of MLs but increases the folding energy.
Interestingly, a transition occurs when the value of β shifts
from 0.01 to 0.05. In contrast, higher GC contents increase
both the frequency of MLs and folding energies. Yet, var-
iations of the selective pressure result in more variance of
the folding energy.

In our simulations, only highGC contents (≥0.7) produce
populations with ML frequencies comparable to those ob-
served in databases. It follows that the mateRNAl scenario
does not seem fit to explain how to reach multibranched
sequences with low to intermediate GC content (0.3
−0.5). However, as noted earlier, there is a second pool
of multibranched structures at higher GC content (≥0.7)
that are characterized by their proximity to the seed (see
Fig.4B; Supplemental Fig. S1) and lower folding energies
(see Fig.4D). Under our assumption, the mateRNAl sce-
nario appears to be a legitimate candidate to explain
how these structures are reached.

We find that mateRNAl populations are able to quickly
find low energy multibranched structures (less 12 muta-
tions from the initial populations; see Fig. 6), with higher
GC content regimes leading to more stable structures.
Multibranched structures are mostly found near the seeds
(≤20 mutations) and rather in earlier generations.

We also note an interesting dichotomy between pop-
ulations at 0.7 and 0.9 GC ratios. While the frequency
of MLs reached by populations at 0.7 roughly matches
the one computed by RNAmutants (see Fig. 4A), it is
not the case for higher GC contents. Indeed, the
simulations find a significant number of MLs not sampled
by RNAmutants. The folding energies of these structures
appear to be similar to the ones found in Rfam (see
Fig. 1B).

All together, these observations suggest that selective
pressure on stable structures might help in finding stable
multibranched architectures at the highest GC contents
(i.e., 0.9) that are otherwise eclipsed by the vast number
of stable single stem structures. At 0.7 though this selec-
tion mechanism could still be used to accelerate and

FIGURE 6. Analysis of ML frequency and energy in mateRNAl populations as a function of mutational distance. First row: average frequency of
ML structures in populations at each mutational distance. Each line represents a simulation at varying selection strengths (parameter β). Subplot
columns correspond to simulations at various GC content biases. Second row: Average population energy at eachmutational distance. Plain lines
report statistics calculated for multibranched structures only, while dashed lines show the measurements obtained for all structures.
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promote the discovery of these complex structures uni-
formly distributed in the sequence landscape.

DISCUSSION

We provided evidence that in the absence of selective
pressure, the structure of the mutational landscape could
have helped promote the emergence of complex RNA
phenotypes. To support our hypothesis, we built a com-
prehensive representation of the mutational landscape of
RNA molecules, and investigated scenarios based on dis-
tinct hypotheses.
Our results support parsimonious evolutionary scenarios

based on undirected molecular replications with occasion-
al mutations. In these simple models, the GC content ap-
pears as a key feature in determining the probability of
discovering stable multibranched secondary structures.
Our study reveals two distinct phenomena. At low to inter-
mediate GC contents (0.3−0.5) the distribution of MLs in
a replicating population eliciting sequences with the
most stable structures resembles the one observed in
RNA databases. This observation suggests an evolutionary
scenario in which sequences are replicated without
selection until the discovery of complex structures (approx-
imately 30 mutations), at which point selection for stability
could begin.
In contrast, at higher GC contents (≥0.7) the presence

of multibranched structures appears to require the help
of a selective pressure to reach these complex pheno-
types. In this work, we simulate replicating RNA popula-
tions selecting sequences with the most stable structures
at each generation. Then, we show that this mechanism
enables a quick discovery of MLs in the vicinity of random
sequences at GC content regimes at or above 0.7. This
finding is in agreement with previous theoretical studies
that showed that neutral networks percolate the whole-se-
quence landscape (Schuster et al. 1994; Fontana and
Schuster 1998). It also suggests a different origin for mul-
tibranched structures at high GC content. In such a sce-
nario, a population of molecules would progressively
improve the functional efficiency of the molecules by im-
proving their stability.

The preservation of intermediate GC content values ap-
peared to us as a reasonable assumption, which could re-
flect the availability of various nucleotides in the prebiotic
milieu. This nucleotide composition bias can be interpret-
ed as an intrinsic force that favored the emergence of life.
It also offers novel insights into the fundamental properties
of the genetic alphabet (Gardner et al. 2003). Incidentally,
these observations suggest further investigations into the
role of more complex nucleotide distributions (Levin
et al. 2012).
It is worth noting that our scenario remains compatible

with further selection mechanisms that may come into
play once a functional and stable architecture is identified
to rapidly improve active sites (Kennedy et al. 2010; Dingle
et al. 2015). Eventually, our results could also be used to
put in perspective earlier findings suggesting that natural
selection is not required to explain pattern composition
in rRNAs (Smit et al. 2006).
Our analysis completes recent studies that aimed

to characterize fundamental properties of genotype–
phenotype maps (Greenbury and Ahnert 2015; Manrubia
and Cuesta 2017), and showed that their structure may
contribute to the emergence of functional molecules
(Dingle et al. 2015). Whereas previous studies focused
on characterizing the static genotype–phenotype map
of random sequences, we show that the landscape
of stable mutants arising from random seeds favors
the discovery of complex structures. It also empha-
sizes the relevance of theoretical models based on a ther-
modynamical view of prebiotic evolution (Pascal et al.
2013).
The size of the RNA sequences considered in this study

has been fixed at 50 nt. This length appears to be the cur-
rent upper limit for nonenzymatic synthesis (Hill et al.
1993), and thereforemaximizes the expressivity of our evo-
lutionary scenario. Variations of the sizes of populations or
lengths of RNA sequences resulting from indels could be
eventually considered with the implementation of dedicat-
ed algorithms (Waldispühl et al. 2002). Although, if these
variations remain modest, we do not expect any major im-
pact on our conclusions.
The error rates considered in this study were chosen to

match the values used in previous related works (e.g.,
Manrubia and Briones 2006). This choice is also corrobo-
rated by recent experiments suggesting that early life sce-
narios could sustain high error rates (Rajamani et al. 2010).
Nevertheless, lower mutation rates would only increase
the number of generations needed to reach the asymptot-
ic behavior (see Supplemental Fig. S6), and thus would not
affect our results.
Finally, we emphasize that our results do not exclude the

use of more advanced evolutionary mechanisms (Szabó
et al. 2002; Szathmáry 2006; Briones et al. 2009; Shay
et al. 2015). Instead, they provide additional evidence sup-
porting an RNA-based scenario for the origin of life and

Observation 3

• Multiloops emerge only in populations with the highest GC
contents (≥0.7).

• Highest GC contents help to quickly reach MLs in the vicinity
of the seeds.

• A selection pressure toward stable structure promotes the
discovery of rare stable multibranched structures at 0.9.
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can serve as a solid basis for further investigations of more
sophisticated models.

MATERIALS AND METHODS

Evolutionary algorithm (mateRNAl)

Here, we describe an EA for energy-based selection with GC con-
tent bias. The algorithm is implemented in Python and freely
available at http://csb.cs.mcgill.ca/maternal.

We first define a population at a generation t as a set Pt
of sequence–structure pairs. We denote a sequence–structure
pair as (ω,s) such that s is the MFE structure on sequence ω as
computed by the software RNAfold version 2.1.9 (Lorenz et al.
2011). Each sequence is formed as a string from the alphabet
B:={A,U,C,G}. For all experiments, we work with a constant popu-
lation size of |Pt| = 1000 and constant sequence length
len(si ) = 50 ∀si [ Pt . We then apply principles of natural selection
underWright–Fisher sampling to iteratively obtain Pt+1 from Pt for
the desired number of generations in the simulation.

Initial population

Sequences in the initial population, that is, generation t=0, are
generated by sampling sequences of the appropriate length uni-
formly at random from the alphabet B.

Fitness function

In order to obtain subsequent generations, we iterate through Pt
and sample 1000 sequences with replacement according to their
relative fitness in the population. Selected sequences generate
one offspring that is added to the next generation’s population
Pt + 1. Because we are sampling with replacement, higher fitness
sequences on average contribute more offspring than lower fit-
ness sequences. The relative fitness, or reproduction probability
of a sequence ω is defined as the probability F(ω,s) that ω will
undergo replication and contribute one offspring to generation
t+1. In previous studies, F(ωi,si) has been typically defined as a
function of the base pair distance between the MFE structure of
ω and a given target structure (Stich et al. 2007). However, in
our model, this function is proportional to the free energy of
the sequence–structure pair, E(ω,s) as computed by RNAfold:

F(v, s) = N−1e
−bE(v,s)

RT . (1)

The exponential term is also known as the Boltzmann weight of
a sequence–structure pair.N is a normalization factor obtained by
summing over all other sequence–structure pairs in the popula-
tion as N = ∑

v′ ,s′[St
exp[−bE(v′, s′)/RT ]. This normalization enforc-

es that reproduction probability of a sequence–structure pair is
weighted against the Boltzmann weight of the entire population.
β is the selection strength coefficient. Higher values of β result in
stronger selection for stability and vice versa. R=0.00019871 kcal
mol–1 and T=310.15 K are the Boltzmann constant and standard
temperature, respectively.

When a sequence is selected for replication, the child se-
quence is formed by copying each nucleotide of the parent
RNA with an error rate of µ known as the mutation rate. µ defines

the probability of incorrectly copying a nucleotide and instead
randomly sampling one of the other three bases in B.

Controlling population GC content

There are two obstacles tomaintaining evolving populations with-
in the desiredGC content rangeof ±0.1. First, an initial population
of random sequences sampled uniformly from the full alphabet
naturally tends to converge to a GC content of 0.5. To avoid
this, we sample from the alphabet with the probability of sampling
GC and AU equal to the desired GC content. This way our initial
population has the desired nucleotide distribution. Second,
when running the simulation, random mutations are able to
move replicating sequences outside of the desired range, espe-
cially at extremes of mutation rate and GC content. To avoid this
drift, at the selection stage, we do not select mutations that would
take the sequence outside of this range. Instead, if a mutation
takes a replicating sequence outside the GC range, we simply re-
peat the mutation process on the sequence until the child se-
quence has the appropriate GC content. Given that populations
are initialized in the appropriateGC range,we are likely to find val-
id mutants relatively quickly and always avoid drifting away from
the target GC.

RNAmutants

The EA implemented in mateRNAl is similar to a local search. At
every time step, new sequences are close to the previous popula-
tion and in particular to the elements with higher fitness.

In contrast, RNAmutants (Waldispühl et al. 2008) can sample
sequence–structure pairs (ω,s) such that (i) the sequence is a k-mu-
tant from a given seed ω0—for any k—and (ii) the probability of
seeing the pair is proportional to its fitness compared to all pairs
(ω′,s′) where ω′ is also an k-mutant of ω0.

In addition, RNAmutants provides an unbiased control of
the samples GC content allowing direct comparisons with
mateRNAl.

We note that although the structure sampled is not, in general,
the MFE, replacing them by it does not significantly change the
results, as shown in Supplemental Figure S2. Therefore, we re-
place the sampled structure with the MFE to simplify the study.

For each GC content in {0.1, 0.3, 0.5, 0.7, 0.9} (±0.1) we gener-
ated 20 random seeds of length 50. For each seed, at each muta-
tional distance (i.e., number of mutations from the seed) from 0 to
50, at least 10,000 sequence–structure pairs within the target GC
content of the seed were sampled from the Boltzmann distribu-
tion. The software was run on Dual Intel Westmere EP Xeon
X5650 (6-core, 2.66 GHz, 12 MB Cache, 95 W) on the Guillimin
High Performance Computing Cluster of Calcul Québec. It took
over 12,000 CPU hours to complete the sampling.

Sequence–structure pairs weighted sampling

Given a seed sequence ω0, and a fixed number k of mutations, we
denote Skv0

as the ensemble of all sequence-structure pairs whose
hamming distance to ω0 is k. Similar to the “Fitness function” sec-
tion, the probability of sampling a sequence–structure pair
(v, s) [ Skv0

will be its Boltzmann weight, a function of its energy.
Formally, if the energy of the sequence ω in conformation s is
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E(ω,s) then the weight of the pair is

e
−E(v,s)

RT ,

whereas before the Boltzmann constant R equalled 0.00019871
kcal mol–1 and the temperature Twas set at 310.15 K. The normal-
ization factor, or partition function, Z can now be defined as

Z =
∑

(v′ ,s′ )[Skv0

e
−E(v′ , s′ )

RT

and thus the probability of sampling a pair (ω,s) is

P(v, s) = e
−E(v,s)

RT

Z
.

By increasing k from 1 to |ω0|(= 50) an exploration of the whole-
mutational landscape of ω0 is performed. To compute Z for each
value of k, RNAmutants has a complexity of O(n3k2). This has to
be done only once per seed. The weighted sampling of the se-
quences themselves has the complexity of O(n2).

Controlling sample GC content

Due to the deep correlation between the GC content of the se-
quence and its energy, theGCbase pair being themost energetic
in the Turner model (Turner and Mathews 2010) which is used by
RNAmutants, sampling from any ensemble S will be highly bi-
ased toward sequences with high GC content. To get a sample
(ω,s) at a specific target GC content, a natural approach is to con-
tinuously sample and reject any sequence not fitting the require-
ments. Such an approach can yield an exponential time so a
technique developed in (Waldispühl and Ponty 2011) is applied.

An unbiased sampling of pairs (ω,s) for any given GC target can
be obtained by modifying the Boltzmann weights of any element
(ω,s) with a termwv [ [0, 1] which depends on the GC content of
ω. At its simplest, it can be the proportion of GC in ω. The weight
of (ω,s) becomes

wve
−E(v,s)

RT ,

which implies that a new partition function Zw needs to be de-
fined as follows:

Zw =
∑

(v′ ,s′ )[Skv0

wve
−E(v′ ,s′ )

RT .

To find the weightsw for any target GC an exact solution could
be found. In practice, the weightwv is determined as follows, ap-
plying the bisection algorithm. Given the number of GC in ω,
(resp. number of AU) and two weights wGC and wAU. We define
wv as wv := w |v|GC

GC ×w |v|AU
AU . At the first iteration, a thousand se-

quences are sampled withwGC andwAU both at 0.5. If the average

GC content on the sampled sequences is too high, the value of
wGC is decreased by half andwAU increased accordingly. If the av-
erage GC content is too low, the opposite is done. Each time, the
sequences with the desired GC content are kept. This process is
repeated until the desired amount of sequences with the required
GC content is produced. In practice, after a few iterations almost
all sampled sequences contain the target GC content and as
shown this sampling is unbiased (Waldispühl and Ponty 2011).
An interesting observation is that the same method can be ap-
plied to preferentially sample sequences with any other desired
feature.

Sequence divergence in a random replication model

We estimate the expected number of mutations in randomly rep-
licated sequences (see the “Random replication without selec-
tion” section) using the transition matrix defined by Tamura
(1992). We use a mutation rate α=0.02 mirroring the mutation
rate used in mateRNAl, and assume that transition and transver-
sion rates are identical. The target GC content is represented
with the variable Θ= {0.1, 0.3, 0.5, 0.7, 0.9}. The transition matrix
is shown in Table 1.
This matrix gives us the transition rate from one generation to

the next one. To obtain the mutation probabilities at the kth gen-
eration, we calculate the kth exponent of this matrix. Then, we
sum the values along the main diagonal to estimate the probabil-
ity of a nucleotide to be the same at the initial and kth generation.

SUPPLEMENTAL MATERIAL

Supplemental material is available for this article.
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TABLE 1. Transition probabilities for all pairs of bases where α is the mutation rate and Θ is the desired GC content

A U C G

A 1−α(1 +Θ) (1−Θ)α Θα Θα

U (1−Θ)α 1−α(1 +Θ) Θα Θα

C (1−Θ)α (1−Θ)α 1− (1−α(1 +Θ)) Θα

G (1−Θ)α (1−Θ)α Θα 1− (1−α(1 +Θ))
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