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Abstract: Paraffin odor intensity is an important quality indicator when a paraffin inspection is
performed. Currently, paraffin odor level assessment is mainly dependent on an artificial sensory
evaluation. In this paper, we developed a paraffin odor analysis system to classify and grade
four kinds of paraffin samples. The original feature set was optimized using Principal Component
Analysis (PCA) and Partial Least Squares (PLS). Support Vector Machine (SVM), Random Forest
(RF), and Extreme Learning Machine (ELM) were applied to three different feature data sets for
classification and level assessment of paraffin. For classification, the model based on SVM, with an
accuracy rate of 100%, was superior to that based on RF, with an accuracy rate of 98.33–100%,
and ELM, with an accuracy rate of 98.01–100%. For level assessment, the R2 related to the training
set was above 0.97 and the R2 related to the test set was above 0.87. Through comprehensive
comparison, the generalization of the model based on ELM was superior to those based on SVM
and RF. The scoring errors for the three models were 0.0016–0.3494, lower than the error of 0.5–1.0
measured by industry standard experts, meaning these methods have a higher prediction accuracy
for scoring paraffin level.

Keywords: paraffin; paraffin odor analysis system; level; classify; grade

1. Introduction

China is a major paraffin producer, exporter, and consumer, annually exporting about 70% of total
world paraffin trade volume, and playing an important role in the development of the international
paraffin market. Paraffin is used as a packaging material, and in fiber board, rubber, insulation
materials, and in other industries. The huge market requires the faster and more precise division of the
different paraffin levels [1–3]. When the quality inspection calibration is performed on the post-factory
paraffin products, odor intensity is one of the important quality indicators. Generally, the higher the
quality of paraffin, the lower the odor concentration [4]. The Chinese petrochemical industry standard
“Test Method for Paraffin Odor (SHT0414-2004)” is the most common paraffin odor identification
method. This method involves the expert evaluation of odor using smell at the site. The paraffin odors
are divided into five grades, from zero to four. The odor test group should consist of at least five
experts, and each expert assigns an odor intensity value, then all values are averaged to obtain the final
sample odor value. If the error is above 1.0, the evaluation should be repeated. The disadvantaged of
expert sensory evaluation include the human resources requirement, lower precision, poor objectivity,
and endangering evaluator health as a result of long-term exposure [5]. Therefore, having a rapid
method for evaluating the paraffin odor level has practical significance for improving the profit margin
in the paraffin economy and the product’s secondary development [6–8].
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The electronic nose is a simple to operate, time-saving, and higher-precision smart bionic
device that has been widely applied in the food science, environmental protection, and chemical
industries [9–12]. For food science, Dymerski et al. [13] used Principal Component Analysis (PCA),
Linear Discriminant Analysis (LDA), and Cluster Analysis (CA) with the furthest neighbor method to
classify honey types. In another study, Banerjee et al. [14] applied sensor fusion to the classification
and prediction of tea in quality assessments and achieved highly successful results. Valdez and
Gutiérrez [15] employed PCA and Artificial Neural Network (ANN) to classify chocolate, based
on an electronic nose with a pressure controlled canister. Aleixandre et al. [16] classified different
ripening red and white grapes using electronic nose data. A high success rate was also achieved in the
classification of drip and canned coffee [17]. For environmental protection, Ferreiro-González et al. [18]
used several ignitable liquids, including gasoline, diesel, citronella, kerosene, and paraffin, on different
substrates, including wood, cotton, cork, paper, and paperboard, to simulate distinguishing post-burn
samples with an electronic nose. This method can be used as a green technology for fire debris
analysis. In another study, Szulczyński et al. [19] used an electronic nose with semiconductor sensors
and a PID-type sensor to distinguish odor interactions. Conner et al. [20] used an electronic nose to
determine the existence of accelerants in specific areas. In the chemical industry, Feldhoff et al. [21]
used a FOX 4000 electronic nose to examine the gas phase of about 20 diesel fuels. Gobbi et al. [22]
rapidly diagnosed vegetable soups with an electronic nose. Berkhout et al. [23] analyzed the fecal
volatile organic compound (VOC) profiles, in different sampling conditions and environments, with an
electronic nose. Herrero et al. [24] developed a portable water quality pollution online detector based
on an electronic nose that could classify a water sample blended with common pollutants (blank water,
acetone, toluene, ammonia, formaldehyde, hydrogen peroxide, ethanol, benzene, dichloromethane,
acetic acid, xylene, and dimethylacetamide), with an accuracy rate as high as 94%. Previous studies
have showed that the electronic nose is widely used in many fields and can replace artificial sensory
evaluation. Therefore, finding a method based on an electronic nose to classify and grade paraffin into
different levels is necessary.

To improve the performance of the paraffin odor analysis system, many methods have been
proposed [25]. Our focus was on a feature selection method which is an important aspect of
machine learning. The multi-sensor fusion can replace artificial sensory evaluation, but also results
in high-dimensionality and redundancy [26].Thus feature selection methods that find some features
to represent the original feature set, have become an essential pre-processing step for developing the
paraffin odor analysis system. Many feature selection methods have been used for the electronic nose,
such as PCA [27,28], LDA [29], analysis of variance (ANOVA) [30], and multidimensional projection
techniques [31].

In this paper, the paraffin odor analysis system was developed to test four kinds of paraffin
samples with different odor levels. The PCA and Partial Least Squares (PLS) methods were used to
reduce the number of dimensions of the original feature variables. Support Vector Machine (SVM),
Random Forest (RF), and Extreme Learning Machine (ELM) were applied to three different feature data
sets (#PCA, #PLS, and #Complete) to classify and grade paraffin samples with different odor levels.

2. Materials and Methods

2.1. Materials

In the experiments, four different kinds of paraffin were used with different odor levels,
with scores of 0.6, 1.0, 1.2, and 1.5 provided by the same manufacturer. The paraffin score was
obtained by experts from the Sinopec Fushun Research Institute of Petroleum and Petrochemicals.
Each sample was sealed in single plastic bag to prevent cross contamination.
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2.2. Sample Preparation

To prevent the pollution of the paraffin odor during handling, disposable gloves were used when
preparing the samples. Once the paraffin sample was dispensed, the gloves and scraper were replaced.
The samples were prepared using the following methods:

(1) Cut the paraffin sample to be tested with a sharp scraper, obtain a non-adhesive sheet-shaped
sample (about 0.5 mm).

(2) Accurately weigh-out 20.00 g of sheet paraffin and place it into a 500 mL customized glass bottle
and seal it with a cover, letting the sample stand for 20 min for later use.

The sensor gas chamber temperature and relative humidity were controlled at 20 ± 2 ◦C and
65 ± 5% respectively. Twelve samples were prepared for each grade of paraffin, sequentially measured
as a group according to the ascending order of paraffin odor grade (0.6-1.0-1.2-1.5). Twelve groups
were measured and 48 groups of data were obtained. After the signals were pre-processed, steady
voltage for 160 s was selected as the sample eigenvalue, then 48 × 16 dimensions of characteristic
matrix X were obtained.

2.3. Design and Development of Paraffin Odor Analysis System

The paraffin odor analysis system used in the experiments was designed and built in-house at the
Northeast Electric Power University. This analysis system includes a headspace sampling device, a gas
path part, a gas sensor array, a data acquisition unit, and a software analysis system. Figure 1 shows a
schematic diagram of the paraffin odor analysis system.
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The system uses headspace gas sampling to inhale the headspace volatile gas with a built-in
gas pump into the gas chamber, and an activated carbon purification device was set at the gas inlet.
The sensor gas chamber and gas path are equipped with polytetrafluoroethylene (PTEE) thin films
and conduits. The sensor array is composed of 16 gas sensors, which were selected according to the
paraffin odor features. The sensors were: MQ-2, MQ-3, MQ-135, MQ-137, MQ-138, TGS-813, TGS-821,
TGS-822, TGS-825, TGS-830, TGS-831, TGS-832, TGS-861, TGS-2610, TGS-2611, and 2m009.

The system software compiled on the development platform LabVIEW controlled the sample
injection and cleaning. The system software can powerfully process data, and the imbedded MATLAB,
as an invoking tool, pre-processed, analyzed and displayed the system data. Figure 2 shows the paraffin
odor analysis system, and Figure 3 shows the sensor responses of four different paraffin samples.
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2.4. Data Processing and Analysis Methods

Data processing and analysis included data pre-processing, feature extraction, variable selection,
and mode recognition.

2.4.1. Variable Selection Method

Using multi-sensor fusion detection, a more complete odor “fingerprint” of the sample was
obtained, but redundant information was still included to a certain extent. Before modeling, it is
necessary to perform optimized selection on the variables, remove the redundant independent
variables, and select the independent variables that can best reflect the input and output relationship
to include in the modeling. In this paper, we selected PCA and PLS to reduce dimensions.

Principal Component Analysis (PCA)

PCA is a multivariate statistical method that uses a few indicators to replace the original variables
by converting the multiple original indicators into several comprehensive indicators, using a dimension
reduction processing technology [32,33]. The goal of optimizing the dimensionality reduction is to
reduce the n sets of vectors to k dimensions (0 < k < n). Under orthogonal constraints, the maximum
k-variance is used as a basis for the new variables. Using this method, the dimensions of the
paraffin odor characteristic data set X were reduced to extract the main characteristics of the paraffin
odor response.

Data set X, collected from the sensor array, was transposed and zero-equalized. The covariance
matrix D of Matrix XT was calculated by:

D =
1
48

XTX (1)

Then, the D feature value λi (i = 1, 2, . . . , n) and corresponding feature vector were obtained,
and the feature vectors were input into Matrix P in descending corresponding feature value.
The paraffin odor response feature matrix W, after being processed by principal component analysis,
met the formula:

WT = PXT (2)

Calculate the variance contribution rate and the cumulative contribution rate:

αi =
λi

n
∑

j=1
λj

(3)
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βi =

k
∑

i=1
λi

n
∑

j=1
λj

(4)

where αi is the variance contribution of i principal component, and β j is the cumulative contributions
of the first j principal component’s variance.

Partial Least Squares (PLS)

Using PLS, the data information in the system were decomposed and screened to extract the
aggregate variable that can best describe dependent variable. PLS is of uniquely advantageous in
reducing data dimensions [34].

Through cross validation, the contribution margin to the prediction model accuracy of component
t was measured to determine the effective components after dimensionality was reduced by PLS.
The experiment determined whether adding a new component can improve the prediction function
of the model. Let the data of the ith sample point be Xi and ŷh(−i) be the deleted sample point i
(i = 1, 2, . . . , n) at the time of modeling. After h components were modeled, this model was used to
calculate fitted value of yi to obtain the predicted error sum of squares of y, as shown in Equation (3).
Additionally, all sample points were used to fit the regression equation with h components. Let the
predicted value of the ith sample point be ŷhi, then the error sum of squares of y is as shown in
Equation (4):

PRESSh =
n

∑
i=1

(
yi − ŷh(−i)

)2

(5)

SSh =
n

∑
i=1

(yi − ŷhi)
2

(6)

where SSh−1 is the fitting error of equation with h − 1 components. For PRESSh, a component th was
added, but it contained the agitation error of the sample points. If the agitation error of the regression
equation with h components is less than h − 1 to certain degree, then if a component th is added,
the predicted value will increase. Therefore, we hope (PRESSh/SSh−1) ≤ 0.952. The cross-validation
discrimination function is as shown in Equation (7):

Q2
h = 1− PRESSh

SSh−1
(7)

Component th cross validation Q2
h < 0.0975 indicates the realization of the target precision.

2.4.2. Research Method

Support Vector Machine (SVM)

SVM is a supervised learning model that analyzes data and recognizes patterns; it can perform
model classification and regression analysis [35–37]. One sample in a SVM model represents one point
in space. As an effective and high-precision classification method, SVM was put forward by Cortes
and Vapnik based on statistical learning theory [38]. The concrete implementation steps are as follows.

(1) SVM usually uses the following minimization optimization model to determine the
regression function:

min
1
2
‖w‖2 + c

m

∑
i=1

(ξ∗i + ξi) (8)
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s.t.


yi − w · ζ(x)− b ≤ ε + ξ∗i
(w · ζ(x)) + b− yi ≤ ε + ξi
ξ∗i , ξi ≥ 0(i = 1, 2, . . . , m)

(9)

where w is the weight vector, 1
2‖w‖

2 is the expression of model complexity, c is the penalty factor,
ξ∗i and ξi are the relaxation factors, ζ(x) is a nonlinear transformation that maps data to high
dimensional space, b is offset, and ε is the upper limit of error.

(2) The Lagrange multipliers αi and α∗i are introduced. The optimization model shown in
Equations (10) and (11) can be transformed into the following dual optimization problem:

max− 1
2

m

∑
i,j=1

(α∗i − αi)
(

α∗j − αj

)
k(Xi, X) +

m

∑
i=1

α∗i (yi − ε)−
m

∑
i=1

αi(yi − ε) (10)

s.t.


m
∑

i=1
αi =

m
∑

i=1
α∗i

0 ≤ αi, α∗i ≤ c(i = 1, 2, . . . , m)
(11)

(3) The SVM regression function is obtained by solving the above problems:

f (x) =
m

∑
i=1

(αi − α∗i )k(Xi, X) + b (12)

k
(

xi, xj
)
= exp

(
−
‖xi − xj‖2

2σ2

)
= exp

(
−γ‖xi − xj‖2

)
, γ > 0 (13)

Two parameters are involved in the SVM calculation, namely penalty factor c and kernel
parameter γ. This paper used the grid search method for optimization.

Random Forest (RF)

The RF algorithm was first put forward by Kam in 1995 [39]. RF is widely used for practical
applications [40,41]. The decision tree can be rapidly built; therefore, training of hundreds of decision
trees is even faster than training an artificial neural network. This algorithm is similar to Bagging; both
of them perform resampling based on Bootstrap to generate multiple training sets. Conversely, RF
randomly selects the split property set to build a decision tree. The detailed forest random algorithm
process is as follows:

(1) Resampling is performed by Bootstrap to randomly generate T training sets S1, S2, . . . , ST.
(2) The corresponding decision tree C1, C2, . . . , CT for each training set is generated. Before a property

is selected on the internal node, m properties are randomly selected from M properties as the split
property set of the current node (m < M). Generally speaking, the m value is stable during the
overall forest development process.

(3) Each tree is in complete development, pruning is not performed.
(4) For test set sample X, a test is performed by using each decision tree to obtain the corresponding

class C1(X), C2(X), . . . , CT(X).
(5) By voting, the individual in T decision trees with the most outputs is selected as the test set

sample X, then, the prediction is finished.

Extreme Learning Machine (ELM)

ELM is a rapid learning algorithm with a feedforward neural network with a single hidden
layer that minimizes training error and obtains the minimum weight norm with good generalization
performance and a high running speed [42]. The only free parameter studied in this algorithm is the
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connecting coefficient (or weight coefficient) between the hidden layer and the output layer. Based on
the parameter, the linear parameter model can be built and the linear system can be solved [43].

At the beginning of training, ELM randomly generates w and b. Only by determining the number
of neurons in the hidden layer and the infinitely differentiable activation function, can β be calculated.
The ELM algorithm has the following steps:

(1) Set N different samples (xi, ti) ∈ Rn×m and the activation function; the activation function of the
neurons in the hidden layer is g(x):

N

∑
i=1

βigi
(

xj
)
=

N

∑
i=1

βigi
(
wi · xj + bi

)
= oj, j = 1, . . . , N (14)

where N is the number of neurons in the hidden layer; wi is the weight between the ith hidden
node and the input node, wi = [wi1, wi2, . . . , win]T; βi is the output weight between the ith hidden
node and the input node, βi = [βi1, βi2, . . . , βim]T; and bi is the deviation among the hidden nodes
of the ith layer.

(2) The activation function of the feedforward neural network of a standard single hidden layer g(x)
can approximate the training sample with zero errors:

N

∑
j=1
‖oj − tj‖ = 0 (15)

Namely, the existence of βi, wi, and bi makes:

N

∑
j=1

βig
(
wi · xj + bj

)
= tj, j = 1, . . . , N (16)

(3) The above N equations can be written as Hβ = T:

H(w1, . . . , wN , b1, . . . , bN , x1, . . . , xN) =

 g(w1 · x1 + b1) · · · g(wN · x1 + b1)
... · · ·

...
g(w1 · xN + b1) · · · g(wN · xN + b1)

,

β =

 βT
1
...

βT
N


N×M

, T =

 TT
1
...

TT
N


N×M

(17)

where H is the output matrix of the hidden layer of the neural network and β is the output layer
connection weight.

(4) To train the feedforward neural network of the single hidden layer, a specific βi’ should be found
and wi’ can be obtained with the following formula:

‖H
(
w′1, . . . , w′N , b′1, . . . , b′N

)
β− T‖ = min

wi ,bi ,β
‖H(w1, . . . , wN , b1, . . . , bN)β− T‖ (18)

3. Results and Discussion

3.1. Variable Selection Results

3.1.1. Variable Selection Results Based on PCA

The feature volatile gas data of the paraffin samples with different odor levels, collected from the
gas sensor array, were analyzed with PCA. Figure 4 shows the paraffin sample PCA processing results
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for different odor levels. Under a standard environment, apparent differences exist among the volatile
odor feature responses of the paraffin samples graded as 0.6, 1.0, 1.2, and 1.5.Sensors 2017, 17, 285  9 of 17 
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The cumulative contribution rate of the principal components was 93.34%, representing all feature
data. Finally, the first five principal components were extracted to form the new feature data set #PCA.

3.1.2. Variable Selection Results Based on PLS

When the number of selected variables is as high as five, the system reached the target precision.
Table 1 indicates the variable screening process.

Table 1. The feature screening process.

Time Selected Variable Cross-Validation Discrimination Function Q2
h

1 t1 1
2 t2 0.7896
3 t3 0.2248
4 t4 0.1760
5 t5 −0.0638

Finally, five principal components were extracted from the original data set to form a new feature
data set #PLS. Independent variable components are expressed as follows:

t1 = −0.1126x1 − 0.2221x2 + . . .− 0.2676x16

t2 = −0.3708x1 − 0.2415x2 + . . . + 0.3596x16

t3 = −0.2145x1 − 0.2161x2 + . . .− 0.3524x16

t4 = −0.1108x1 − 0.1807x2 + . . . + 0.2989x16

t5 = +0.0041x1 − 0.0776x2 + . . . + 0.5753x16

(19)

3.2. Classification and Level Assessment of the Paraffin Samples

3.2.1. Classification for the Paraffin Samples

Classification Based on SVM

We randomly selected 36 groups of data as the training set, and the other 12 groups of data as
the test set. The Grid Search for the best parameter for constructing the LIBSVM model is shown



Sensors 2018, 18, 285 10 of 17

in Figure 5. In the (c, γ) grid point diagram, a higher accuracy rate is observed. The comparison of
the classification results of# PCA, #PLS and #Complete combined with the SVM model are shown in
Table 2.Sensors 2017, 17, 285  10 of 17 
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Figure 5. The Grid Search for the best parameter for constructing the LIBSVM model: (a) Based on
the PCA-optimized feature set; (b) Based on the PLS-optimized feature set; (c) Based on the original
feature set.

Table 2. Comparison of classification results of #PCA, #PLS and #Complete combined with SVM model.

Feature Set
Best Parameter Accuracy Rate for

Training Set (%)
Accuracy Rate for 3-Fold

Cross-Validation (%)
Accuracy Rate
for Test Set (%)Penalty

Factor c
Kernel

Parameter γ

#PCA 1 1.4142 100 100 100
#PLS 0.00097656 0.00087656 100 100 100

#Complete 1.4142 0.35355 100 100 100

As shown in Table 2, the prediction model training set, test set, and three-fold cross validation
based on the PCA-optimized feature set, PLS-optimized feature set, and the original feature set were
100% accurate.

Classification Based on RF

The main parameters designed by RF are the value of the mtry and the number of decision trees.
The default mtry is the square root of the total number of variables; hence, based on the variable
dimension of the three feature sets, the system mtry was two, two, and four. The number of input
neurons was 5, 5, and 16, representing the morphological feature of the nucleus of the corresponding
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number. The four output neurons indicate the grade of the paraffin sample: 0.6, 1.0, 1.2, and 1.5. Here,
we only analyze and discuss the prediction model accuracy rate when the number of decision trees is
100. The accuracy rate of test set was 91.67–100%. The three feature sets (#PCA, #PLS and #Complete)
combined with the RF model accurately classified the paraffin samples with different odor levels.
To reduce the effect of randomness, 100 prediction models were built, then the accuracy rates were
averaged to describe the classification average accuracy rate of the current model. We found that
average accuracy rate of the test sets of the three feature sets was 99.58–100%, whereas the average
accuracy rate of RF based on a PLS-optimized feature set was as high as 100%.

For the model based on the PLS-optimized feature set, when the number of decision trees was
above 20, the average accuracy rate of either training set or test set was as high as 100% (Figure 6b).
When the number of decision trees in the model continuously increased, the system was still stable.
By comparing Figure 6b,c, the RF neural network model based on #PLS is superior to the model
based on #Complete, which means that in this prediction system, the paraffin odor multi-sensor
fusion detection results in certain information redundancy; the system stability can be enhanced by
appropriately reducing the number of dimensions.
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Figure 6. The influence of the number of decision trees on RF performance: (a) Based on the
PCA-optimized feature set; (b) Based on the PLS-optimized feature set; (c) Based on the original
feature set.

The above comparative study shows that the number of decision trees based on the RF model
should be 66–100; the average accuracy rate of the model test set is 99.58–100%.

Classification Based on ELM

Paraffin samples of different odor levels were analyzed with ELM. To reduce the effects of
randomness, 100 prediction models were built, then the accuracy rates were averaged to describe the
classification average accuracy of the current model. The average accuracy rate of the test sets of the three
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feature sets was 98.83–100%. When the number of neurons in the hidden layer of the ELM model based
on the PLS-optimized feature set was 100, the average accuracy rate of the test set was as high as 100%.

When applying the paraffin recognizing model for different odor levels, the accuracy rate of the
training set was as high as 100%, whereas this was not always the case for the test set, which means
the ELM function was over trained, or the model generalization ability was weaker. As shown in
Figure 7b, for the model based on the PLS-optimized feature set, when the number of nodes in the
hidden layer was above 62, the average accuracy of either the training set or the test set was as high
as 100%. As shown in Figure 7a, for the model based on the PCA-optimized feature set, when the
number of hidden nodes was 12–20, the accuracy of either the training set or the test set was as high
as 100%. By comparing Figure 7b,c, the prediction model based on #Complete is obviously inferior
to that based on #PLS, which means the system stability and efficiency were enhanced by PLS’s
reduction of the number of dimensions of the feature data. The above comparative study shows that
by comprehensively considering the number of hidden neurons and the modeling speed, the number
of neurons in the hidden layer based on the ELM network model should be 12–20 for the classification
of paraffin’s different odor levels.
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Figure 7. The influence of the number of hidden layer neurons on ELM performance: (a) Based on
the PCA-optimized feature set; (b) Based on the PLS-optimized feature set; (c) Based on the original
feature set.

3.2.2. Level Assessment for the Paraffin Samples

Level Assessment Based on SVM

As shown in Table 3, the R2 related to the training set and the test set of the model were above
0.98 and 0.89, respectively. By comparing the three groups of models, the R2 related to the model test
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set, based on the PCA-optimized and PLS-optimized feature sets, was R2 > 0.94, indicating the effect is
superior to the model based on the original feature set.

Table 3. Comparison of the #PCA, #PLS, and #Complete parameters combined with the SVM model.

Feature Set
The Best Parameter Training Set Test Set

c γ R2 RMSE R2 RMSE

#PCA 32 0.1767 0.9829 00481 0.9502 0.1376
#PLS 5.6596 0.125 0.9894 0.0491 0.9639 0.1968

#Complete 2.8284 0.0883 0.9974 0.0289 0.8913 0.1317

The absolute value of the error range of the prediction model based on the three feature data sets
(#PCA, #PLS, and #Complete) of the paraffin samples is shown in Table 4. The SVM network was
used to predict the paraffin odor level score, with a score error of 0.0016–0.2163, which is lower than
artificial grading error of 0.5–1.0, indicating this method can grade the level of the paraffin odor in
industry production.

Table 4. Prediction error of different paraffin odor levels based on SVM.

Feature Set Maximum Error Minimum Error

#PCA 0.1448 0.0041
#PLS 0.2163 0.0044

#Complete 0.1690 0.0016

Level Assessment Based on RF

As shown in Table 5, the R2 related to the training set and the test set of the model were above
0.97 and 0.87, respectively. By comparing the three groups of models, the prediction models based on
#PCA and #PLS (R2 > 0.8717 and R2 > 0.9645, respectively) were not optimal compared to that based
on #Complete (R2 > 0.9896).

Table 5. Comparison of the #PCA, #PLS, and #Complete parameters combined with the RF model.

Feature Set
Training Set Test Set

R2 RMSE R2 RMSE

#PCA 0.9767 0.1951 0.8717 0.3707
#PLS 0.9869 0.1197 0.9645 0.2022

#Complete 0.9865 0.1089 0.9896 0.1537

The absolute value of the error range of the prediction model based on the three feature data sets
(#PCA, #PLS, and #Complete) of the paraffin samples with different odor levels is shown in Table 6.
The prediction score error was 0.0024–0.3494, which is far lower than the artificial grading error of
0.5–1.0, indicating this method can grade the paraffin odor level in industry production.

Table 6. Prediction error of different paraffin odor levels based on RF.

Feature Set Maximum Error Minimum Error

#PCA 0.3494 0.0121
#PLS 0.1793 0.0024

#Complete 0.1266 0.0045
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Level Assessment Based on ELM

As shown in Table 7, the R2 related to the training set and the test set of the prediction model
were both above 0.97. By comparing the three groups of feature sets, the index related to the model
test set based on the PCA-optimized and PLS-optimized feature sets was superior to the prediction
model based on the original feature set, whereas the prediction model based on the PLS-optimized
feature set was optimal.

Table 7. Comparison of the #PCA, #PLS, and #Complete parameters with the ELM model.

Feature Set
Training Set TEST SET

R2 RMSE R2 RMSE

#PCA 0.9730 0.0727 0.9438 0.1437
#PLS 0.9972 0.0208 0.9675 0.1793

#Complete 0.9878 0.0472 0.9341 0.1741

The paraffin sample prediction effects based on the ELM model are as shown in Figure 8.
The absolute value of the error range of the prediction model based on the three feature data sets
(#PCA, #PLS, and #Complete) of paraffin samples with different odor levels is shown in Table 8.
The prediction score error was 0.0033–0.1804, which is far lower than the artificial grading error of
0.5–1.0, indicating this method can effectively grade the paraffin odor level in industry production.
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Figure 8. Score prediction of the paraffin odor based on the ELM model: (a) Based on the
PCA-optimized feature set; (b) Based on the PLS-optimized feature set; (c) Based on the original
feature set.



Sensors 2018, 18, 285 15 of 17

Table 8. Prediction error of different paraffin odor levels based on RF.

Feature Set Maximum Error Minimum Error

#PCA 0.1487 0.0016
#PLS 0.1239 0.0061

#Complete 0.1804 0.0033

4. Conclusions

(1) Design of paraffin odor analysis system: in this paper, we introduced a new method for testing
paraffin odor level based on the electronic nose, designed and developed the paraffin odor
analysis system. This system can analyze, screen, and recognize the paraffin odor feature
response and grade the odor of an unknown paraffin sample.

(2) Classification of paraffin samples: SVM, RF, and ELM were applied to three different feature
data sets to build the model and compare the model accuracy rate and regression parameters.
By comprehensively comparing the three models, we found that during the classification of
paraffin odor, the prediction model based on the SVM network, with an accuracy rate of 100%,
was superior to the networks based on RF, with an accuracy rate of 98.33–100%, and ELM, with an
accuracy rate of 98.01–100%.

(3) Level assessment of paraffin samples: during the recognition of the paraffin samples with
different odor levels, the prediction models based on the three different feature sets were able
to predict the score of the paraffin sample. The R2 related to the training set of the model was
above 0.97 and the R2 related to test set was above 0.87. The paraffin odor level scores were
predicted by three methods, SVM, RF, and ELM, and the predicted score error was 0.0016–0.3494,
which is considerably lower than the 0.5–1.0 error measured by industry standard experts.
Therefore, the three methods have higher prediction precision for paraffin odor level scores.
By comprehensively comparing the relevant coefficients of the three models, the generalization
of the model based on ELM was superior to that based on SVM and RF.
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