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ABSTRACT Zika virus (ZIKV) is a flavivirus that is structurally highly similar to the
related viruses, dengue virus (DENV), West Nile virus, and yellow fever virus. ZIKV
causes an acute infection that often results in mild symptoms but that can cause se-
vere disease in rare instances. Following infection, individuals mount an adaptive im-
mune response, composed of antibodies (Abs) that target the envelope (E) glycopro-
tein of ZIKV, which covers the surface of the virus. Groups have studied monoclonal
antibodies and polyclonal immune sera isolated from individuals who recovered
from natural ZIKV infections. Some of these antibodies bind to domain III of E (EDIII),
but the functional importance of these antibodies is unknown. In this study, we
aimed to determine if EDIII is a major target of the potent serum neutralizing anti-
bodies present in people after ZIKV infection. By generating a chimeric virus contain-
ing ZIKV EDIII in a DENV4 virus backbone, our data show a minor role of EDIII-
targeting antibodies in human polyclonal neutralization. These results reveal that
while monoclonal antibody (MAb) studies are informative in identifying individual
antibody epitopes, they can overestimate the importance of epitopes contained
within EDIII as targets of serum neutralizing antibodies. Additionally, these results ar-
gue that the major target of human ZIKV neutralizing antibodies resides elsewhere
in E; however, further studies are needed to assess the epitope specificity of the
neutralizing response at the population level. Identification of the major epitopes on
the envelope of ZIKV recognized by serum neutralizing antibodies is critical for un-
derstanding protective immunity following natural infection and for guiding the de-
sign and evaluation of vaccines.

IMPORTANCE Zika virus is a flavivirus that was recently introduced to Latin America,
where it caused a massive epidemic. Individuals infected with ZIKV generate an immune
response composed of antibodies which bind to the envelope (E) protein. These anti-E
antibodies are critical in protecting individuals from subsequent infection. Multiple
groups have found that many ZIKV antibodies bind to domain III of E (EDIII), suggesting
that this region is an important target of neutralizing antibodies. Here, we generated a
chimeric virus containing ZIKV EDIII in a dengue virus backbone to measure ZIKV EDIII-
specific antibody responses. We found that while polyclonal ZIKV immune serum con-
tains antibodies targeting EDIII, they constitute only a small fraction of the total popula-
tion of antibodies that neutralize ZIKV. Further studies are needed to define the main
targets on the viral envelope recognized by human neutralizing antibodies, which is crit-
ical for guiding the development of ZIKV vaccines.
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Zika virus (ZIKV) was isolated in Uganda in 1947 and introduced into Latin America
where it caused an epidemic with millions of infections. ZIKV is genetically and

antigenically similar to related flaviviruses such as dengue virus (DENV), West Nile virus
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(WNV), and yellow fever virus (1, 2). Decades of research into the immune response that
occurs following DENV infection revealed that neutralizing antibodies (Abs) targeting
the envelope protein are a critical component of protective immunity (1). Despite their
protective role, antibodies are also implicated in enhancing disease in secondary
infections. Because of the high degree of homology between DENV and ZIKV, there is
extensive antibody cross-reactivity (both neutralizing and enhancing) (3). However,
there is growing evidence that in people, prior DENV infection partially protects against
subsequent ZIKV infection (4, 5). It is critical to fully define the human immune response
to ZIKV natural infection to better evaluate next-generation vaccine design (1, 6).

Following ZIKV infection, individuals mount an IgG response that is predominantly
directed against the envelope glycoprotein (E) (1). Multiple groups have sought to
identify the epitopes targeted by human monoclonal antibodies (MAbs) against ZIKV,
as they can be informative of the polyclonal antibody repertoire (3, 7–11). While MAbs
have been identified that target all regions of E (domains I, II, and III), the majority of
antibodies described target EDIII (3, 7–11). Additionally, multiple groups have estimated
that a large fraction of polyclonal immune sera and the B-cell repertoire also target
EDIII, concluding that this is therefore the primary target of ZIKV antibodies (7, 9, 11,
12). In contrast, following DENV or WNV infection, only a small fraction of antibodies
target EDIII, and those that do contribute very little to total polyclonal neutralization (1,
13). Importantly, there have not been any comprehensive studies directly comparing
the roles of EDIII antibodies against DENV, WNV, and ZIKV. People infected with ZIKV
develop high levels of ZIKV-specific serum neutralizing antibodies, but it is unknown if
EDIII is a major target of these antibodies. Using reverse genetics, we sought to develop
a tool to track ZIKV EDIII-specific antibodies and to estimate their contribution to ZIKV
neutralization.

Across the E ectodomain, ZIKV has high degrees of homology with DENV1 to DENV4
in EDI and EDII, which contain highly conserved regions (e.g., fusion loop) (Fig. 1A and
B) (3, 12). EDIII is the least conserved, containing highly variable regions (Fig. 1A and B)
(3, 12). To map ZIKV EDIII-targeting antibodies, we generated a chimeric recombinant
DENV4 virus containing EDIII from ZIKV (rDENV4/ZIKV-EDIII) (Fig. 1C). The chimeric virus
encodes 52 ZIKV amino acids that differ from DENV4, including the addition of three
(Fig. 1D). These amino acids span EDIII and include surface-exposed as well as internally
facing and cryptic residues (Fig. 1E).

rDENV4/ZIKV-EDIII reached a lower titer compared to both DENV4 and ZIKV (Fig. 2A)
and had smaller foci morphology relative to the parental DENV4 strain (Fig. 2B). It is
possible that chimerization, in addition to attenuating the virus, altered another aspect
of virus biology, such as maturation. To confirm ablation of the DENV4 EDIII epitope and
transplantation of ZIKV EDIII, the viruses were evaluated for their ability to be neutral-
ized by EDIII MAbs. rDENV4/ZIKV-EDIII was not neutralized by DENV4 EDIII-specific MAb
D4-E75, whereas it was potently neutralized by three different ZIKV EDIII-specific MAbs
(ZKA64, ZKA190, and ZKC6), with comparable 50% focus reduction neutralization titers
(FRNT50) (Fig. 2C and D) (3, 14). To ensure that distal, non-EDIII epitopes were not
disrupted and that their presentation was not altered, we measured neutralization by
DENV4 and ZIKV EDI/II hinge antibodies D4-131 and Z3L1 (10, 15). rDENV4/ZIKV-EDIII
maintained neutralization by D4-131 and did not gain neutralization to Z3L1 (Fig. 2C
and D), confirming that distal epitopes were not disrupted, nor was nonspecific ZIKV
neutralization gained.

We next used rDENV4/ZIKV-EDIII to measure polyclonal antibody responses in mice
and humans. Human immune sera came from individuals who experienced ZIKV
infection in geographically diverse locations (Central and South America, the Carib-
bean, and India) and from early (1 month) to late convalescent (�3 years) times
postinfection (Fig. 2E). Mice vaccinated with ZIKV recombinant E (rE) generated ZIKV
neutralizing antibodies that did not cross-neutralize DENV4 but efficiently neutralized
rDENV4/ZIKV-EDIII, demonstrating that the majority (�85%) targeted EDIII (Fig. 2F and
G), similarly to what has previously been shown with DENV rE vaccination in mice (16).
In contrast, while ZIKV-infected mice generated ZIKV-specific neutralizing antibodies, a
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much smaller fraction tracked with EDIII (Fig. 2F and G). Importantly, this highlights that
rDENV4/ZIKV-EDIII can be used to track ZIKV-specific polyclonal antibody responses
targeting EDIII.

Sera from people who experienced primary ZIKV infections (DENV-naive individuals)
strongly neutralized ZIKV and weakly neutralized rDENV4/ZIKV-EDIII (Fig. 2F). Approx-
imately 5% of ZIKV-specific neutralizing antibodies tracked with EDIII (Fig. 2G). Sera
from DENV-immune individuals who were infected with ZIKV had high and intermedi-
ate levels of neutralizing antibodies to ZIKV and DENV4, respectively. In this population,
only �9% of the ZIKV-specific neutralizing antibodies tracked with EDIII (Fig. 2F and G).
For three individuals, we analyzed sera from multiple times postinfection and found
that, regardless of timing, only a small fraction of ZIKV-specific neutralizing antibodies
targeted EDIII, suggesting that the EDIII specificity of the polyclonal antibody response
is not dynamic, nor dependent on acute versus convalescent variables (Fig. 2H and I).
Together, these results revealed that across a highly diverse panel of ZIKV human
immune sera, a minor role, if any, for EDIII, but further studies are needed to assess
epitope specificity of the neutralizing response at the population level.

By studying the binding properties of serum antibodies in ZIKV patients to recom-
binant E protein or EDIII, investigators have concluded that EDIII is a major target (1).
However, by using only recombinant antigens for characterizing flavivirus immune sera
and MAbs, one underestimates the levels of antibodies targeting quaternary epitopes
that are displayed only on intact virions. Our results suggest that EDIII-targeting
antibodies account for a small fraction of the total amount of serum neutralizing
antibodies following ZIKV infection as well. Although EDIII-binding antibodies are
present in high levels in immune sera (11, 12), they appear to be contribute little to

FIG 1 ZIKV E homology and recombinant virus design. (A) (Top) ZIKV E protein sequence homology with DENV1 to DENV4, graphed
as the percentage of DENV residues that match ZIKV residues (e.g., a ZIKV residue matching two DENV serotypes � 50% conserved),
color-coded by domains (with EDI, EDII, and EDIII color-coded as red, yellow, and blue, respectively). The numbers at the top of the graph
correspond to amino acid position. (Bottom) The heat map displays the same ZIKV homology as displayed in the graph (black � 100%
conserved, white � 0% conserved). (B) ZIKV protein dimer (PDB 5IZ7) with bottom monomer color-coded by domains and top monomer
color-coded by homology to DENV as shown in panel A. (C) Design of rDENV4/ZIKV-EDIII chimeric virus. (D) EDIII amino acid alignment
of DENV, ZIKV, and chimeric rDENV4/ZIKV-EDIII. Amino acids missing in DENV4 are highlighted in pink. (E) DENV protein dimer (PDB 1OAN)
showing altered residues (highlighted in cyan).
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total neutralization, similarly to what has previously been shown for DENV (13).
Additionally, some groups isolated ZIKV MAbs based on their ability to bind rEDIII,
biasing their MAb repertoire to only those which have at least a majority of their
epitope contained within EDIII. In contrast, by screening antibodies by binding to whole
ZIKV, multiple groups have identified strongly neutralizing ZIKV-specific antibodies that
target complex epitopes present only on the intact virion (3, 10, 17). It has been shown
for DENV that the antibodies targeting these quaternary epitopes are primarily respon-
sible for polyclonal neutralization, and growing evidence suggests this is the case for

FIG 2 rDENV4/ZIKV-EDIII tracks with ZIKV-specific EDIII-targeting Abs. (A and B) DENV4, ZIKV, and rDENV4/ZIKV-EDIII infectious titer (A)
and focus morphology (B). FFU, focus-forming units. (C) Neutralization curves of viruses by EDIII-specific and EDI/II-specific MAbs. (D) Fifty
percent focus reduction neutralization titer (FRNT50) (representing the concentration required to neutralize 50% of virus) determined for
each MAb. The dotted line represents the limit of detection (LOD). Viruses not neutralized at the highest antibody concentration are
plotted at the LOD. (E) Infection date, months postinfection of samples analyzed, and location of infection for human ZIKV immune sera.
(F and H) Neutralization of viruses by mouse ZIKV rE vaccine sera, mouse ZIKV immune sera, and human ZIKV immune sera from
DENV-naive individuals and DENV-immune individuals (F) and subject-matched human immune sera collected at two times postinfection
(H). The y-axis data represent FRNT50 values, the dotted lines represent the LOD, and viruses not neutralized are plotted at half the LOD.
(G and I) Percentages of neutralizing antibodies targeting EDIII in ZIKV polyclonal sera (G) and subjected-matched samples (I) were
calculated from the data presented in panels F and H as follows: (rDENV4/ZIKV-EDIII FRNT50 � DENV4 FRNT50)/(ZIKV FRNT50) � 100.

Gallichotte et al. ®

September/October 2019 Volume 10 Issue 5 e01485-19 mbio.asm.org 4

https://mbio.asm.org


ZIKV as well (17). Generating chimeric viruses that recreate ZIKV quaternary epitopes
would allow one to measure the contribution of these complex antibodies to total
polyclonal neutralization.

Comprehensive analysis of the human immune response to ZIKV infection at the
population level is critical to understanding protective immunity. Antigenic similarity
between DENV and ZIKV leads to serological cross-reactivity and complicates analyses
of ZIKV-specific antibody responses, especially in DENV-immune individuals (12, 18–20).
Protein binding-based assays performed to distinguish DENV and ZIKV infections, while
critical for accurately diagnosing infection history (12, 20), may oversimplify the com-
plex neutralizing antibody response following infection. Therefore, additional tools
(e.g., epitope transplant viruses) (21) and techniques (e.g., neutralization-based deple-
tion assays) (17, 18) are needed to precisely map the targets of and the contributions
to neutralization of different antibodies in ZIKV immune sera. This work builds on the
utility of EDIII chimeric flaviviruses, which have previously been generated to map
antibody responses (21) or to study aspects of pathogenesis (22). Moving forward, ZIKV
vaccines must be designed to elicit responses directed to these important epitopes and
evaluated based on their ability to generate antibodies targeting these critical sites (6).

Viruses. Amino acid alignment was generated using DENV1 West Pac 74, DENV2
S16803, DENV3 UNC3001, DENV4 Sri Lanka 92, and ZIKV H/PF/2013. Viruses were
generated as previously described (21, 23). Briefly, DNA encoding recombinant se-
quences (approved by the Institutional Biosafety Committee of the University of North
Carolina at Chapel Hill [UNC] for use of recombinant virus at biosafety level 2) was
introduced into a DENV4 infectious clone. Plasmid DNA was digested and ligated and
T7 transcribed. Viral RNA transcripts were electroporated into C6/36 cells, and super-
natant was passaged onto C6/36 cells and harvested to make working stocks.

Cells. C6/36 cells were grown in minimum essential medium with 5% fetal bovine
serum, 100 U/ml penicillin, 100 �g/ml streptomycin, 0.25 �g/ml amphotericin-B, and
nonessential amino acids at 32°C with 5% CO2.

Sera. Mouse vaccine sera come from BALB/c mice vaccinated with ZIKV recombi-
nant E protein as described previously (24). Mouse immune sera come from ZIKV-
infected C57BL/6 mice as previously described (25). Anonymized human sera were
obtained from a previously described Arbovirus Traveler Collection at UNC (18), col-
lected under Institutional Review Board approval.

Focus reduction neutralization test. C6/36 cells were seeded 1 day prior to
infection. MAbs and sera were diluted, mixed with virus, incubated for 1 h at 32°C, and
added to cells for an additional hour at 32°C. Overlay was added and incubated for 4
days. Cells were washed with phosphate-buffered saline, fixed with 50% acetone–50%
methanol, blocked in milk, and stained with anti-E MAb 1M7 and horseradish peroxi-
dase (HRP)-labeled secondary antibody. Foci were developed using TrueBlue substrate.
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