
RESEARCH PAPER

Novel semi-automated algorithm for high-throughput quantification of 
adipocyte size in breast adipose tissue, with applications for breast cancer 
microenvironment
Frank L. Lombardia, Naser Jafari b, Kimberly A. Bertrand c, Lauren J. Oshry d, Michael R. Cassidy e, 
Naomi Y. Ko d, and Gerald V. Denis b,d,f*
aDepartment of Biomedical Engineering, Boston University, Boston, MA, USA; bBU-BMC Cancer Center, Boston University School of Medicine, 
Boston, MA, USA; cSlone Epidemiology Center, Boston University School of Medicine, Boston, MA, USA; dSection of Hematology-Oncology, 
Boston Medical Center, Boston, MA, USA; eDepartment of Surgery, Boston Medical Center, Boston, MA, USA; fDepartment of Pharmacology 
and Experimental Therapeutics, Boston University School of Medicine, Boston, MA, USA

ABSTRACT
The size distribution of adipocytes in fat tissue provides important information about metabolic 
status and overall health of patients. Histological measurements of biopsied adipose tissue can 
reveal cardiovascular and/or cancer risks, to complement typical prognosis parameters such as 
body mass index, hypertension or diabetes. Yet, current methods for adipocyte quantification are 
problematic and insufficient. Methods such as hand-tracing are tedious and time-consuming, 
ellipse approximation lacks precision, and fully automated methods have not proven reliable. 
A semi-automated method fills the gap in goal-directed computational algorithms, specifically for 
high-throughput adipocyte quantification. Here, we design and develop a tool, AdipoCyze, which 
incorporates a novel semi-automated tracing algorithm, along with benchmark methods, and use 
breast histological images from the Komen for the Cure Foundation to assess utility. Speed and 
precision of the new approach are superior to conventional methods and accuracy is comparable, 
suggesting a viable option to quantify adipocytes, while increasing user flexibility. This platform is 
the first to provide multiple methods of quantification in a single tool. Widespread laboratory and 
clinical use of this program may enhance productivity and performance, and yield insight into 
patient metabolism, which may help evaluate risks for breast cancer progression in patients with 
comorbidities of obesity.
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Breast cancer incidence, progression and mortality con-
tinue to pose a serious public health challenge, particularly 
among underserved patients and in safety net hospitals [1– 
3], where the prevalence of comorbid obesity and meta-
bolic disease are also high [4]. Recent appraisals of expected 
numbers of new cases of breast cancer in the United States 
report estimate 271,270 diagnoses annually, of which about 
205,670 will be invasive breast carcinoma in women [5]. 
Furthermore, breast cancer accounts for 30% of all new 
cancer diagnoses in women and was projected in 2019 to 
account for 41,760 of U.S. cancer deaths in women [5]. 
Black women continue to have higher breast cancer mor-
tality rates than white women [6] and both race and lower 
socioeconomic status continue to be strongly associated 
with U.S. cancer mortality [5,7-10].

It has been long appreciated that obesity and meta-
bolic disease disproportionately affect underserved 

patients [11,12], for whom access to high-quality nutri-
tion and regular physical activity may be limited [13]. 
In obesity, low-grade chronic inflammation, adipocyte 
dysfunction and metabolic abnormalities alter the 
breast tumour microenvironment and upregulate 
expression of aromatase [14] to exacerbate risk for 
breast cancer incidence and progression. We have 
investigated chronic metabolic disease, particularly 
Type 2 diabetes in the context of obesity [15], which 
associates with increased adipocyte size [16] and 
increased incidence, progression and mortality in breast 
cancer [17,18]. Although obesity is a well-established 
risk factor for incidence of oestrogen receptor-positive 
breast cancer in post-menopausal women, there is also 
a significant positive association between obesity- 
driven Type 2 diabetes and incidence and progression 
of oestrogen receptor-negative breast cancer [17]. We 
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are currently participating in a large national trial 
(NCT02750826) to investigate the effect of 
a supervised weight loss intervention on breast cancer 
outcomes, in overweight and obese women with stages 
II and III HER-2 negative breast cancer. Thus, the 
relationships among BMI, metabolism, inflammation 
and incidence or outcome for different subtypes of 
breast cancer are not fully understood; these investiga-
tions continue to have high significance.

Although transcriptional profiling of patient primary 
tumour tissue [19], or the 21-gene recurrence score 
(Oncotype Dx) for oestrogen receptor-positive, early- 
stage breast cancer [20], have proven utility for clinical 
decision-making, these tools may not always be avail-
able, affordable or used in a timely fashion in the safety 
net hospital setting [21,22]. Furthermore, the seminal 
study (Trial Assigning Individualized Options for 
Treatment or TAILORx) prospectively validating the 
Oncotype Dx Recurrence score in hormone receptor- 
positive, HER-2-negative, node-negative breast cancer, 
included only 7% Black patients. A recent analysis of 
race and clinical outcomes in this trial demonstrated 
inferior outcomes for Black patients despite similar 
recurrence scores and comparable systemic therapy 
[23]. This result supports the contention that factors 
beyond the genomic landscape are critical in determin-
ing worse outcomes in Black women.

We have used antibody capture assays to profile 
plasma cytokines of metabolically at-risk patients with 
obesity to develop signatures of cytokines known to 
drive breast cancer progression and metastasis [24]. 
Yet, we have found that vulnerable patients are often 
reluctant to undergo blood draws required for these 
novel tools [25]. Furthermore, blood profiling of meta-
bolic and inflammatory analyses is not covered by 
insurance, nor are they included in the standard of 
care for breast cancer patients with metabolic co- 
morbidities. Thus, there is an unmet need for inexpen-
sive, robust pathology measures to supplement routine 
clinical information, to assist in potential clinical deci-
sion-making and risk assessment for breast cancer 
patients. New pathology tools to characterize adipocyte 
dysfunction in obesity may help identify and stratify the 
highest risk patients, and assist clinical decision-making 
to reduce mortality.

Analysis of adipocyte size distribution in adipose 
tissue samples has been a popular practice for research-
ers looking to use histological samples to gain insight 
into metabolic and immunological conditions [26–29]. 
Adipocyte size, shape and contour are highly irregular 
in most human histological samples, thus experience 
and skill are required to distinguish bona fide adipo-
cytes from artefacts introduced in the fixation and 

staining process or tissue subtypes not of interest. 
Furthermore, adipocyte measurement must be compre-
hensive and unbiased, else the calculated size distribu-
tions will not be representative of the sample and 
metabolic diagnosis will be inaccurate. Additionally, 
in the clinical pathology laboratory, the measurement 
methods must be well suited for high volume cell 
quantification and reproducibility. Thus, repeatability 
and precision must be a primary focus for assessing the 
utility of better methods. Lastly, if adipocyte quantifica-
tion remains inefficient, bandwidth amongst clinical 
pathologists, thus longer turnaround times, may hinder 
broader access for all patients whose care may other-
wise benefit from such information.

Comparison of current adipocyte quantification 
methodology from digital histological images reveals 
two primary, well-established methods and one emer-
ging method: hand-tracing and ellipse approximation 
have been widely used and described for adipocyte 
quantification, and fully automated image analysis 
remains an emerging technique [27,30,31]. The hand- 
tracing method, manual by definition, is considered the 
gold standard for clinical and research practice because 
of its accuracy and reproducibility, and thus remains 
the current convention for obesity and metabolism 
research studies. An experienced user traces the mem-
brane of the adipocyte, avoiding artefacts or irrelevant 
tissue, as well as extrapolating missing or deteriorating 
membrane boundaries. The cell area is calculated by 
scaling the pixel area to relevant units (μm2). The time 
required to perform these analyses using the hand- 
tracing method is largely proportional to the number 
of cells quantified. For large volume or high- 
throughput sampling, the method is highly inefficient 
and time-consuming. Overall, the utility of the hand- 
tracing method for high-throughput adipocyte quanti-
fication is limited because it is tedious, inefficient and 
dependent on the skills of the operator, which intro-
duce human error and subjectivity [31].

The ellipse approximation method is also described 
in immunology research publications [30], whereby the 
area of a superimposed ellipse over the adipocyte is 
calculated to approximate the area of the cell. The 
user measures the semi-major (A) and semi-minor (B) 
axes of the adipocyte and then calculates the area using 
the equation, Area = π*A*B [30]. However, depending 
on the user’s estimation of the appropriate axes, the 
ellipse approximation may severely underestimate or 
overestimate the true size of the cell. The accuracy of 
this method is correlated with the irregularity of adi-
pocyte size, shape and contours and user subjectivity. 
Although an ellipse approximation is less manually 
intensive for the user and may be slightly more 
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efficient, it has limitations as described and remains 
a non-exact methodology.

The third method that has been and continues to be 
explored in the literature as an emerging technique, 
fully automated quantification, seeks to enable high- 
throughput measurement of adipocytes without, or 
with minimal intervention from a user. Such tools 
leverage multiple layers of image manipulation, proces-
sing such as converting to binary and setting an inten-
sity threshold, and segmentation to calculate adipocyte 
size by the area contained in the boundary detected and 
subtracted from the background [30–32]. Although 
these approaches have the potential to be efficient, 
they often exhibit technical complications and unreli-
able performance when used to analyse histological 
samples of sub-optimal quality. A challenge with fully 
automated quantification of adipocytes lies in favour-
ably modulating the signal-to-noise ratio of adipocyte 
cell boundaries with artefact. Key limitations of this 
method include improving the ability to detect cell 
membranes and to account for intra-sample heteroge-
neity of adipocyte quality, signal-to-noise and lighting 
conditions [32]. Fully automated methods have not 
proven reliable with diverse image samples [32] and 
our group was unable to reliably produce outputs 
using these tools with image samples outside of samples 
provided by authors. Therefore, and considering the 
literature, we do not determine fully automated meth-
ods of adipocyte quantification to be standard labora-
tory practice at this time.

Early and current methodology of adipocyte quanti-
fication are problematic and insufficient, and fail to 
reach a compromise between accuracy, efficiency and 
robustness, which affects the productivity of the user 
and the potential of adipocyte quantification as 
a prognostic indicator [28,29]. With these considera-
tions in mind, we chose to design an interactive soft-
ware tool, developed in MathWorks® MATLAB, which 
quantifies adipocytes and relays data in a clear and 
informative manner. The goal of tool was to provide 
investigators a semi-automated method of adipocyte 
quantification and enhance productivity over currently 
standard methodology, as well as offer the ability to use 
other widely used methods as determined by sample 
type, source, condition or intra-sample heterogeneity. 
The tool, AdipoCyze, incorporates (i) a novel, semi- 
automated tracing algorithm to follow the membrane 
of adipocytes precisely, along with benchmark meth-
ods, such as (ii) manual tracing and (iii) ellipse 
approximation.

Here, we describe the development of AdipoCyze and 
use the tool to assess the accuracy and speed of adipocyte 
quantification using the novel, semi-automated tracing 

algorithm, compared with methods of standard practice, 
hand-tracing and ellipse approximation.

A semi-automated method that allows the user to 
select cells of interest with ‘one click,’ while all mea-
surements, calculations and renderings are performed 
through computational algorithms, may fill the need in 
adipocyte quantification and offer a solution to the 
challenges described. By enabling high-throughput 
quantification of both optimal and sub-optimal histo-
logical samples, minimizing errors, improving accuracy 
and increasing efficiency, we expect this novel approach 
to enhance the productivity of the user.

The availability of and widespread adoption of 
AdipoCyze may usefully inform the standard of care 
in risk management of obesity-associated cancers, as 
well as other clinical approaches where adipocyte size 
measurements are beneficial, such as after bariatric 
surgery. The tool is well suited to low-resource settings 
and could assist with prognosis and risk stratification 
for vulnerable or underserved breast cancer patients, 
who suffer from increased co-morbidities including 
obesity, diabetes and hypertension.

Materials and methods

Human subjects

The Komen Tissue Bank collected detailed medical his-
tory, including diagnoses and medications, from a non- 
clinical, volunteer population. This information was 
obtained for each subject in the analysis, stripped of 
HIPAA identifiers and used with written permission 
from the Komen Tissue Bank. The donated samples 
were collected with informed consent following 
Helsinki guidelines. Protocols, including laboratory pro-
cedures used in the study, were submitted to and 
approved by the Institutional Review Board, Boston 
University. The data are archived in the Virtual Tissue 
Bank (https://virtualtissuebank.iu.edu/), which is accessi-
ble to the general public. Self-reported race of all subjects 
recruited to this study was African American; all subjects 
were female. These samples provided a range of sizes to 
permit the computational algorithm to be developed and 
tested across a diverse set of samples with varying degrees 
of quality in sample preservation.

Image acquisition and analysis

We obtained breast histological sections that included 
adequate numbers of adipocytes from a panel of volun-
teers drawn from the general community, who donated 
specimens to the Susan G. Komen for the Cure Tissue 
Bank (KTB) at the Simon Cancer Centre (Indiana 
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University). Sections had been stained with H&E and 
captured as digital images by microscopy. Full-slide digi-
tal images of histological breast adipose samples obtained 
from Komen for the Cure were imported as.svs files, 
native to Imagescope software. The image files were 
converted to.tiff and subsequently.jpeg to maintain 
a high quality and adequate compression for computa-
tional analysis. Samples of regions of interest were seg-
mented from each image at constant magnification.

AdipoCyze design approach

AdipoCyze was developed using MathWorks MATLAB 
suite R2013b. Functional requirements included an intui-
tively designed, interactive, graphic user interface (GUI), 
a simple process to import and transform histological 
image files, the ability to analyse the image using three 
available quantification methods such as, Trace mode 
(TM), hand trace (HT), and ellipse approximation (EA), 
and the ability to export results upon the completion of 
analysis. The program was constructed to export results in 
relevant file formats for tertiary analyses (.xls.,jpg.,fig.,mat). 
The final program executable file (.exe) was compiled using 
MATLAB Runtime Complier for distribution and execu-
tion on PCs with or without MATLAB installed.

Semi-automated trace mode and algorithm design

The semi-automated cell adipocyte quantification 
method was designed to allow the user to select cells 
of interest with ‘one click,’ while all measurements, 
calculations, and renderings were to be performed 
through computational computer algorithms. We 
designed a user experience such that in the Tracing 
Mode, the user clicks the approximate centre of the 
cell of interest and the algorithm traces the interior 
perimeter of the cell using a recursive tracing algo-
rithm. The interior cross-sectional area of the cell is 
then calculated in square pixels, the calculated region is 
displayed and the cell of interest is labelled for analy-
tical purposes. In order to use the trace mode with one- 
click tracing algorithm, the image of interest is required 
to be transformed using the default transformation 
parameters in AdipoCyze or manually, following the 
three-step process of modulating low levels and sha-
dows, converting to binary, and despeckling.

Hand-trace mode design

We sought to design a hand-trace mode that mirrored the 
conventional method to be included into AdipoCyze. In 
this mode, the user is able to manually trace the perimeter 
of the cell of interest by selecting its vertices by hand. The 

drawn area is dynamically displayed such that the user is 
able to visualize the area enclosed. The interior cross- 
sectional area of the cell is then calculated in square pixels 
and the cell is labelled for analytical purposes.

Ellipse approximation mode design

The goal of the ellipse approximation module was to 
provide users with the option to use the ellipse approx-
imation method to quantify adipocytes, should the 
analysis or goal of research demand. In this regard, 
we developed an analysis module such that the user 
measures the major axis of the ellipse by assessing the 
size, curvature and orientation of the adipocyte. After 
the drawing of the major axis, a perpendicular line is 
projected from the centre of the cell to allow the user to 
define the semi-minor axis. The interior cross-sectional 
area of the ellipse approximation is then calculated in 
square pixels using the equation, π*A*B, where A and 
B are the semi-major and semi-minor axes, respec-
tively. Cells are labelled for analytical purposes.

Adipocyte quantification

Cells 1–15 of the sample were analysed, in order, three 
times over using each of the adipocyte quantification 
methods available from the AdipoCyze tool. All cells 
were measured in the same order and time in between 
measurements of each cell was recorded in seconds.

Hand trace
Cells were measured manually by clicking on the peri-
meter of the cell to create the first vertex of the poly-
gonal area. The user double-clicked to complete the 
measurement of an individual cell. Timing was mea-
sured from the point at which the initial image loaded 
in AdipoCyze and analysis can begin to the point in 
time when the full analysis of the 15 cells was complete. 
Splits of analysing individual cells were also measured.

Ellipse approximation
Cells were measured by approximating an elliptical area 
over the cross-sectional area of the adipocyte of inter-
est. The user clicked the vertices of the cell to measure 
the major axis of the ellipse where then a semi-minor 
axis was drawn perpendicular and through the centre. 
The area of the ellipse was calculated with the equation: 
π*A*B, where A and B are the semi-major and semi- 
minor axes, respectively. Timing was measured from 
the point at which the initial image loaded in 
AdipoCyze and analysis can begin to the point in 
time when the full analysis of the 15 cells was complete. 
Splits of analysing individual cells were also measured.
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Tracing algorithm
Analysis using the trace mode first required the sample 
image to be transformed; the following parameters were 
applied: Low Level in: 0.9; Shadows: 0.15; Binary 
Threshold: 0.8; Despeckle Pixel Radius: 5; Number of 
Passes: 5. To measure cells using the tracing algorithm, 
the user clicked anywhere in the interior of a cell of 
interest. The tracing algorithm finds the interior 
boundary of the cell membrane and traces the interior 
perimeter of the cell to measure cell perimeter and cell 
area. Utilizing the tracing algorithm requires trans-
forming the image in AdipoCyze. Time was measured 
from the point at which the initial image loaded in 
AdipoCyze and image processing was initiated to the 
time when the full analysis of the 15 cells was complete. 
Splits of analysing individual cells were also measured.

Results

Intra-sample heterogeneity

Samples from the Komen Tissue Bank were analysed 
and yielded a wide variety of intra-sample heteroge-
neity, representing a variety of sample quality. As 
shown in Figure 1, within a single field of view, the 
quality of adipocytes for measurement can vary. The 
area enclosed in the solid-line border represents an 
optimal sample containing adipocytes characteristically 

shaped with structured cell membranes, well-defined 
borders, and absence of cellular or foreign artefacts. 
Sub-optimal samples are represented in the subse-
quent enclosed sections. The area enclosed in the 
dotted line border and the area enclosed in the 
dashed line border depict the presence of morpholo-
gical signatures and cellular artefacts. The area 
enclosed in the long-dash border contains poorly 
defined adipocyte cells with deteriorated cell mem-
branes, indicative of poor fixation or nonuniform 
slices that are too thin for adipose tissue.

AdipoCyze output

The output of analysis performed using AdipoCyze can 
be seen in Figure 2(a–c) which visually compares the 
cell boundaries and calculated areas for each measure-
ment method. Cells are numbered in the order ana-
lysed. Measurements with the Trace Mode (TM) 
(Figure 2(a)) algorithm are shown in blue outline and 
notably most thoroughly trace the contours of the adi-
pocytes and manage to account for irregularity in shape 
and size. Measurements with Hand Trace (HT) method 
(Figure 2(b)) are outlined in red, where the green 
crosses represent the cell vertices selected for each 
cell. The outlined perimeters are markedly more poly-
gonal, composed of straight lines, in contrast to the 

Figure 1. Representation of intra-sample heterogeneity. The area enclosed in the solid-line border represents an optimal sample 
containing adipocytes characteristically shaped with structured cell membranes, well-defined borders and absence of cellular or 
foreign artefacts. Sub-optimal samples are represented in the subsequent enclosed sections. The area enclosed in the dotted line 
border and the area enclosed in the dashed line border depict the presence of morphological signatures and cellular artefacts. The 
area enclosed in the long-dash border contains poorly defined adipocyte cells with deteriorated cell membranes indicative of poor 
fixation or non-uniform slices that are too thin for adipose tissue.
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other two methods. Measurements with the Ellipse 
Approximation (EA) method (Figure 2(c)) are outlined 
in yellow. The major axis is shown as a green line and 
semi-minor axis is shown in the red line. Apparent in 
the analysis of the EA method is the correlation in 
approximation with the regularity of adipocyte shape. 
Ellipses drawn for cells C1 and C14 appear to under-
represent the true size of corresponding adipocytes, 
whereas C9 and C12 appear to over-represent the size. 
Additionally, a number of ellipse approximations 
demonstrated overlap as shown in (C3, C8), (C4, C9), 
and (C15, C16).).

The AdipoCyze Graphical User Interface (GUI) in 
trace-mode is shown in Figure 2(d), depicting the 
output of our holistic development efforts. The 
resulting comprehensive AdipoCyze tool features 
a prominent interactive analysis window with zoom 
capability, a grey-level intensity map of the loaded 
image, and a status-bar with instructions for the user. 
The right panel allows the user to perform image 
transformation to increase signal as well as select as 
the desired method for quantification. A dynamic 
histogram of adipocyte size distribution is drawn as 
cells are measured.

Figure 2. Compares the calculated areas for each measurement method. (a): Measurements with the TM method are outlined in blue. (b): 
Measurements with HT method are outlined in red. (c): Measurements with the EA method are outlined in yellow with the calculated major 
axis is shown as a green line and semi-minor axis is shown in the red line. (d): AdipoCyze Graphical User Interface (GUI) shown in TM.
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Adipocyte area calculation by method

Each cell was analysed three times using each ana-
lysis method. The results of analysing adipocyte size 
(μm2) by cell, in the order of cells measured are 
shown in Figure 3. Each data point in the bar chart 
represents the average of three repeated runs for 
a measurement method. Cells analysed by the TM 
were consistently measured to a smaller area than 
HT and EA. The magnitude of underestimating the 
area of adipocytes using the TM compared to the 
HT method was also consistent. As the HT method 
is the reference, there was variability in over- 
estimating and under-estimating cell area when 
comparing HT and EA methods where the EA 
method over-estimated the size of the adipocyte in 
cells 9, 10, 12, and 16, and underestimated the size 
of the adipocyte in the other cells. Overall there was 
uniformity in area measurements across methods. 
The variation between repeated measurements was 
highest with the EA method, followed by the HT 
method, and no variation with the TM method.

Adipocyte size distribution by method

The distribution of adipocyte size using the TM, HT, and 
EA methods is demonstrated in the histogram in Figure 4. 
The adipocyte size distribution shows a left bias as well as 
a bimodal distribution. The TM mode yielded higher fre-
quencies of smaller calls between 4500–7000 μm2 and 

7000–9500 μm2 bins, and is visually shifted left slightly 
compared to HT and EA methods. The largest measure-
ment was taken using the EA method.

Concordance

Concordance was evaluated based on slope and correlation 
coefficient of trendlines in Figure 5. HT and TM demon-
strated high concordance both visually and mathematically 
with a strongly linear scatter, a slope of 0.97 and R2 of 0.992. 
The negative intercept in the linear regression confirms 
observations from Figure 3 of TM underestimating adipo-
cyte areas relative to HT. Plotting HT and EA suggests 
a broad scatter but the slope of 0.99 in Figure 5(b). The 
correlation coefficient of R2 = 0.86 reveals a weaker correla-
tion compared to (HT, TM) Figure 5(a) and (TM, EA) 
Figure 5(c). The positive intercept of the linear regression 
confirms observations from Figure 3 of EA overestimating 
adipocyte areas relative to HT. Concordance of the tracing 
mode and the ellipse approximation shows a scatter between 
Figure 5(a,b). The slope of 1.03 shows a positive correlation, 
while the R2 of 0.89 reveals a correlation weaker than that of 
(HT, TM) but stronger than that of (HT, EA). The positive 
intercept of the linear regression confirms observations 
from Figure 3 that EA greatly overestimates adipocyte 
areas relative to TM. Generally, all three methods were 
generally concordant with each other. While the slope of 
HT vs TM is <1, the R2 value was the highest at 0.992 
demonstrating the strongest explanation of the data by the 
linear fit.

Figure 3. Comparison of adipocyte area calculation by method by cell. Results of analysing adipocyte size (μm2) by cell, in the order 
of cells measured are shown. Each data point in the bar chart represents the average of three repeated runs of for a measurement 
method. Measurements using the trace mode, hand trace, and ellipse approximation methods are shown in black, white, and grey 
bars, respectively. Error bars represent standard deviation of measurements for individual cells.
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Rate of analysis

The HT and EA methods took the longest time to 
complete, measuring 15 cells. The TM method took 
less than one-quarter of the time to complete mea-
suring cells in comparison to the HT method, and 
nearly half than that of the EA. The time to measure 
the first cell was similar between the HT and the EA 
methods, and the longest with the TM. Linear tren-
dlines are displayed on each series of data. Both the 
HT and EA methods demonstrated evidence of 
a linear relationship, whereas the TM showed evi-
dence of a non-linear relationship with time, likely 
due to the time spent upfront to transform the 
image. Extrapolating the results shown here for the 
measurement of 15 cells, it would be expected that 

the gap between time to measure using TM and HT 
and EA methods increases with higher volumes of 
cells.

Measurement of ideal and non-ideal adipocyte 
images

When specifically comparing the measurement meth-
ods in a heterogenous adipocyte image sample in 
Figure S1, we saw that both the ideal cell and the non- 
ideal cell were able to be measured with each method. 
Visual inspection of the regions calculated revealed that 
TM was able to closely trace the interior contour of the 
ideal cell and closely resembles the region calculated 
from hand-tracing (Figure S1d). Consistent with other 

Figure 5. Concordance between adipocyte quantification methods was analysed and be observed in the scatter plots (a, b, c). 
Variables were plotted along the X, Y axes. Linear trendlines were plotted through each series. Concordance was evaluated based on 
slope and correlation coefficient of trendline. (a): Concordance of HT with the TM is observed from the series with white circles and 
black outline. (b): Concordance of HT with EA is observed in the series of black circles. (c): Concordance of the TM and the EA is 
observed in the series of grey circles.

Figure 4. Adipocyte size distribution by method. Results from various methods are shown in 100% overlap to show the shape of 
distribution across 6 bins. Adipocyte area size distribution from the TM, HT, and EA is shown in blue check pattern, red, and yellow, 
respectively. Overlap between distributions is shown by secondary shades.
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observations, the ellipse approximation method appears 
to over-estimate the cell area as the region calculated 
from ellipse approximation by including regions in the 
area calculation that are not part of the cell (Figure 
S1c). When non-ideal cells are measured, we see higher 
variability in measurement across methods (Figure 
S1g). The trace mode closely follows the contours of 
the non-ideal cell; however, irregularity of shape and 
contour of the non-ideal cell may be accentuated. 
Hand-tracing of the non-ideal cell tends to be depen-
dent on the user’s assessment of where the true bound-
aries of the adipocyte exist.

Discussion

Analysis of adipocyte tissue in breast cancer surgical 
specimens has the potential to contribute to better 
understanding of host factors important in determining 
breast cancer outcomes. In addition to other factors 
such as BMI and macrophage infiltration, useful meta-
bolic and inflammatory information can be gathered 
from an individual’s adipose histology, which can also 
be collected with routine breast biopsies during stan-
dard surgical pathology methods and are inexpensive to 
assay. Adipose tissue permits quantitative, morphologi-
cal and visual analysis, which may reveal further 
insights into a patient’s overall risk factors. For exam-
ple, adipocyte size distribution and macrophage infil-
tration [33–35] are associated with cardiovascular 
disease and insulin resistance in obesity. 
Morphological features associated with enlarged 

adipocytes such as ‘crown-like structures’ [36] are indi-
cative of adipocyte remodelling and concomitant 
macrophage invasion. These features promote angio-
genesis and vascular changes, and an array of immu-
nometabolic responses within adipose tissue, which 
associate with elevated aromatase expression and may 
also elevate breast cancer risk [14,37–39]. Thus, visual 
analysis of adipocyte samples can suggest inflammatory 
and metabolic complications associated with obesity, 
which can serve as valuable, systemic health indicators 
[40] and provide additional clinical parameters that 
could aid in personalized diagnosis [16,24].

The primary objective of this work was to develop 
a new semi-automated method for adipocyte quantita-
tion that demonstrates efficiency and accuracy of adi-
pocyte quantification across multiple sample type, and 
is better than conventional methods. For the purposes 
of quantifying adipocytes to determine size distribution 
as a supplemental assessment of risk, speed and preci-
sion of analysis are both highly relevant and critically 
important. The secondary objective was to develop 
a full-service software tool for users to analyse 
a variety of adipocyte samples with the ability to choose 
different methods as needed. Results of testing show 
that the AdipoCyze tool was able to quantify adipocyte 
samples using a variety of quantification methods, 
including the ability to leverage multiple methods in 
a single analysis as shown in Figure 7, based on the 
conditions of the sample being analysed. While intra- 
sample heterogeneity of quality presents challenges in 
computationally increasing the efficiency of adipocyte 

Figure 6. Adipocyte analysis rate by method. The average time to measure each cell was determined amongst the different 
methods. Average time to measure each cell using TM, HT, and EA, are shown plotted against each cell with symbols, black triangle, 
white diamond, and grey circle, respectively. Linear trendlines are displayed on each series of data.
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quantification, the selection of methods using 
AdipoCyze offers a viable solution as demonstrated in 
Figure S1.

We compared the novel semi-automated trace mode 
(TM) method with the hand trace (HT) and ellipse 
approximation (EA) methods. We considered the HT 
method as the reference method throughout the analysis. 
As described above, a comparison of the semi-automated 
trace mode (TM) and emerging fully automated methods 
was not conducted here, as emerging methods are not 
considered standard laboratory practice.

Precision of methods was assessed by measuring the 
variation in the quantification of cells over three repeated 
runs, as demonstrated in error bars in Figure 3. Variability 
among trials using the TM was non-existent. Because the 
semi-automated recursive tracing algorithm does not dis-
criminate on where the user clicks within the cell, as long 
as the cursor is within the adipocyte cell membrane, the 
traced region and calculated area will be the same. Thus, 
the finding of no variability between runs is expected. 
Conversely, variability run-over-run was consistently the 
greatest with the EA method, which can reasonably be 
contributed to the subjectivity involved in assessing the 
major and semi-minor axes of adipocytes, and the non- 
exact nature of the approximation. It is reasonable to 
suggest that there may be a correlation between variability 
in measurements using the EA method and ovality of the 
morphological shape of the adipocyte. The HT method 

that was used as the reference for each cell consistently 
demonstrated lower, but detectable, variability across 
samples. This finding is expected, because the HT method 
introduces human subjectivity and error, yet enables close 
contouring of the cell perimeter.

In order to compare the accuracy of the three meth-
ods of adipocyte quantification, we examined the dif-
ference between average measurements per cell 
number. Using the HT method as a reference (Figure 
3), it appears that the TM method consistently under-
estimates the areas of each cell while the EA mode may 
under-estimate or over-estimate cell area. The observa-
tion of trends of the accuracy of the EA method is likely 
tied to the previously stated suggestion of correlation 
with the regularity of adipocyte size, shape, contour or 
ovality. The consistent underestimation of adipocyte 
area by the TM method can be explained by appreciat-
ing that adipocyte areas generated from the HT method 
are also an approximation of the true area of the cell 
and that it is possible that the TM method is more 
accurate to true cell size than the HT method used 
here as a reference.

The leftward shift of adipocyte size distribution of 
the TM method relative to HT and EA is consistent 
with the finding that TM underestimates adipocyte size 
relative to HT. However, the general shape and features 
of the size distribution aligned across the methods. This 
analysis may benefit from a larger sample size to 

Figure 7. Multiple methods of adipocyte quantification. Challenges of intra-sample variability can be solved for utilizing multiple 
methods of adipocyte quantification. Due to intra-sample variability, adipocytes quantified using TM are shown outlined in blue, 
adipocytes quantified using EA are shown outlined in yellow, and adipocytes quantified using HT are shown outlined in red.
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eliminate possible biases from a limited number of 
histogram bins. Concordance exists across methods, 
however results from the tracing algorithm demon-
strated that HT and EA methods tend to over- 
estimate cell size relative to TM as suggested by the 
linear intercepts, while concordance between HT and 
TM appears to be strongest.

Analysis rate and overall speed were important metrics 
for evaluation. The TM method demonstrated the fastest 
rate of analysis compared to the HT and EA methods. It is 
noteworthy that the TM rate of analysis poorly fits a linear 
regression, suggesting a non-linear equation. This can be 
explained by the additional time required at the beginning 
of the analysis to transform the image, while subsequent 
measurements are made very quickly. While it requires 
about double the amount of time to analyse the first cell 
using the TM method as HT and EA methods, the TM 
method completed the analysis in nearly half the time of 
the EA method and less than one-quarter of the time of 
the HT method.

Results of comparing the three methods demon-
strated that the semi-automated tracing algorithm 
improved speed, accuracy and precision compared to 
conventional methods, and preserved adipocyte size 
distribution. Our work demonstrates that the 
AdipoCyze tool offers a viable option to quantify 
adipocyte samples and improves overall efficiency, 
accuracy and precision, while providing flexibility to 
work with a wide range of histological sample types as 
shown in Figure 7. A side-by-side analysis of an ideal 
cell and a non-ideal cell situated adjacent to each 
other from an adipocyte histological image sample in 
Figure S1 revealed that the TM method was able to 
measure both cells, however as the contours of the cell 
membrane become irregular, deteriorated or subject to 
artefacts, the calculated regions begin to differ between 
methods of analysis. This analysis highlights 
a limitation of the TM method that researchers should 
be aware of but also highlights the importance of 
a tool that offers flexibility to account for the hetero-
geneity present in adipocyte histological image 
samples.

AdipoCyze is the first adipocyte-specific image 
quantification platform to provide the investigator 
with multiple methods of quantifying adipocytes in 
a single analysis (Figure 7). Widespread laboratory 
and clinical use of this program may save time for 
researchers, while preserving accuracy at acceptable 
precision, to give insight into patients’ metabolic state. 
The potential clinical impact of this approach, as well as 
continued development of the AdipoCyze program, 

may improve our ability to provide important informa-
tion on metabolic health, cardiovascular and/or cancer 
risks, and supplement risk-stratification for more 
patients. Further characterization of the TM method, 
such as a direct comparison with emerging fully auto-
mated methods, further analysis of adipocyte histologi-
cal image samples with smaller adipocytes (<2000 µm2) 
and a calculation of a fitment factor to fit TM and HT 
measurements is warranted. Additional investigation 
and future development of this method, such as incor-
porating contemporary techniques of advanced compu-
ter vision, machine learning and artificial intelligence 
approaches, are needed to further enhance and auto-
mate adipocyte quantification. Additionally, combining 
adipocyte size distribution analysis with other clinical 
and non-clinical parameters, morphological features 
including crown-like structures, and other factors into 
a single platform may aid in more comprehensively 
understanding metabolic status for patients.

The population in which the tool was developed was 
comprised only African-American women, who had dif-
ferent degrees of obesity and metabolic health. Future 
validation studies must include other races and test the 
limits of the tool with a range of subject ages, and in 
different institutions where the patient population is 
heterogeneous. It is also possible that medications for 
Type 2 diabetes, such as metformin or glitazone combi-
nations, which are commonly prescribed for U.S. patients 
to improve glucose control and adipogenesis, may 
change adipocyte sizes in ways that the tool can detect, 
but this prediction must be tested rigorously. Finally, 
adipocyte size distribution is related to metabolic health 
in tissues other than breast, such as subcutaneous, omen-
tal and visceral adipose depots, in both male and female 
subjects. A full range of adipose depots must be tested, 
including for the understudied cases of male breast can-
cer, a typically aggressive disease, where mechanisms of 
inflammation, adipocyte size distribution and tumour 
progression are unknown. Although we have focused 
here on applications to the microenvironment of 
women with breast cancer, we point out that 
AdipoCyze is a generic tool that can be used to quantify 
adipocyte size in any adipose tissue. Breast adipose tissue 
biopsies are not performed as the standard of care for 
metabolic assessment in women without breast cancer or 
suspected breast cancer. As the relationships between 
cardiometabolic risk, obesity and cancer outcomes are 
better understood, broader understanding of the size 
distribution and morphological characteristics of adipo-
cytes in different adipose depots may prove to have 
diagnostic and prognostic value.
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