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Abstract Neuroligins act as heterophilic adhesion mole-

cules at neuronal synapses. Their cytoplasmic domains

interact with synaptic scaffolding proteins, and have been

shown to be intrinsically disordered. Here we report the

backbone and side chain 1H, 13C and 15N resonance

assignments for the cytoplasmic domain of human neu-

roligin 3.
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Biological context

Synaptic adhesion proteins bridge pre- and postsynaptic

specializations at neuronal synapses. As well as providing

mechanical bridging, they participate in formation, func-

tion, and plasticity of such synapses (Dalva et al. 2007).

Cholinesterase-like (ChE-like) adhesion molecules

(CLAMs) are a class of neuronal cell adhesion molecules

that are characterised by an extracellular N-terminal

domain displaying sequence homology to acetylcholines-

terase (although lacking catalytic activity), a single trans-

membrane segment, and a small intracellular C-terminal

domain (Gilbert and Auld 2005).

Neuroligins (NLs) are a family of CLAMs, of which

four isoforms have been identified (Baudouin and Sche-

iffele 2010), that are embedded in the postsynaptic mem-

brane. Their ChE-like extracellular domains interact with

their presynaptic partners, the neurexins.

The intracellular domain of human NL3 (hNL3-cyt) is

disordered in the absence of binding partners (Paz et al.

2008), and has been shown to interact with several scaf-

folding proteins, including PSD-95 (Irie et al. 1997), via a

C-terminal PDZ-recognition motif.

Mutations in NL3 and NL4 have been shown to be

associated with autism (Jamain et al. 2003), and the

neurexin-NL-PSD95 interaction has been implicated in

ischemia (Li et al. 2007). Conformational characteriza-

tion of the disordered cytoplasmic domains of the NLs,

and of their interactions with partner proteins, is

important for understanding structural and functional

features of synaptic junctions, and may also lead to

possible targets for the treatment of neurological

disorders.

Here we report the backbone and side-chain NMR res-

onance assignments of hNL3-cyt.
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Methods and experiments

Expression and purification of uniformly labelled hNL3-cyt

were performed as described previously (Paz et al. 2008).

The NMR sample contained 1 mM of uniformly 13C, 15N-

enriched protein in a solution of 5 mM dithiothreitol

(DTT)/20 mM phosphate, pH 6.0, containing 0.1 mM DSS

(2,2-Dimethyl-2-silapentane-5-sulfonic acid). Sodium

azide was added to 0.02% (w/v), and D2O to 7% (v/v).

All experiments were performed at 25�C on a Varian

Unity Inova 600 MHz spectrometer, equipped with a tri-

ple-resonance room temperature probehead and single-axis

pulsed field gradient capabilities.

2D [1H–15N]-HSQC, 3D HNCA/HN(CO)CA, 3D

HN(CA)CO/HNCO, 3D HNCACB/CBCA(CO)NH, 15N-

edited NOESY-HSQC (Sattler et al. 1999), 3D HNN/

HN(C)N (Panchal et al. 2001), and 3D (HN)CO(CO)NH

(Grzesiek and Bax 1997) and projection-reconstruction 4D

(HA)CACONH (Coggins et al. 2004) experiments were

used to obtain the sequential backbone resonance assign-

ment. Side chain assignments were achieved with 3D CO-

CAH (Dijkstra et al. 1994), 3D 15N-edited TOCSY-HSQC

(Marion et al. 1989), 3D HC(C)H-TOCSY (Bax et al. 1990),

and 3D (H)CC(CO)NH-TOCSY (Logan et al. 1993)

experiments.

Data were processed with the NMRPipe/NMRDraw

software package (Delaglio et al. 1995), and analyzed

using the program Sparky (Goddard and Kneller 2004). All

chemical shifts are referenced to DSS according to IUPAC

recommendation (Markley et al. 1998).

Assignments, data deposition and intrinsic exchange

rates

Figure 1 illustrates the 2D [1H–15N]-HSQC spectrum and

assignments of the amide resonances of hNL3-cyt; its

unfolded nature is evident from the small dispersion in the

amide proton resonances. The construct contains 139 res-

idues, the first 10 of which are a 6xHis-tag, followed by a

short linker sequence (see also Fig. 4). Following a stan-

dard sequential assignment procedure, 98% of the obser-

vable backbone 1H, 15N and 13C resonances were assigned

(excluding the tag). The observable 1H/15N pairs are dis-

played in Fig. 1, labeled by their one-letter amino acid

code and residue number. Considering only aliphatic 1H

and 13C atoms, side chain assignments are complete to

92%.

The resonance assignments were deposited in the Bi-

oMagResBank (http://www.bmrb.wisc.edu/) under acces-

sion number 17290.

To understand whether the absence of some backbone

amide proton resonances in our experiments was due to fast

exchange with the solvent, intrinsic exchange rates were

calculated (Bai et al. 1993) using the program Sphere

(http://www.fccc.edu/research/labs/roder/sphere/sphere.

html) and these values are plotted in Fig. 2. The data show

that in all cases where the amide proton resonance was not

assigned (for residues H20, H64, H134, and S135),

intrinsic exchange rates faster than 15 s-1 are predicted.

Secondary structure prediction

Considering charge and hydrophobicity in a so-called

Uversky plot (Uversky et al. 2000), hNL3-cyt was found to

lie very close to the boundary between proteins predicted to

be unfolded and folded (Zeev-Ben-Mordehai et al. 2003).

A bioinformatics analysis using several predictors had been

performed earlier for hNL3-cyt (Paz et al. 2008). It
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Fig. 1 2D [15N–1H]-HSQC spectrum of hNL3-cyt at 600 MHz and

25�C
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predicted that the N-terminal section (residues 1–70) is

completely disordered, while the C-terminal segment is

predicted to be somewhat more ordered, depending on the

predictor used. Here we use two bioinformatic methods to

predict structural propensity in hNL3-cyt: PONDR� (Ro-

mero et al. 2001) and Jpred 3 (Cole et al. 2008), which

consider sequence information alone. These results were

compared to secondary structural propensity (SSP) scores

(Marsh et al. 2006), derived from the experimental chem-

ical shift data.

PONDR� predicts that 73% of hNL3-cyt is disordered,

consistent with the small dispersion of amide chemical

shifts measured by NMR. PONDR scores of the sequence

are displayed in Fig. 3, where a score between 0.5 and 1

indicates disorder, and a score between 0 and 0.5 indicates

order. The figure shows that the first 75 residues are pre-

dicted to be disordered, and that order and disorder alter-

nate in the remainder of the sequence. Specifically, two

ordered stretches are predicted, viz., residues 76–92 and

111–128.

Secondary structure prediction for hNL3-cyt was also

performed based on sequence similarity using Jpred 3. 88%

of the residues are predicted to be disordered by the Jpred 3

algorithm. As seen in Fig. 4, three short helical stretches

are predicted, residues 25–29, 53–60 and 84–86.

A prediction of secondary structural propensity was also

performed based on chemical shift analysis using SSP. The

analysis used measured chemical shifts of Ca, Cb and Ha

atoms, and an averaging window of five residues (Fig. 5).

A positive SSP score indicates a propensity for a-structure,

and a negative score indicates a propensity for b- or

extended structure. Residues in fully formed a-helices and

b-strands are given scores of ?1 and -1, respectively. As

can be seen in Fig. 4, the bulk of hNL3-cyt yields SSP

scores within the range of -0.2 to 0.2, indicating that the

sequence has little propensity to assume a stable secondary
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Fig. 2 Predicted intrinsic exchange rates of amide protons with

solvent for hNL3-cyt at pH 6.0, 25�C. pKa values of 4.0 for Asp, 4.4

for Glu, and 6.75 for His side chains were used. Residues H20, H64,

S133, H134, and S135 have predicted exchange rates faster than

15 s-1; Except for S133, which is broadened, their amide resonances

are not visible in the spectra
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Fig. 3 Predicted regions of order and disorder using PONDR�.

Sections with PONDR scores of more than 0.5 are predicted to be

disordered. An averaging window of nine residues was applied

Fig. 4 Structure prediction for hNL3-cyt based on sequence similar-

ity using Jpred 3. Most residues are predicted to be disordered

(indicated by dashed line), but three short helical segments are

predicted
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Fig. 5 Secondary structure propensity (SSP) scores calculated using

Ca, Cb and Ha chemical shifts. Positive and negative values represent

a propensity to a- and b- or extended structure, respectively. An

averaging window of five residues was applied
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structure. Only two segments have values [0.2, residues

51–56 and 82–86.

Our experimental data clearly show that hNL3-cyt does

not adopt a well defined tertiary structure, but is intrinsi-

cally disordered. The analysis of measured chemical shifts

only agrees with the two prediction algorithms used here

on one point: the presence of a small stretch with helical

propensity around residue 84. It furthermore agrees with

the Jpred 3 prediction that a labile helical segment is

present around 52–60. The experimental data do not sup-

port the prediction by Jpred 3 of a helical segment around

residue 27, and indicate that the chain adopts an extended

structure in this region.
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