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Abstract
Spatial	and/or	temporal	biases	 in	biodiversity	data	can	directly	 influence	the	utility,	
comparability,	and	reliability	of	ecological	and	evolutionary	studies.	While	the	effects	
of	biased	spatial	coverage	of	biodiversity	data	are	relatively	well	known,	temporal	vari-
ation	in	data	quality	(i.e.,	the	congruence	between	recorded	and	actual	 information)	
has	received	much	less	attention.	Here,	we	develop	a	conceptual	framework	for	un-
derstanding	 the	 influence	of	 time	on	biodiversity	data	quality	based	on	 three	main	
processes:	(1)	the	natural	dynamics	of	ecological	systems—such	as	species	turnover	or	
local	 extinction;	 (2)	 periodic	 taxonomic	 revisions,	 and;	 (3)	 the	 loss	 of	 physical	 and	
metadata	due	to	inefficient	curation,	accidents,	or	funding	shortfalls.	Temporal	decay	
in	data	quality	driven	by	these	three	processes	has	fundamental	consequences	for	the	
usage	and	comparability	of	data	collected	in	different	time	periods.	Data	decay	can	be	
partly	ameliorated	by	adopting	standard	protocols	for	generation,	storage,	and	sharing	
data	and	metadata.	However,	 some	data	degradation	 is	unavoidable	due	 to	natural	
variations	 in	 ecological	 systems.	Consequently,	 changes	 in	 biodiversity	 data	quality	
over	time	need	be	carefully	assessed	and,	if	possible,	taken	into	account	when	analyz-
ing	aging	datasets.
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biodiversity	data,	data	degradation,	data	quality,	maps	of	ignorance,	species	distribution	models,	
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1  | INTRODUCTION

The	quality	of	biodiversity	data—that	is,	the	degree	of	congruency	be-
tween	 recorded	data	and	current	conditions	 that	 the	historical	data	
represents—is	a	central	issue	for	global	monitoring	and	assessment.	It	
influences	the	accuracy	of	our	descriptions	of	historical	and	contem-
porary	patterns	(Anderson,	2012;	Goldewijk	&	Ramankutty,	2004),	de-
termining	our	ability	to	provide	realistic	models	of	the	future	impacts	
of	 environmental	 change	 (Hortal,	 Lobo,	 &	 Jiménez-	Valverde,	 2012;	
Rocchini	 et	al.,	 2011).	 Consequently,	 controlling	 for	 biological	 data	
quality	is	becoming	increasingly	important	as	advances	in	information	
technology	promote	ever	faster	gathering	and	access	to	biodiversity	
information	(Chapman,	2005;	Soberón	&	Peterson,	2004).	Many	mu-
seums,	herbaria,	and	research	centers	now	make	their	data	available	

through	centralized	databases	which	can	be	publically	accessed.	The	
information	contained	within	these	databases	often	dates	back	to	the	
beginnings	of	modern	ecology	(Magurran	et	al.,	2010).	While	such	data	
clearly	have	value	 for	studying	 temporal	changes	 in	natural	 systems	
(Dornelas	et	al.,	2013;	Johnson	et	al.,	2011;	Magurran	et	al.,	2010),	if	
used	uncritically	it	could	generate	serious	biases	and	misunderstand-
ings	about	contemporary	biodiversity	patterns	and	the	processes	that	
are	responsible	for	them.

Existing	research	on	biodiversity	data	quality	has	typically	focused	
spatial	bias,	measurement	errors,	and	sampling	effort	(Anderson	et	al.,	
2016;	 Boakes	 et	al.,	 2010;	 Costello,	 Michener,	 Gahegan,	 Zhang,	 &	
Bourne,	 2013;	 Hortal,	 Jimenez-	Valverde,	 Gómez,	 Lobo,	 &	 Baselga,	
2008;	Hortal	et	al.,	2015;	Rocchini	et	al.,	2011;	Soberón	&	Peterson,	
2004;	Veiga,	Cartolano,	&	Saraiva,	2014).	Indeed,	the	effects	of	data	
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incompleteness	 and	 spatial	 bias	 have	 been	 long	 recognized	 (e.g.,	
Colwell	 &	 Coddington,	 1994;	 Margules	 &	 Austin,	 1994;	 Soberon,	
Llorente,	&	Benitez,	 1996)	 and	 recent	 developments	 have	 provided	
robust	 ways	 of	 describing	 these	 biases	 (see,	 e.g.,	 McInerny	 et	al.,	
2014;	 Meyer,	 2016;	 Meyer,	 Weigelt,	 &	 Kreft,	 2016;	 Ruete,	 2015;	
Stropp	et	al.,	2016)	and,	potentially,	accounting	for	them	in	estimates	
of	 global	 change	 impacts	 on	 biodiversity	 (Anderson,	 2013;	 Beale	&	
Lennon,	2012;	Hortal	&	Lobo,	2011;	Ladle	&	Hortal,	2013;	Rocchini	
et	al.,	2011).

The	potential	loss	of	quality	of	biodiversity	information	over	time	
has	received	far	less	attention	from	researchers,	possibly	because	the	
contemporary	 nature	 of	many	 biodiversity	 data	 sets.	Temporal	 deg-
radation	of	biodiversity	data	quality	is	inevitable	due	to	the	inherent	
dynamism	of	natural	systems	(e.g.,	local	extinctions,	immigration,	bio-
logical	invasions).	The	dynamics	drive—sometimes	dramatic—temporal	
changes	 in	 the	 abundance	 and	 composition	 of	 species	 in	 ecological	
communities	 (e.g.,	 Spitzer,	 Novotny,	 Tonner,	 &	 Leps,	 1993;	 Holmes	
&	Sherry,	 2001;	 Forister	 et	al.,	 2010;	Dornelas	 et	al.,	 2013;	 but	 see	
Vellend	et	al.,	2013).	Biodiversity	data	quality	may	also	degrade	due	
to	changes	in	the	way	scientists	divide	and	categorize	biodiversity,	ex-
emplified	by	 sporadic	 revisions	 (splitting	 and	 lumping)	 of	 taxonomic	
relationships	 (Ladle	&	Hortal,	 2013).	 Finally,	 physical	 evidence	 such	
as	voucher	specimens	and	the	associated	metadata	can	be	compro-
mised	 due	 to	 inefficient	 curation,	 accidents,	 or	 the	 loss	 of	 funding	
(Chapman,	2005;	Otegui,	Ariño,	Chavan,	&	Gaiji,	2013).	All	 these	 is-
sues	 produce	 a	 decrease	 of	 the	 congruency	 between	values	 stored	
in	a	database	and	the	ecological	reality	when	the	data	are	used.	Such	
temporal	biases	have	the	potential	to	hamper	descriptions	of	tempo-
ral	variations	 in	biodiversity	 and	 therefore	 limit	our	 ability	 to	model	
the	effects	of	different	stressors,	incorporate	them	into	estimates	of	
global	change	 impacts,	and	assess	the	outcomes	of	dynamic	models	
through	hindcasting.

The	influence	of	time	on	data	degradation	is	well-	known	in	other	
scientific	fields	and	has	been	successfully	incorporated	into	protocols	
to	assess	data	quality	(Kennedy	et	al.,	2014;	Peuquet,	1999;	Veregin,	
1999).	In	contrast,	temporal	degradation	of	biodiversity	data	is	poorly	
understood	and	managed.	This	is	despite	many	of	our	databases	con-
tain	a	high	proportion	of	old	records.	The	scale	of	this	problem	is	well	
illustrated	by	the	global	analysis	of	Meyer	et	al.	(2016),	who	observed	
that	 62%	 of	 the	 110	×	110	km	 grid	 cells	with	 information	 on	 plant	
species	at	GBIF	had	no	record	after	1970.	Similarly,	 in	their	analysis	
of	GBIF	data	on	African	 flowering	plants,	Stropp	et	al.	 (2016)	 found	
that	the	majority	of	well	surveyed	cells	contained	predominantly	old	
records	and	were	in	urgent	need	of	re-	sampling.

Another	strong	argument	for	explicitly	dealing	with	degradation	of	
biodiversity	data	is	that	temporal	changes	in	the	distribution	of	species	
and	the	composition	of	local	assemblages	can	be	large	(Dornelas	et	al.,	
2013).	 For	 example,	 Escribano,	Ariño,	 and	Galicia	 (2016)	 estimated,	
based	on	land	use	images,	that	75%	of	small	mammal	records	in	Spain	
were	obsolete	because	they	had	been	collected	before	or	during	land-	
use	changes.	Significantly,	rare	species	showed	a	greater	rate	of	record	
obsoleteness	constraining	the	use	of	these	data	for	conservation	plan-
ning.	Likewise,	data	degradation	due	to	taxonomic	changes	can	also	

be	large.	For	example,	Hjarding,	Tolley,	and	Burgess	(2015)	found	that	
99.9%	of	GBIF	data	about	35	chameleon	species	from	Eastern	Africa	
was	 taxonomically	 outdated,	 leading	 to	 10	 species	 being	 classified	
with	an	inappropriate	threat	status.

Clearly,	the	importance	and	magnitude	of	temporal	degradation	of	
data	depends	on	the	type	of	data	and	its	current	and	future	use.	For	
studies	that	measure	changes	in	biodiversity	over	time,	historical	data	
are	 essential.	 In	 these	 cases,	 the	 longer	 the	 temporal	 coverage,	 the	
better	the	study	is	able	to	capture	the	patterns	of	change.	However,	
these	changes	are	specially	particularly	 limiting	 for	 temporally	 static	
researches.	 Such	 studies	 typically	 assume	 that	 biodiversity	 features	
and	characteristics	are	temporally	static	with	potential	consequences	
for	the	accuracy	of	their	inferences.

Here,	we	provide	a	conceptual	framework	for	understanding	the	
decay	of	biodiversity	information	over	time	based	on	three	main	pro-
cesses:	 (1)	the	natural	dynamics	of	ecological	systems	such	as	spe-
cies	turnover	or	local	extinction;	(2)	taxonomic	revision,	and;	(3)	the	
loss	of	physical	and	metadata	due	to	inefficient	curation,	accidents,	
or	funding	shortfalls.	We	then	discuss	the	possible	consequences	of	
these	 processes	 on	 the	 temporal	 degradation	 of	 biodiversity	 data	
and	suggest	actions	and	policies	to	reduce	and/or	account	for	their	
effects.

2  | A CONCEPTUAL FRAMEWORK  
FOR BIODIVERSITY INFORMATION  
DEGRADATION

Ecological	data	typically	degrade	following	characteristic	phases	that	
can	 be	 conceptualized	 in	 terms	 of	 information	 entropy	 (Figure	1a)	
(Michener,	 Brunt,	 Helly,	 Kirchner,	 &	 Stafford,	 1997).	 Loss	 of	 data	
quality	begins	immediately	after	data	collection,	with	specific	details	
disappearing	first,	followed	by	loss	of	more	general	information.	In	the	
case	of	species-	level	biodiversity	data,	 these	changes	are	promoted	
by	a	complex	array	of	natural,	technical,	and	societal	changes,	includ-
ing	environmental	change,	 the	 improvement	 in	taxonomic	tools	and	
taxonomic	knowledge,	and	the	loss	of	part	of	the	ancillary	information	
(e.g.,	location	or	date)	associated	with	the	records.

The	most	rapid	temporal	changes	in	biodiversity	data	quality	are	
typically	 caused	 by	 changes	 in	 the	 sampled	 environment	 and	 begin	
as	 the	moment	 sampling	 is	 complete	 (Ladle	&	Hortal,	 2013).	These	
environmental	changes	may	be	natural	variations	or	caused	by	human	
interference	(e.g.,	habitat	loss	or	degradation	and	are	enacted	through	
local	extinction	or	immigration	events	(Figure	1b).	An	extreme	exam-
ple	would	be	data	about	the	presence	(or	absence)	of	species	in	an	area	
of	rainforest	that	has	been	transformed	into	a	sugar	cane	plantation.	
Although	a	 few	 forest-	dependent	 species	may	 still	 occur	within	 the	
original	 sample	 area	 in	 isolated	 fragments,	many	 species	will	 be	 lo-
cally	extinct	or	already	undergoing	local	extinction.	Conversely,	a	few	
new	generalist	or	matrix	 tolerant	 species	may	have	 immigrated	 into	
the	area.	Under	such	a	scenario,	using	the	original	data	to	train	spe-
cies	distribution	models	 intended	to	 represent	current	distributional	
ranges	would	generate	unrealistic	results.
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Of	course,	ecosystems	do	not	need	to	be	completely	transformed	
to	cause	temporal	decay	in	the	quality	of	biodiversity	data.	The	con-
stantly	changing	nature	of	species	assemblages,	whereby	some	spe-
cies	emigrate	and	new	species	arrive,	is	sufficient	to	cause	information	
loss	over	time.	Recent	studies	demonstrate	that	considerable	change	
in	assemblage	composition	can	occur	over	a	very	short	space	of	time	
(Buckley,	2013;	Diekmann	et	al.,	 2014;	Parody,	Cuthbert,	&	Decker,	
2001).	 Species	 turnover	 occurs	 naturally	 due	 to	 demographic,	 envi-
ronmental,	and	population	stochasticity	or	may	be	driven	by	dynamic	
biophysical	processes	including	climate	change	or	alterations	in	habi-
tat	structure	due	to	anthropogenic	pressures.	Such	changes	influence	
the	suitability	of	habitats	for	numerous	species,	driving	further	bouts	
of	 local	 extinction	 and/or	 immigration.	The	 net	 effect	 of	 these	 bio-
physical	modifications	is	that	community	composition	and,	therefore,	
species	distributions	vary	over	time.

Even	if	the	assemblage	within	the	sampled	area	remains	more	or	
less	unchanged,	the	quality	of	the	information	may	still	degrade	due	to	
the	behavior	of	scientists.	For	example,	the	frequent	career	changes	
of	field	collectors	and	museum	curators	may	prompt	the	loss	of	valu-
able	ancillary	information	gathered	during	field	campaigns	(Figure	1a).	
Good-	quality	metadata	is	not	only	necessary	to	understand	the	data,	
but	to	effectively	assess	 its	quality,	context,	content,	and	accessibil-
ity.	Such	information	is	essential	for	contemporary	scientists	to	assess	
and	use	older	data	 (Costello	et	al.,	2013).	Therefore,	 the	 loss	of	 the	
information	associated	to	the	specimens	held	in	natural	history	collec-
tions	also	increases	the	rate	of	degradation	of	data	quality	with	time,	
in	particular	when	the	original	field	notes	are	not	properly	stored	and/
or	detailed	information	on	the	sampling	event	is	not	recorded	in	the	
voucher	labels.	Here,	a	careful	curation	of	the	metadata	when	digitiz-
ing	the	collections	and	sharing	with	biodiversity	information	networks	
is	key	to	safeguard	as	much	as	possible	of	the	 information	stored	in	
biological	records	(see	Chapman,	2005).

Changes	 in	 the	 taxonomic	status	of	some	species	due	to	 reclas-
sification	can	also	reduce	the	accuracy	of	species	 lists	(Hey,	Waples,	
Arnold,	 Butlin,	 &	 Harrison,	 2003;	 Isaac,	 Mallet,	 &	 Mace,	 2004).	

Reclassifications	 include	 merging	 several	 species	 into	 a	 single	 one	
(“lumping”),	or	 the	division	of	one	species	 into	 two	or	more	species	
(“splitting”).	 Both	 lumping	 and	 splitting	 can	 influence	 estimates	 of	
local	diversity,	conservation	status,	and	the	geographic	distribution	of	
species	(Isaac	et	al.,	2004).	However,	while	accounting	for	lumping	is	
relatively	easy	using	database	updates,	correcting	for	splitting	requires	
review	of	the	original	voucher	specimens	(if	they	still	exist—see	above)	
to	assign	each	record	to	one	of	the	new	taxa.

Voucher	specimens	thus	play	a	key	role	in	maintaining	biodiversity	
data	quality,	in	respect	to	data	degradation	due	to	both	loss	of	meta-
data	and/or	 taxonomic	changes.	 If	data	are	associated	with	 identifi-
able	vouchers	that	have	been	stored	and	included	in	collections,	it	can	
often	be	revised	 in	 light	of	taxonomic	changes	that	took	place	after	
the	original	study	was	published.	This	is	also	true	for	digitally	stored	
information,	such	as	recordings	of	bird	songs/bat	calls	or	photographs.	
Conversely,	if	the	only	information	is	a	species	name	on	a	list,	then	the	
only	remedial	measures	that	can	be	adopted	are	in	cases	of	lumping	
species.

Although	 the	 degrading	 influence	 of	 time	 on	 biodiversity	 data	
quality	 has	 been	 recognized	 (Magurran	 et	al.,	 2010;	 Stropp	 et	al.,	
2016),	little	progress	has	been	made	in	the	development	of	strategies	
to	manage	the	consequences	of	such	temporal	degradation.	 Indeed,	
it	 is	common	practice	 to	 treat	biogeographical	data	collected	at	dif-
ferent	times	as	being	equivalent.	For	example,	in	Species	Distribution	
Modelling,	 occurrence	 data	 are	 commonly	 used	without	 accounting	
for	collection	dates	or	the	time	when	specimens	were	taxonomically	
identified.	SDMs	are	constructed	on	the	assumption	that	species	dis-
tributions	are	mainly	driven	by	climatic	factors,	and	this	relationship	is	
derived	from	the	climate	variables	at	the	postulated	site	of	occurrence.	
Such	models	implicitly	adopt	a	static	view	of	niches	(but	see	Soberón	&	
Nakamura,	2009),	making	the	assumption	that	areas	with	suitable	en-
vironmental	conditions	will	remain	the	same	over	time.	This	is	clearly	
unrealistic,	given	that	many	studies	have	documented	changes	in	the	
realized	 niche	 can	 occur	 over	 relatively	 short	 time	 periods,	 particu-
larly	during	biological	invasions	(Broennimann	et	al.,	2007;	Rödder	&	

F IGURE  1 Temporal	decay	in	the	information	on	the	current	status	of	biodiversity	that	is	provided	by	biodiversity	data.	(a)	Data	from	field	
surveys	start	to	loss	ancillary	information	from	the	moment	the	samples	are	taken,	or	at	least	since	the	moment	of	publication	(see	Michener	
et	al.,	1997).	As	natural	changes	occur	in	the	surveyed	habitats,	the	access	to	ancillary	information	about	the	surveys	starts	to	decay,	through	
the	loss	of	first	specific	and	later	general	details	on	the	surveys.	This	information	becomes	progressively	less	accessible	when	the	researchers	
involved	in	the	surveys	retire	or	take	a	career	shift	and	are	definitively	lost	with	their	death.	(b)	The	quality	of	biological	records	to	provide	an	
accurate	picture	of	the	current	status	of	biodiversity	decays	with	time	as	assemblage	composition	and	species	distributions	change	with	time	
due	to	natural	processes	(i.e.,	dispersal,	demographic,	and	other	ecological	processes),	a	process	that	is	aggravated	by	changes	in	the	taxonomy	
of	the	studied	groups,	that	hamper	matching	old	records	with	currently	recognized	species	accurately
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Lötters,	2009;	Silva,	Vilela,	Buzatto,	Moczek,	&	Hortal,	 2016).	Thus,	
distributions	based	on	old	occurrence	data	and	their	associated	(con-
temporary)	climate	characteristics	are	unlikely	to	be	representative	of	
the	current	species	niche	(Boitani	et	al.,	2011).	The	robustness	of	such	
models	could	potentially	be	improved	by	accounting	for	the	influence	
of	 time	on	 the	quality	of	occurrence	data.	 Such	an	approach	would	
also	benefit	the	increasing	number	of	macroecological	studies	based	
on	big	data	that	do	not	assess	the	temporal	consistency	of	the	data	
they	use.	These	data	often	come	from	checklists	or	range	maps	devel-
oped	from	occurrence	data	typically	gathered	across	several	decades	
(Hortal,	2008).

3  | DEALING WITH DEGRADATION: 
ACTIONS AND POLICIES

Loss	of	 biodiversity	 data	quality	 over	 time	 is	 unavoidable,	 although	
certain	 actions	 can	 be	 taken	 to	 slow	 the	 rate	 of	 degradation.	With	

respect	to	taxonomic	revisions,	data	should	be	updated	to	take	into	
account	 the	 latest	 taxonomic	 changes.	 Failure	 to	 follow	 this	 simple	
strategy	can	lead	to	misleading	patterns	of	biodiversity	and	associated	
conservation	 prioritization	 strategies.	 Here,	 we	 present	 some	 solu-
tions	to	address	these	 issues	using	examples	from	both	biodiversity	
research	and	from	other	scientific	areas	(summarized	in	Table	1).

Managing	misleading	and	outdated	 taxonomy	 in	biodiversity	da-
tabases	is	technically	and	logistically	challenging.	However,	recent	ini-
tiatives	to	create	definitive	reference	 lists	of	 taxonomic	names	have	
rendered	such	a	strategy	feasible.	For	example,	Taxonomic	Authority	
Files	 (TAFs;	 Vanden-	Berghe	 et	al.,	 2015;	 Zermoglio,	 Guralnick,	 &	
Wieczorek,	2016)	are	now	available	for	a	wide	range	of	spatial	and	tax-
onomic	scales,	including	catalogue	of	life	(http://www.catalogueoflife.
org),	 Integrated	Taxonomic	 Information	System	 (http://www.itis.gov),	
Mammal	Species	of	the	World	(Wilson	&	Reeder,	2005),	The	Plant	List	
(http://www.theplantlist.org/),	 or	 FishBase	 (Froese	 &	 Pauly,	 2017).	
TAFs	can	be	used	 to	assess	and	update	biodiversity	data	using	cur-
rently	accepted	taxonomic	names.	Although	methods	for	automated	

TABLE  1 Solutions	to	overcome	the	temporal	degradation	of	biodiversity	data

Problems Solutions Examples References

Misleading	
and	outdated	
taxonomy

Periodically	update	
databases

Data	can	be	checked	using	Taxonomic	Authority	Files	(TAFs),	that	are	
reference	lists	of	taxonomic	names.	If	TAFs	are	not	available	for	the	
studied	group,	a	careful	checking	of	the	taxonomic	literature	is	needed.

Vanden-	Berghe	et	al.	(2015),	
Zermoglio	et	al.	(2016),	
Nguyen	et	al.	(2017)

Increase	access	to	
voucher	specimens

Posting	information	about	curators	and	policies	of	access	vouchers	in	
online	databases	can	help	researches	to	find	relevant	material	coming	
from	different	origins	that	is	sparse	in	different	collections.	In	addition,	
the	digitalization	of	vouchers	in	high-	resolution	images	and	its	storage	
in	online	databases	can	make	many	collections	available	to	researches	
and	general	public	almost	instantaneously.

Beaman	&	Cellinese	(2012),	
Gries	et	al.	(2014),	Skevakis	
et	al.	(2014),	Schindel	et	al.	
(2016),	Ellwood	et	al.	
(2015)

Degradation	
of	metadata

Follow	standard	
protocols	to	record	
metadata

Protocols	that	indicate	which	information	should	be	recorded,	and	how,	
are	available	for	different	areas.	Following	them	can	facilitate	sharing	
the	metadata	in	online	databases.

Michener	et	al.	(1997),	
Fegraus	et	al.	(2005),	
Chapman	(2005),	
Wieczorek	et		al.	(2012)

Publish	all	kinds	of	
metadata	related	to	
the	project

Metadata	can	be	published	together	with	project	results,	as	part	of	the	
supplementary	materials	at	the	same	journal.	Such	behavior	can	be	
encouraged	if	journals	require	and	peer	review	such	metadata	during	
the	review	process	of	the	submitted	papers.	Also,	metadata	can	be	
shared	and	archived	in	online	platforms	designed	for	such	objective.

Costello	et	al.	(2013),	Foster	
&	Deardorff	(2017)

Deposit	and	curate	
voucher	specimens

Physical	vouchers	should	be	deposited	in	permanently	and	publicly	
accessible	repositories.	Concomitantly,	it	is	necessary	to	increase	in	the	
funds	for	curation	and	collection	management.

Turney	et	al.	(2015),	McLean	
et	al.	(2016)

Natural	and	
unnatural	
variations

Downweight	or	
remove	data	
considered	obsolete

Older	data	can	be	downweighted,	so	that	they	contribute	less	to	final	
results.	Curves	of	temporal	decay	in	the	relevance	of	information	can	
be	generated,	based	the	on	factors	leading	to	information	degradation.	
Also,	older	data	can	be	removed	from	analysis	(but	see	our	recommen-
dations	throughout	the	text).

Boitani	et	al.	(2011),	Yu	&	
Placide	(2012),	Giraitis	
et	al.	(2013),	Viele	et	al.	
(2014),	Meyer	et	al.	(2015),	
Stropp	et	al.	(2016)

Incorporate	temporal	
degradation	and	
uncertainty	in	
analysis

Analysis	can	be	improved	by	the	incorporation	of	uncertainty	about	
temporal	degradation	information	using	weights	as	covariates	in	the	
modeling	process.	Degradation	can	also	be	added	as	a	stochastic	
component	to	assess	the	sensitivity	of	the	results	to	such	variation.

Hordijk	&	Broennimann	
(2012),	Rocchini	et	al.	
(2011),	Stropp	et	al.	(2016)

Assess	obsolete	
information	and	
identify	areas	to	
carry	out	new	survey	
campaigns

New	surveys	should	be	planned	focusing	on	sites	in	which	surveys	will	
generate	more	updated	information.	Surveys	can	be	planned	account-
ing	for	those	sites	that	hold	the	oldest	records	or	by	identifying	areas	
that	suffered	significant	land	use	and/or	environmental	changes	after	
the	last	collection.

Stropp	et	al.	(2016),	
Escribano	et	al.	(2016)

http://www.catalogueoflife.org
http://www.catalogueoflife.org
http://www.itis.gov
http://www.theplantlist.org/
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taxonomic	 checking	 in	 TAFs	 are	 still	 under	 development	 (Nguyen,	
Soto,	 Kontonatsios,	 Batista-	Navarro,	 &	 Ananiadou,	 2017;	 Vanden-	
Berghe	et	al.,	2015),	manual	 taxonomic	checking	can	be	carried	out	
for	small	databases	or	for	subsets	of	data	(Zermoglio	et	al.,	2016).

Degradation	 of	 metadata	 is	 more	 straightforward	 to	 deal	 with.	
Such	associated	or	derived	data	are	essential	to	maintain	the	quality	
and,	consequently,	the	usability	of	biodiversity	data	over	time	(Costello	
et	al.,	2013;	Huettmann,	2009).	There	have	been	repeated	calls	over	
the	last	few	years	for	publishing	metadata	along	with	project	data	in	an	
attempt	to	increase	the	longevity	of	the	latter	(Costello	&	Wieczorek,	
2014;	Michener,	2015).	To	 facilitate	 this,	protocols	 for	documenting	
and	 publishing	metadata	 associated	 to	 biodiversity	 data	 have	 been	
developed	(Fegraus,	Andelman,	Jones,	&	Schildhauer,	2005;	Michener	
et	al.,	 1997;	Wieczorek	et	al.,	 2012).	Unfortunately,	 the	use	of	 such	
protocols	is	not	widespread	and	many	datasets	still	contain	a	consider-
able	number	of	errors	(Kervin,	Michener,	&	Cook,	2013;	Tenopir	et	al.,	
2011).	Further	 action	 is	 clearly	 required	and,	 recognizing	 this,	 some	
scientific	 journals	now	oblige	researchers	 to	provide	both	their	data	
and	metadata	for	peer	review	and	publication	(Costello	et	al.,	2013).	
Likewise,	data	management	tools	such	as	those	provided	by	the	Open	
Science	Framework	(OSF;	https://osf.io/)	provide	platforms	for	sharing	
and	archiving	metadata	and	analysis,	thereby	increasing	the	lifespan	of	
information	and	facilitating	replication	of	collection	methods	(Foster	&	
Deardorff,	2017).

Another	way	 to	 improve	 the	quality	and	usability	of	biodiversity	
data	over	time	is	through	careful	curation	and	management	of	vouchers	
specimens	(Costello	&	Wieczorek,	2014).	There	are	an	increasing	num-
ber	of	initiatives	that	aim	to	connect	physical	specimen	information	to	
citations	and	other	kinds	of	records	(Schindel,	Miller,	Trizna,	Graham,	
&	Crane,	2016;	Skevakis,	Makris,	Kalokyri,	Arapi,	&	Christodoulakis,	
2014).	Such	information	can	be	used	to	identify	the	institutions	that	
originally	held	the	specimen	and	to	track	possible	changes	of	institu-
tion.	Additionally,	entire	collections	are	being	digitalized	and	posted	to	
online	databases,	allowing	researchers	to	gain	direct	access	to	high-	
resolution	 images	 (Beaman	&	Cellinese,	 2012;	 Ellwood	 et	al.,	 2015;	
Gries,	Gilbert,	&	Franz,	2014).	Such	digitalization,	while	useful,	does	
not	supersede	the	maintenance	of	physical	vouchers	which	are	still	es-
sential	for	the	majority	of	taxonomic	re-	evaluations	(Balke	et	al.,	2013;	
Culley,	2013).	Perhaps	surprisingly,	given	their	 importance	for	main-
taining	biodiversity	data	quality,	depositing	vouchers	(specimens,	pho-
tography,	DNA)	in	permanently	and	publicly	accessible	repositories	is	
not	normative	behavior	 among	 the	majority	of	 researchers	 (McLean	
et	al.,	2016;	Turney,	Cameron,	Cloutier,	&	Buddle,	2015).

A	related	issue	is	the	difficulty	of	merging	and/or	comparing	his-
torical	and	contemporary	data	due	to	changes	in	methodology	or	sam-
pling	biases	over	 time.	Generally,	older	samples	were	collected	with	
nonstandard	 and	 now	 outdated	methodologies,	 making	 them	more	
prone	to	inaccuracies	(Tingley	&	Beissinger,	2009).	These	inaccuracies	
can	have	significant	consequences	for	studies	trying	to	detect	biodi-
versity	changes	over	time,	as	the	baseline	data	may	be	biased	leading	
to	misleading	 inferences	 about	 the	 extent	 and	 rate	 of	 environmen-
tal	change	(Knutson	et	al.,	2010;	Skelly,	Yurewicz,	Werner,	&	Relyea,	
2003).	For	example,	the	objectives	of	historical	collecting	expeditions	

were	often	strongly	influenced	by	economic	imperatives	or	the	prefer-
ences	of	private	funders.	Conversely,	new	technologies	such	as	cam-
era	traps	are	capable	of	detecting	the	presence	of	previously	elusive	
species	 (Ladle,	Jepson,	Malhado,	Jennings,	&	Barua,	2011).	Thus,	 to	
allow	comparability,	historical	data	should	be	assessed	for	under-		or	
over-	detected	events	in	relation	to	contemporary	data	(Knutson	et	al.,	
2010).	These	can	then	be	removed	or	taken	into	account	in	the	anal-
yses.	For	example,	Moritz	et	al.	 (2008)	estimated	 rates	of	change	 in	
small-	mammal	 communities	by	 controlling	 for	differences	 in	detect-
ability	of	species	in	historical	and	current	surveys.	Using	a	similar	ap-
proach,	Tingley	and	Beissinger	(2009)	propose	the	use	of	occupancy	
models	 to	 remove	bias	 in	historical	 data	 to	 correctly	detect	 species	
range	shifts.

The	 influence	 of	 natural	 (or	 unnatural)	 environmental	 changes	
on	 biodiversity	 data	 cannot	 be	 remediated,	 but	 can	 be	 taken	 into	
account.	Perhaps	the	simplest	approach	is	to	assign	weights	to	each	
occurrence	record	in	relation	to	when	it	was	collected,	adjusting	the	
data	 to	 specific	 curves	 representing	 the	 rate	 of	 information	 decay.	
This	 approach	 is	widely	 used	 in	 other	 fields	 that	work	with	 tempo-
rally	variant	data	(Giraitis,	Kapetanios,	&	Price,	2013;	Viele	et	al.,	2014;	
Yu	&	Placide,	2012).	Data	weights	could	be	arbitrarily	defined	by	the	
user	(as	in,	e.g.,	Meyer,	Kreft,	Guralnick,	&	Jetz,	2015	or	Stropp	et	al.,	
2016).	But,	alternatively,	here	we	propose	that	these	weights	could	be	
generated	 through	 curves	 of	 temporal	 decay	 in	 information	 quality.	
The	slope	of	 these	curves	would	be	dependent	on	the	main	 factors	
causing	the	degradation	of	biodiversity	data,	such	as	(1)	the	reliability	
of	 taxonomic	 identifications—taken	 from,	 for	 example,	 the	 temporal	
variation	 in	 the	 rate	 between	 valid	 names	 and	 synonyms	 (Baselga,	
Hortal,	Jiménez-	Valverde,	Gómez,	&	Lobo,	2006);	or	(2)	mean	species	
turnover	 rates—taken	 from,	 for	 example,	 species–time	 relationships	
(White	et	al.,	2006).	A	more	extreme	approach	would	be	 to	 remove	
data	considered	as	outdated	(Boitani	et	al.,	2011).	However,	we	would	
argue	that	weighting	is	a	better	approach	as	it	may	allow	researchers	
to	address	important	questions	about	environmental	change	while	re-
maining	cognizant	of	 the	potential	biases	 inherent	 in	historical	data.	
Moreover,	as	there	are	currently	no	quantitative	studies	about	the	life	
span	of	different	forms	of	biodiversity	data	and	their	uses,	any	arbi-
trary	threshold	to	remove	data	would	have	the	effect	of	reducing	data	
quality	by	introducing	other	uncertainties	(Meyer	et	al.,	2016).

More	 generally,	 the	 temporal	 and	 spatial	 decay	 of	 biodiversity	
information	 should	be	 formally	 and	 systematically	 incorporated	 into	
modeling	and	conservation	planning	decisions	(Ladle	&	Hortal,	2013).	
This	 could	 practically	 be	 achieved	 by	 adding	weights	 as	 covariates	
during	the	modeling	process	(Beale	&	Lennon,	2012)	or	through	data	
management	procedures.	A	good	example	of	the	latter	is	the	study	of	
Yu	and	Placide	(2012),	in	which	they	used	a	decision	tree	technique	to	
build	 an	 information	decay-	based	predictive	model.	 For	biodiversity	
analysis,	the	incorporation	of	temporal	data	decay	could	be	achieved	
through	 the	 development	 of	 “Maps	 of	 Ignorance”	 (proposed	 by	
Rocchini	et	al.,	2011);	that	is,	geographically	explicit	representations	of	
uncertainty	generated	by	assigning	weights	to	each	occurrence	record	
to	create	spatial	representation	of	the	reliability	of	data.	Although	the	
proposed	“Maps	of	Ignorance”	consider	other	sources	of	uncertainty	in	

https://osf.io/
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data	(such	as	geographical	and	climatic	bias),	they	could	also	explicitly	
address	the	temporal	data	quality	issues	(see	Figure	4	in	Stropp	et	al.,	
2016)	and,	potentially,	be	used	as	a	source	of	data	for	a	covariate	ma-
trix	during	modeling.

Another	promising	way	to	deal	with	uncertain	data	is	by	taking	into	
account	the	variation	that	the	stochasticity	of	an	event	generates	on	
the	intended	analysis.	For	example,	Hordijk	and	Broennimann	(2012)	
used	a	stochastic	approach	to	deal	with	the	uncertainty	of	 the	time	
of	 first	occurrence	observations	when	developing	a	new	method	 to	
reconstruct	dispersal	routes.	The	authors	added	a	stochastic	compo-
nent	to	their	analysis	by	subtracting	from	each	record	a	random	value	
derived	from	a	distribution	that	simulated	the	time	that	an	observer	
would	need	 to	discover	a	plant	by	chance.	 In	order	 to	estimate	 the	
uncertainty	of	these	events,	they	repeated	the	simulation	100	times,	
thereby	assessing	the	robustness	of	the	results	 in	face	of	stochastic	
variations.

Although	the	solutions	mentioned	above	may	slow	the	loss	of	data	
quality,	 they	 cannot	 prevent	 data	 from	 continuing	 to	 degrade	 over	
time.	Thus,	without	new	surveys,	a	biodiversity	database	will	inevita-
bly	become	less	useful.	Approaches	such	those	applied	by	Stropp	et	al.	
(2016)	and	Escribano	et	al.	 (2016),	 can	be	used	 to	prioritize	species	
for	new	sampling	campaigns	and	 identify	areas	where	knowledge	 is	
primarily	from	old	records.

4  | CONCLUDING REMARKS

The	 passage	 of	 time	 imposes	 unavoidable	 limits	 on	 the	 sustained	
usefulness	of	information	about	the	natural	world	(Bergstrom,	2012).	
However,	 the	 temporal	 decay	 of	 data	 quality	 influences	 different	
types	of	studies	in	different	ways	and	its	impact	should	therefore	be	
evaluated	 on	 a	 case-	by-	case	 basis.	 Temporal	 information	 decay	 of	
species	 data	 can	 affect	 perceived	 geographic	 distribution	 patterns	
and	associated	strategies	of	conservation	prioritization	(Hortal	et	al.,	
2015).	Moreover,	 the	decay	of	biodiversity	 information	quality	with	
time	 cannot	 be	 completely	 mitigated	 and	 efforts	 should	 therefore	
focus	on	developing	tools	to	manage	it.

Finally,	it	is	important	to	remember	that	we	(authors,	editors	and	
reviewers)	are	 jointly	 responsible	 for	 the	quality	of	 the	data	used	 in	
publications	and	should	therefore	be	aware	of	both	the	limitations	of	
older	data	 and	 the	need	 to	prolong	 the	useful	 life	 span	of	 the	data	
being	collected	now	(Costello	et	al.,	2013).	Specifically,	authors	should	
clearly	 state	whether,	 and	how,	 the	passage	of	 time	may	 affect	 the	
strength	 of	 their	 inferences.	 Likewise,	 editors	 and	 reviewers	 should	
carefully	check	that	articles	that	utilize	biodiversity	data	have	appro-
priately	addressed	temporal	information	decay.
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