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Abstract: The marine dinoflagellate Gymnodinium catenatum has been associated with 

paralytic shellfish poisoning (PSP) outbreaks in Portuguese waters for many years. PSP 

syndrome is caused by consumption of seafood contaminated with paralytic shellfish toxins 

(PSTs), a suite of potent neurotoxins. Gymnodinium catenatum was frequently reported along 

the Portuguese coast throughout the late 1980s and early 1990s, but was absent between 

1995 and 2005. Since this time, G. catenatum blooms have been recurrent, causing 

contamination of fishery resources along the Atlantic coast of Portugal. The aim of this 

study was to evaluate the toxin profile of G. catenatum isolated from the Portuguese coast 

before and after the 10-year hiatus to determine changes and potential impacts for the 

region. Hydrophilic interaction liquid chromatography tandem mass spectrometry  

(HILIC-MS/MS) was utilized to determine the presence of any known and emerging PSTs 

in sample extracts. Several PST derivatives were identified, including the N-sulfocarbamoyl 

analogues (C1–4), gonyautoxin 5 (GTX5), gonyautoxin 6 (GTX6), and decarbamoyl 

derivatives, decarbamoyl saxitoxin (dcSTX), decarbamoyl neosaxitoxin (dcNeo) and 

decarbamoyl gonyautoxin 3 (dcGTX3). In addition, three known hydroxy benzoate 
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derivatives, G. catenatum toxin 1 (GC1), GC2 and GC3, were confirmed in cultured and 

wild strains of G. catenatum. Moreover, two presumed N-hydroxylated analogues of GC2 

and GC3, designated GC5 and GC6, are reported. This work contributes to our 

understanding of the toxigenicity of G. catenatum in the coastal waters of Portugal and 

provides valuable information on emerging PST classes that may be relevant for routine 

monitoring programs tasked with the prevention and control of marine toxins in fish  

and shellfish. 

Keywords: paralytic shellfish poisoning; paralytic shellfish toxins; phytoplankton; shellfish; 

harmful algal blooms; Gymnodinium catenatum; liquid chromatography-mass spectrometry 

 

1. Introduction 

The marine dinoflagellate Gymnodinium catenatum has received a lot of attention since it was 

associated with paralytic shellfish poisoning (PSP) in the late 1980s [1–3]. This algal species produces 

paralytic shellfish toxins (PSTs) that can accumulate in a variety of commercially harvested seafood 

species, such as bivalve mollusks. Consumption of contaminated shellfish may lead to severe poisonings, 

including fatalities [4–6]. The toxicity of PSTs is caused by a high affinity inhibition of voltage-gated 

sodium channels on the extracellular membrane of nerve cell terminals [7,8]. At low levels of  

exposure, these toxins can cause numbness of the fingers and extremities, tingling, nausea and 

vomiting; but at higher doses can result in muscular paralysis and death by respiratory paralysis and  

cardiovascular shock [9,10]. 

The most prevalent PSTs can be divided into three groups based on structural differences in their 

functional groups, namely the carbamoyl, decarbamoyl and sulfocarbamoyl derivatives (Figure 1). Due 

to these structural differences, each toxin has a slightly different affinity to the binding site of  

voltage-gated sodium channels, which correlates to differential toxicity [11]. The carbamoyl group, 

which includes saxitoxin (STX), neosaxitoxin (Neo) and the gonyautoxins (GTX 1–4), are considered 

the most toxic due to the potent intra-peritoneal toxicity observed in mice [12] and affinity to the 

sodium channel, as recorded during patch clamp studies [13]. The N-sulfocarbamoyl PSTs includes the 

four C-toxins (C1–4), gonyautoxin-5 (GTX5, formerly B1) and gonyautoxin-6 (GTX-6, formerly B2). 

Based on intraperitoneal toxicity data, the decarbamoyl group in considered to have moderate toxicity 

and includes decarbamoyl-STX (dcSTX), decarbamoyl-GTXs (e.g., dcGTX1–4) and decarbamoyl-Neo 

(dcNeo) [12]. 

A novel group of PSTs were identified in strains of G. catenatum isolated from Australian waters 

and were named GC1, GC2 and GC3 based on the phytoplankton from which they were isolated [14]. 

These PSTs have the carbamate side chains substituted with a hydroxybenzoate moiety (see Figure 1). 

The toxicity of the hydroxybenzoate PSTs (GC toxins) is not well known; however, radio-receptor 

binding studies using rat brain synaptosomes enriched for sodium channels showed high affinity 

binding in previous studies [15]. In addition, the phenol ring that is incorporated into the molecule may 

facilitate transport and bioaccumulation of these compounds due to an increased lipophilicity compared 
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to other PST derivatives [15]. The GC toxins have since been identified in strains of G. catenatum 

isolated from Portugal, Spain, China, Japan and Uruguay [16]. 

 

Figure 1. Structure of paralytic shellfish poisoning (PSP) toxins. STX, saxitoxin; GTX, 

gonyautoxin; Neo, neosaxitoxin; dc, decarbamoyl; GC, G. catenatum toxin. * Theoretical 

chemical structures of GC4, GC5, and GC6, suggested by [17]. 

Paralytic shellfish poisoning occurs worldwide, and harmful algal blooms, including those 

responsible for PSP, appear to be increasing in frequency and intensity [18,19]. PSP outbreaks in 

Portuguese waters have been associated with blooms of Gymnodinium catenatum in the late 1980s to 

early 1990s, then again after 2005 [2,20,21]. According to the national monitoring program in 

Portugal, G. catenatum were not reported along the Portuguese coast during the 10-year period from 

1995 to 2005 [22]. The aims of this study were to fully characterize the toxin profile of G. catenatum 

strains isolated from the NW Portuguese coast before and after the 10-year absence of blooms to 

determine changes and potential implications for the region. Hydrophilic interaction liquid 

chromatography tandem mass spectrometry (HILIC-MS/MS) was utilized to determine the presence of 

any known and emerging PSTs in sample extracts. 

2. Results and Discussion 

2.1. Identification of “Classic” PSTs in G. catenatum 

The profile of PSTs in a cultured strain of Gymnodinium catenatum isolated from Cascais Bay in 

2007 and a seawater sample collected during a bloom of G. catenatum off Aveiro also in 2007 was 

characterized via HILIC-MS/MS. After having optimized the MS parameters, different MS modes 

were used for the analysis of the algae extracts. Starting from the full scan mode, one can obtain 

information about the ions formed in the ion source, which is necessary for further developing MRM 

acquisitions. The G. catenatum isolated from Portuguese waters was found to produce at least  

14 compounds that are structurally related with saxitoxin. Data obtained by tandem mass spectrometry 

revealed a profile of PSTs in wild and cultured strains constituted by N-sulfocarbamoyl and 

decarbamoyl toxin analogues, namely C1–4, GTX5, GTX6, dcSTX, dcNeo and dcGTX3 (Figure 2). 

The ion transitions giving optimal results are illustrated in Figure 3. Identification was based on a 

match of retention times, MRM transition ratios and full scan spectra with those of standards. 

Carbamate toxins, such as STX or Neo, were not detected in the samples analyzed.  
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Figure 2. Product ion spectra of paralytic shellfish toxins identified in a Gymnodinium 

catenatum culture isolated from the Portuguese coast in 2007: (a) m/z 316 of C1;  

(b) m/z 396 of C2; (c) m/z 412 of C3; (d) m/z 412 of C4; (e) m/z 380 of GTX5; (f) m/z 396 

of GTX6; (g) m/z 257 of dcSTX; and (h) m/z 273 of dcNeo. The [M + H]+ ions were 

selected from full scan analyses and fragmented to achieve the maximum abundance of 

product ions. 

2.2. Identification of Hydroxybenzoate PSTs in Portuguese G. catenatum 

In addition to the above reported N-sulfocarbamoyl and decarbamoyl toxins, the three hydroxybenzoate 

derivatives described by [14], i.e., GC1–3, were also identified in the extracts of G. catenatum. The 

structural information from the MS/MS product ion spectrum revealed three or more diagnostic ion 

fragments for each compound (Figure 4). The MRM method was then optimized based on product ion 

scans. The ion transitions giving optimal results are illustrated in Figure 5. Identification of GC1–3 

was confirmed by a good match of retention times, MRM transition ratios and full scan spectra with 

those of standards produced in the earlier study [14]. 
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Figure 3. Hydrophilic interaction liquid ion chromatography mass spectrometry analysis of 

paralytic shellfish toxins in a Gymnodinium catenatum culture isolated from the Portuguese 

coast in 2007. Multiple reaction monitoring in positive polarity was used to identify toxin 

derivatives. At least two confirmatory ion transitions were monitored for each paralytic 

shellfish toxin (PST) derivative. The primary transition ions are shown for all confirmed 

toxins in the samples: m/z 257 > 222 for dcSTX, m/z 273 > 255 for dcNeo, m/z 316 > 220 

for C1 and GTX6, m/z 353 > 255 for dcGTX3, m/z 380 > 300 for GTX5, m/z 396 > 298 for 

C2, m/z 412 > 314 for C4 and m/z 412 > 332 for C3 (see Table 2 for details on the  

MS/MS parameters). 
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Figure 4. Product ion spectra of GC toxins identified in a Gymnodinium catenatum culture 

isolated from the Portuguese coast in 2007: (a) m/z 473 of GC1; (b) m/z 473 of GC2; and 

(c) m/z 377 of GC3; (d) m/z 489 of GC5; and (e) m/z 393 of GC6. The [M + H]+ ions were 

selected from full scan analyses and fragmented to achieve the maximum abundance of 

product ions. 

A late eluting peak in the GC1 ion transition was observed, which, after subsequent full scan and 

product ion scans, was revealed to be due to GC6, as theoretically reported by [17]. The MS/MS 

product ion spectrum of the [M + H]+ ion of GC6 shows a dominant fragment at m/z 375, which is due 

to the loss of a water molecule (Figure 4). Additional fragments are coincident to GC1 and GC2 

isomers allowing detection of GC6 in MRM transitions, such as m/z 393 > 220 (Figure 5). In support 

of the structure being assigned as GC6, the shift of m/z 204 in the GC3 spectrum to m/z 220 in the new 

compound supports the location of the extra hydroxyl being in the main ring and not on the side chain. 

The most likely location that conforms to other PST structures is on N1, i.e., a Neo analogue. In 

addition, the retention time of the compound is slightly greater than GC3, which is consistent with the 

GC6 structure, as evidenced by the retention time relationship between Neo and STX.  

  



Mar. Drugs 2015, 13 2052 

 

 

 

Figure 5. Hydrophilic interaction liquid ion chromatography-mass spectrometry analysis 

of paralytic shellfish toxins in a Gymnodinium catenatum culture isolated from the 

Portuguese coast in 2007. Multiple reaction monitoring in positive polarity was used to 

identify hydroxybenzoate PST analogues GC1–6 that were detected and confirmed in a 

Gymnodinium catenatum culture isolated from the Portuguese coast. Primary ion transitions 

are shown: m/z 377 > 204 for GC3; m/z 393 > 220 for GC1 and GC6; m/z 473 > 375 for 

GC2, m/z 489 > 409 for GC4 and 5, m/z 489 > 391 for GC5 (see Table 2 for details on the 

MS/MS parameters). 

During full scan analysis of the algae extract, an [M + H]+ ion at m/z 489 was also observed.  

This most likely corresponds to the theorized GC5 derivative [17]. Characteristic fragmentation  

during product ion scans confirmed that this was highly likely to be GC5 (see Figure 4). The MS/MS 

product ion spectrum showed prominent fragment ions at m/z 471 (loss of H2O), m/z 409 (loss of SO3) 

and m/z 391 (loss SO3 + H2O). In support of the structure being assigned as GC5, the shift of m/z 220 

in the GC2 spectrum to m/z 236 in the new compound supports the location of the extra hydroxyl being 

in the main ring and not on the side chain. The most likely location that conforms to other PST 

structures is on N1, i.e., a GTX4 analogue. The retention time of this compound is slightly greater than 

GC2, which is also consistent with the GC5 structure. 
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Dinoflagellates have been shown to produce β-epimer forms of PSTs in higher abundance than  

α-epimers, which are thought to arise through epimerization [23]. Our data were consistent with this 

assumption with C2, C4, dcGTX3, GC2 and GC5 identified in the G. catenatum extracts (see Figure 3). 

Due to epimerization within living cells or under extraction conditions, the α-analogues can also be 

detected [23,24]. In our study, the α-analogues C1 and GC1 of the abundant C2 and GC2 compounds 

were detected in the algal extract. The level of dcGTX3 in our samples was very low, so as expected, 

the α-analogue, dcGTX2 was below our detection limits. Similarly, a peak corresponding to the 

putative GC5 was identified, but only trace levels of GC4 were found. A small peak in the MRM 

transition m/z 489 > 409 was observed to elute just before GC5 that corresponds to the putative GC4 

(see Figure 5). 

One of the aims of this study was deciphering the presence of benzoate derivatives. Particular heed 

was taken to the search for isoforms with the hydroxyl group replaced by a hydroxyl sulfate group in 

the benzoate side chain. These compounds would be designated as GC7–12. However, MS/MS 

analysis did not show their presence in the extracts analyzed, though the theoretical existence of more 

than 18 benzoate analogues was previously proposed [17]. 

2.3. Understanding Gymnodinium catenatum Bloom Hiatus in Portuguese Waters 

Although it was described for the first time in Gulf of California, Mexico, in 1939 [25], 

Gymnodinium catenatum was only associated with PSP episodes in 1976 in Galicia, NW Spain, and 

then in 1986 in Portugal [1,2]. This species was since then reported with increasing frequency and 

geographic distribution, including Australia, Japan, South America (Venezuela, Uruguay) and the 

tropical Indo-West Pacific (Philippines, Singapore and Malaysia) [26]. Marked differences in the 

profile of PSP toxins have been observed among these regions [16]. Therefore, PSP toxin phenotypes 

may be used to understand species introduction, migration or adaptation to environments.  

The European origin of G. catenatum remains unclear. Cyst records in dated sediment cores 

indicate that the arrival of G. catenatum to the south Iberian coast, expanding then northwards, was in 

1889 ± 10 [27,28]. After the first bloom of G. catenatum detected in the Portuguese coast in 1985, the 

species was recurrently registered in the NW coast until 1992, when blooms of G. catenatum were also 

detected in the south and southwest coast [20,29]. Despite the maintenance of a regular monitoring 

program for toxic algae, no evident blooms of G. catenatum were observed between 1996 and late 

2005 [22]. In order to understand the resurgence of G. catenatum after a 10-year hiatus of absence, the 

profile of PSP toxins determined in this study was compared with previous studies where G. catenatum 

strains isolated before 1995 were analyzed (Table 1). In the present study, the dominant compounds, in 

terms of molar fraction, were GC1–3, C1, C2, and GTX5 in both wild and cultured strains (Table 1). 

Characterization of the profile of toxins produced by G. catenatum isolated from the Portuguese coast 

was firstly carried out by post-column LC-FLD analysis [30]. At a time when standards and 

confirmatory methods were limited, the profile of toxins was constituted only by the C1, C2, dcSTX 

and GTX5. More recently, several N-sulfocarbamoyl, decarbamoyl and hydroxybenzoate toxins were 

determined in a G. catenatum strain isolated from the Portuguese coast in 1989 [16]. The toxins 

identified in these two previous studies are in accordance with the findings of the present study. 
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Table 1. Toxin profile (mol%) from the Gymnodinium catenatum culture isolated from 

Cascais Bay in 2007, a seawater sample collected during a bloom of G. catenatum off 

Aveiro in 2007 and a strain isolated from Aguda in 1989 that was cultured and  

analyzed by [16]. 

Toxin 

Toxin Cell Quota (fmol/Cell) ^ Toxin Profile (mol%) 

This Study This Study Negri et al. (2007) 

Culture Seawater Culture Seawater Culture (1989) 

C1 + 2 6.5 4.3 21.0 22.1 14.5 

C3 + 4 0.5 0.4 1.6 2.0 6.0 

GTX2 + 3 nd nd nd nd 1.0 

GTX5 3.4 6.9 11.0 35.2 12.9 

GTX6 1.2 nd 3.8 nd 5.9 

dcGTX2 + 3 0.3 nd 0.8 nd 4.0 

dcSTX 2.2 nd 7.2 nd 2.5 

dcNeo 1.1 nd 3.4 nd nd 

STX nd nd nd nd 0.4 

GC1 + 2 5.9 6.2 19.0 31.6 35.3 

GC3 5.0 1.6 16.2 8.3 17.6 

GC4 * + 5 1.7 0.2 5.6 0.8 na 

GC6 3.2 nd 10.3 nd na 

nd: not detected; na: not analyzed; * trace level GC4 detected, but not in the quantifiable range;  

^ LC-MS/MS peak area for individual PSTs was compared to the corresponding toxin standard curves to 

calculate the concentration (µM), then standardized to the combined total fraction as a percentage to calculate 

the mol% as detailed in the Experimental Section. 

Although variations of the PST profile in terms of the relative abundance of each toxin are expected 

to occur with G. catenatum growth phases, cell culture age or nutrient availability [31,32], there is 

consistency of the suite of toxins within populations [33,34]. The same suite of PSTs was found in the 

culture of a strain isolated in 2007 (this study), in a seawater sample collected during a bloom of  

G. catenatum in 2007 (this study) and strains isolated before the 10-year hiatus, as reported by [16] and 

by the early studies performed by [30]. Using the toxin profile as the chemical signature, the recent 

resurging of G. catenatum in the Portuguese coast should not be viewed as a result of a reintroduction 

of the species from other regions, such as for example via ship ballast waters. The explanation for this 

discontinuing occurrence still needs to be elucidated. One hypothesis may be related to an important 

feature in the life-cycle of G. catenatum, which is the formation of a non-motile resting cyst that is 

resistant to degradation and may persist to be viable in sediments [35,36].  

2.4. Management Implications 

From the pool of the toxins detected, only six are routinely monitored in Portuguese shellfish via the 

conventional HPLC-FLD method developed by Lawrence [37]. Attempting to move away from animal 

testing, the HPLC-FLD method was accepted by European directives as an alternative to the mouse 

bioassay (MBA) for the determination of PSP toxins in shellfish [38]. However, determination of the 

entire range of toxins present in the matrix is required for the assessment of the risk associated with the 
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human consumption of shellfish. In this study, the presence of toxins for which commercial standards 

were not previously available, i.e., C3, C4, GTX6 and the GC toxins, GC1, GC2, GC3, GC4, GC5 and 

GC6, were confidently identified in G. catenatum extracts. These toxins are not part of the routine PSP 

monitoring in many regions due to the lack of analytical standards, but they may be important 

contributors to the composite toxicity of shellfish. Fortunately, we were able to use certified reference 

materials for 12 of the 18 PST derivatives investigated during this study. Although the  

N-sulfocarbamoyl analogues C3 and C4 and GTX6 are considered less toxic than most other PSTs [12,39], 

the high concentrations reached in mussels exposed to G. catenatum blooms showed a significant 

contribution of these low potency analogues to the PSP toxicity of the sample in our previous study [40]. 

Very little data exist on the bioaccumulation of GC toxin analogues, and no data exist for GC4–6 [6,41]. 

The observation of high levels of GC toxins found in G. catenatum from the Portuguese coast in this 

study requires an extensive follow-up investigation of trophic transfer in the marine food web, so that 

we may assess the potential human health risk. However, to date, only one study investigated the 

presence of GC toxins in shellfish and in sardine viscera [42]. In this study, shellfish samples collected 

from the Portuguese coast revealed that up to 18% of the total PST molar fraction was due to GC 

toxins, but quantification and confirmation was not possible, due to the lack of reference standards [42]. 

The less polar hydroxybenzoate moiety of GC toxins would favor its bioaccumulation and reduce their 

elimination rate [14,15]. Further research is needed to understand the dynamics of GC toxins 

accumulation, elimination and, indeed, their contribution to composite mammalian toxicity. 

It is also important to review the detection methods used for routine analysis of food control. The 

reverse-phase SPE clean-ups used to remove interferences on the HPLC methods will result in the loss 

of these hydrophobic toxins, resulting in a potential underestimation of composite toxicity. More 

recently, another method that is an alternative to the MBA, the receptor binding assay for PST [43,44], 

has become an official method of the International Association of Analytical Chemists (AOAC 

International) (AOAC 2011.27). This biochemical method may be a good candidate for complex 

matrices containing multiple toxins, since its requirements in terms of standards are very simple, 

needing only for routine analysis the STX radiolabeled calibrant. A modified version of this method 

was used to assess the affinity of GC toxins 1–3 to the rat brain sodium channel [15]. These 

investigators found that the GC toxins had a high affinity (nanomolar range) in the receptor binding 

assay and concluded that an expected increase in lipophilicity gained by the addition of the phenol ring 

in the GC saxitoxin structure may increase the potential for bioaccumulation in seafood species. 

Discrimination of the toxin profile was not achieved through this method; however, there appears a 

good correlation between biological activity and toxicity for the entire range of PST [43]. 

3. Experimental Section  

3.1. Reagents and Standards 

All organic solvents were HPLC or LCMS grade. Water was distilled and passed through a MilliQ 

water purification system. Formic acid (LCMS grade) and acetic acid (AR grade) were purchased from 

Fisher Scientific (Pittsburgh, PA, USA). The following certified reference materials for PSTs were 

provided by the National Research Council (NRC) of Canada (Halifax, NS, Canada) and used 
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throughout this study: CRM-STX-e, CRM-Neo-b, CRM-GTX2&3-b, CRM-GTX1&4-b,  

CRM-dcSTX, CRM-dcGTX2&3, CRM-GTX5-b, CRM-C1&2 and CRM-dcNeo-b. Reference 

standards for three GC-toxins (GC1–3) were also prepared by the NRC group and used throughout this 

study for the generation of standard curves and optimization of MS methods. The molar concentrations 

of GTX6, C3, C4, GC4, GC5 and GC6 was estimated using standards of structurally similar 

compounds, namely GTX5, C1, C2 and GC3, respectively. A similar molar and peak area response 

was assumed for these compounds.  

3.2. Sample Collection and Culture 

Surface seawater samples were collected during G. catenatum blooms along the NW  

Portuguese coast in 2007 [45]. Seawater samples containing the highest cell density of 2.5 × 104 cells 

of G. catenatum L−1 were chosen for this study. A 1.5 L volume of seawater was vacuum filtered on 

0.45-µm pore size mixed cellulose ester (HA) membrane filters (Durapore, EMD Millipore Inc., 

Boston, MA, USA) and frozen at −20 °C, as previously described [46]. Cultured strains were isolated 

from a G. catenatum bloom in Cascais Bay, Portugal, in September, 2007. Cells were grown in f/2 

medium at 18 °C and 250 µE m−2 s−1 light with a 12:12 light:dark cycle. Cells were harvested from the 

2-L culture by centrifugation at 2000× g for 5 min at 15 °C. The cell density of the cultured strain was 

6.6 × 105 cells L−1. 

3.3. Chemical Extraction of PSTs 

Cell pellets and filters were extracted in 5 mL of 0.05 M acetic acid using a probe sonicator at  

25 W, 50% pulse duty cycle (Branson Sonifier 450, Danbury, NH, USA) for 4 min on ice. Cell lysis 

was confirmed using light microscopy. The extracts were then centrifuged at 4000× g for 10 min, and 

the supernatant cleaned by solid phase extraction (SPE) using an octadecyl bonded phase silica 

(Supelclean LC-18 SPE cartridge, 3 mL, Supelco, Sigma Aldrich, St. Louis, MO, USA) cartridge, 

which had been pre-conditioned with 6.0 mL methanol followed by 6.0 mL water. A 1.0-mL aliquot of 

the extract was loaded onto the column and PSTs eluted with 2.0 mL of water as reported by [37]. 

Following a wash with 2.0 mL of water, the cartridges were then subjected to a second elution with 

80% v/v aqueous methanol to capture any hydrophobic GC toxin derivatives. This fraction was then 

evaporated to dryness under N2(g) at room temperature and re-constituted in 0.5 mL water. 

3.4. Liquid Chromatography Tandem Mass Spectrometry 

Toxin analysis was performed on a Waters Acquity UPLC system coupled to a Waters Quattro 

Micro triple quadrupole mass spectrometer. The analytical method employed during this study was 

modified from similar protocols reported by [47,48]. A 5-µm amide bonded silica (TSK-gel Amide-80®) 

column (250 mm length × 2.0 mm i.d.) with a guard column (2 mm × 1 cm) with the same stationary 

phase from Tosoh Bioscience (Grove, CA, USA) was selected. The column was maintained at 30 °C, 

and a sample injection volume of 10 µL was used. Toxins were eluted at a flow rate of 0.2 mL/min 

with a normal phase gradient from 65% B to 35% B in 30 min, followed by a 5-min hold at 35% B, 

where Mobile Phase A consisted of 50 mM formic acid in water (pH = 2.6) and Mobile Phase B 
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consisted of 95% aqueous acetonitrile containing 50 mM formic acid. Analyses were performed in 

positive ion mode using full scan, product ion scan and multiple reaction monitoring (MRM) 

experiments. The following MS source conditions were used for analysis: capillary voltage at 2.0 kV, 

source temperature 125 °C, desolvation temperature 390 °C, cone gas flow 200 L h−1, desolvation gas 

flow at 500 L h−1, capillary voltage 2 kV. Transition ion selection for MRM experiments was 

determined following product ion scans, with cone voltage and collision energies optimized for each 

transition ion pair using NRC-certified reference materials and reference standards (Table 2). These 

standards were used in the method development to optimize the mass spectrometer conditions and 

spectra for survey scans (MS and MS/MS) and MRM analyses. In addition, reference standards were 

used to generate external calibration curves, for direct comparison of retention times and comparison 

of transition ion ratios in this study. The limit of detection (LOD, S/N = 3) was calculated at 0.02 nM 

for STX. The concentration of GTX6, C3, C4, GC4, GC5 and GC6 were estimated assuming an equal 

molar and peak response of structurally similar analogs, since certified reference standards were 

available for just 12 of the 18 toxins surveyed in this study. In these instances, the concentration was 

determined based on the calibration curves of the most structurally similar analog (i.e., adjusted to the 

known molecular weight of the toxin to determine the concentration. Minor sample matrix effects 

(e.g., ionization suppression and retention time shifts) were resolved with sample dilution (1:5 ratio) in 

the mobile phase, with resultant within- and between-day residuals for a retention time >4%. The 

concentration of individual PST derivatives is expressed on a per cell basis and as a molar percentage 

of the combined PST mixture identified in phytoplankton cultures and seawater. Data were acquired 

and post-processed using Waters MassLynx™ software, v. 4.1. 

Table 2. Primary and secondary transition ion pairs for paralytic shellfish toxins (PSTs) 

analyzed by multiple reaction monitoring in this study, except those that were in low 

abundance or not detected in algae extracts. Optimized collision energy and declustering 

potential for each transition ion pair is provided. 

Toxin Transition Ion Pair (m/z) Collision Energy (eV) Declustering Potential (V) 

dcSTX 257 > 222 19 35 

 
257 > 239 10 30 

dcNeo 273 > 255 20 35 

 
273 > 225 25 35 

STX 300 > 204 20 35 

GTX3 316 > 220 20 35 

dcGTX3 353 > 255 20 35 

GTX5 380 > 300 14 20 

 
300 > 204 20 35 

C2 396 > 298 10 40 

 
396 > 316 15 45 

C1 316 > 220 20 35 

 
396 > 316 15 45 

GTX6 316 > 220 20 35 

 
396 > 316 15 45 
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Table 2. Cont. 

C4 412 > 314 10 40 

 
412 > 332 15 45 

C3 412 > 332 15 45 

GC1 393 > 320 15 20 

 
473 > 393 15 20 

GC2 473 > 375 15 20 

 
473 > 455 15 20 

GC3 377 > 204 25 40 

 

GC4 

377 > 359 

489 > 409 

20 

20 

30 

30 

GC5 489 > 391 20 30 

 
489 > 471 15 20 

GC6 393 > 220 20 40 

 
393 > 375 15 20 

4. Conclusions  

The HILIC-MSMS analyses performed to determine the profile of PSP toxins produced by  

G. catenatum from the Portuguese coast confirmed the dominant presence of the N-sulfocarbamoyl 

and hydroxybenzoate PSP analogues. The characterized profile resembles that of G. catenatum 

isolated in the Portuguese coast before the 10-year period of G. catenatum absence, suggesting that 

resurgence of this cryptogenic dinoflagellate is not a result of reintroduction or new import from other 

regions. Two new hydroxybenzoate analogues, GC5 and GC6, were characterized for the first time 

through tandem mass spectrometry. Based on the estimated molar fraction, these benzoate analogues 

were the major constituents of the G. catenatum strains analyzed, and they pose a new challenge from 

a monitoring and regulatory perspective. The reduced knowledge of their toxicity, the lack of 

analytical certified standards for GC toxins in addition to the diverse nature, i.e., hydrophilic and 

hydrophobic, of the entire range of compounds found in G. catenatum makes it necessary to further 

investigate the fate of these compounds in the food web and to develop appropriate screening and 

detection methods. 
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