
Identification of Subtypes and a
Prognostic Gene Signature in Colon
Cancer Using Cell Differentiation
Trajectories
Renshen Xiang1,2†, Jincheng Fu1,2†, Yuhang Ge1, Jun Ren1,2, Wei Song1,2 and Tao Fu1*

1Department of Gastrointestinal Surgery II, Renmin Hospital of Wuhan University, Wuhan, China, 2Central Laboratory, Renmin
Hospital of Wuhan University, Wuhan, China

Research on the heterogeneity of colon cancer (CC) cells is limited. This study aimed to
explore the CC cell differentiation trajectory and its clinical implication and to construct a
prognostic risk scoring (RS) signature based on CC differentiation-related genes (CDRGs).
Cell trajectory analysis was conducted on the GSE148345 dataset, and CDRG-based
molecular subtypes were identified from the GSE39582 dataset. A CDRG-based
prognostic RS signature was constructed using The Cancer Genome Atlas as the
training set and GSE39582 as the validation set. Two subsets with distinct
differentiation states, involving 40 hub CDRGs regulated by YY1 and EGR2, were
identified by single-cell RNA sequencing data, of which subset I was related to
hypoxia, metabolic disorders, and inflammation, and subset II was associated with
immune responses and ferroptosis. The CDRG-based molecular subtypes could
successfully predict the clinical outcomes of the patients, the tumor microenvironment
status, the immune infiltration status, and the potential response to immunotherapy and
chemotherapy. A nomogram integrating a five-CDRG-based RS signature and prognostic
clinicopathological characteristics could successfully predict overall survival, with strong
predictive performance and high accuracy. The study emphasizes the relevance of CC cell
differentiation for predicting the prognosis and therapeutic response of patients to
immunotherapy and chemotherapy and proposes a promising direction for CC
treatment and clinical decision-making.
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INTRODUCTION

Colon cancer (CC) is the third most frequently diagnosed
malignant tumor worldwide, with 945,000 newly diagnosed
cases per year, accounting for 9.4% of all cancer cases, and
with 492,000 cancer deaths per year, accounting for 7.9% of
total deaths (Parkin, 2001; Bray et al., 2018). According to the
SEER database, the major histological types of CC are
adenocarcinoma, mucinous adenocarcinoma, and signet ring
cell carcinoma, which account for 90.1%, 8.7%, and 1.2% of
CC cases, respectively, and the 5-year survival rates are 72.2%,
67.4%, and 41.4%, respectively. The clinical manifestations and
prognosis of different pathological types vary greatly (Deng et al.,
2006; Verhulst et al., 2012; Nitsche et al., 2013; Wang et al., 2016).
Currently, primary treatment modalities for CC include
chemotherapy along with surgery, radiotherapy, and, more
recently, targeted therapy for patients with advanced late-stage
CC, which significantly prolongs the overall survival (OS) and
improves the prognosis of patients. However, the multidrug
resistance of tumor cells to chemotherapy and molecular
targeted therapy has been a major obstacle in cancer research,
severely limiting the efficacy of CC therapy (Holohan et al., 2013;
Li et al., 2013; Guo et al., 2017). Recently, new therapeutic
methods such as immunotherapy have been gradually
introduced into clinical practice (Pagès et al., 2018).
Unfortunately, the OS of patients has not greatly improved,
necessitating the development of novel strategies to overcome
drug resistance in cancer therapy.

Intratumoral heterogeneity refers to the emergence of new
gene mutations and molecular phenotypes in each filial
generation after the malignant transformation of primary cells
throughout continuous evolution. Therefore, a tumor is
considered a mixture of different tumor cell clones (Dagogo-
Jack and Shaw, 2018). Currently, intratumoral heterogeneity is a
major cause of chemoresistance; therefore, it is essential to
characterize the intratumoral heterogeneity of CC cells. The
development of single-cell RNA sequencing (scRNA-seq)
technology has provided an effective method to reveal the
characteristics of the single-cell transcriptome, opening up new
avenues to investigate intratumoral heterogeneity (Lovett, 2013;
Liang et al., 2014). This study aimed to analyze the cell
differentiation trajectory in CC through scRNA-seq and
investigate its relationship with clinical outcomes and potential
responses to immunotherapy and chemotherapy, to gain new
insights into the development of treatment strategies against CC
and the evaluation of patient prognoses.

MATERIALS AND METHODS

Data Acquisition and Processing
The scRNA-seq data of 1,441 cells in 15 CC samples were
downloaded from the GSE148345 dataset in the Gene
Expression Omnibus (GEO, https://www.ncbi.nlm.nih.gov/geo/
) database. The percentage of mitochondrial genes was calculated
using the “PercentageFeatureSet” function in R software. The
correlation between sequencing depth and length of

mitochondrial gene sequences or total intracellular sequences
was assessed by correlation analysis. Cells with an intracellular
gene number <50, intracellular sequencing number <3, and
mitochondrial gene fraction >25% were excluded. After data
quality control, scRNA-seq data were normalized via the
“LogNormalize” algorithm. Bulk RNA-seq and relevant
clinicopathological data, such as sex, age, and grade, of 39
normal and 385 CC samples in The Cancer Genome Atlas
(TCGA) database (http://cancergenome.nih.gov/) and 585 CC
samples in the GSE39582 dataset were used for molecular typing
identification and risk scoring (RS) signature generation. In the
current study, CC samples with a survival time <30 days,
ambiguous survival status, and unclear clinicopathological
features were excluded. The clinicopathological data of each
sample are shown in Table 1.

Dimensionality Reduction and Cell
Annotation
At a false discovery rate (FDR) <0.05, dimensions with significant
separation were identified through principal component analysis
(PCA) (Lall et al., 2018). Then, dimension reduction for the top
15 principal components (PCs) was performed using the
t-distributed stochastic neighbor embedding (tSNE) algorithm
to obtain the major clusters (Satija et al., 2015). Under the
conditions of |log2[fold change (FC)]| > 0.5 and FDR <0.05,
marker genes were screened out through differential expression

TABLE 1 | Clinicopathological features of patients with colon cancer.

Variables GSE39582
cohort (n = 585)

TCGA
cohort (n = 385)

Age (year)
Mean ± SDa 66.9 ± 13.2 67.0 ± 12.8
Sex
Female 263 (45.0) 180 (46.8)
Male 322 (55.0) 205 (53.2)

Clinical stage
I 38 (6.5) 66 (17.1)
II 271 (46.3) 151 (39.2)
III 210 (35.9) 103 (26.8)
IV 60 (10.3) 54 (14.0)
Unknown 6 (1.0) 11 (2.9)

T stage
T1 12 (2.1) 10 (2.6)
T2 49 (8.4) 68 (17.7)
T3 379 (64.8) 263 (68.3)
T4 119 (20.3) 44 (11.4)
Unknown 26 (4.4) 0 (0.0)

N stage
N0 314 (53.7) 231 (60.0)
N1 137 (23.4) 88 (22.9)
N2 100 (17.1) 66 (17.1)
N3 6 (1.0) 0 (0.0)
Unknown 28 (4.8) 0 (0.0)

M stage
M0 499 (85.3) 286 (74.3)
M1 61 (10.4) 54 (14.0)
Unknown 25 (4.3) 45 (11.7)

aStandard deviation.
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analysis, and the top 10% of marker genes from clusters were
displayed on a heat map. Clusters were annotated using the
“SingleR” package in R and the CellMarker database (http://
biocc.hrbmu.edu.cn/CellMarker/).

Cell Trajectory Analysis and Molecular
Functional Analysis
Pseudotime and cell differentiation trajectory were performed
using the “Monocle” package in R (Qiu et al., 2017). With the
criteria of |log2(FC)| > 1 and FDR <0.05, the differentially
expressed genes identified from cell differentiation trajectories
were designated CC differentiation-related genes (CDRGs). The
“clusterProfiler” package in R was used for Kyoto Encyclopedia of
Genes and Genomes (KEGG) enrichment analysis and Gene
Ontology (GO) annotation for three domains, namely,
biological process, cellular component, and molecular function.
Hub CDRGs associated with cell differentiation trajectories were
screened out through weighted correlation network analysis
(WGCNA). Transcription factor (TF) enrichment analysis was
conducted in the UCSC Xena platform (http://xena.ucsc.edu/).

Identification of CDRG-Based Molecular
Subtypes of Patients With CC From the
GSE39582 Dataset
The “ConsensusClusterPlus” package in R was used for consensus
clustering of CC samples after univariate analysis (Wilkerson and
Hayes, 2010). The PCA and tSNE algorithms were used to verify
the stability of CC subtypes. Kaplan–Meier analysis was
conducted using the “survival” package in R.
Clinicopathological features were displayed on histograms
using the “ggplot2” package. Differentially expressed CDRGs
with FDR <0.05 in specific molecular subtypes were screened
for exploring their expression levels within different cell
differentiation trajectories.

Integrated Analysis of Tumor
Microenvironment Status, Immune
Infiltration, and Immune Checkpoint Gene
Expression Across CC Subtypes
The immune/stromal scores and tumor purity of each sample
were calculated using the “ESTIMATE” package in R. Single-
sample gene set enrichment analysis (ssGSEA) was performed
using the “GSVA” package to quantify the enrichment level of
each sample in 29 immune gene sets (Supplementary Material
S1). The fraction of 22 immune cells in each sample from the
GSE39582 dataset was predicted using the CIBERSORT
algorithm. Thirty-seven immune checkpoint genes (ICGs)
were accessed through an extensive literature search (Wu
et al., 2016; Nishino et al., 2017; Patel et al., 2017; Yang et al.,
2017; Garris et al., 2018; Zhang et al., 2018; Wang et al., 2019a;
Wang et al., 2019b; Han et al., 2019). Differential expression of
genes across CC subtypes was assessed using the “limma”
package in R.

Prediction of Chemotherapeutic Response
(IC50) for CC Subtypes
The “pRRophetic” package has been extensively used in cancer-
related studies (PMID: 33115513, 33251044, 33738339,
34532269, 34335575, and 25229481), which can employ ridge
regression to estimate the half-maximum inhibitory
concentration (IC50) of samples. In this study, the
“pRRophetic” package was used to predict the
chemotherapeutic response of each sample in the GSE39582
dataset on the basis of the Genomics of Drug Sensitivity in
Cancer (GDSC) database (https://www.cancerrxgene.org/).
Twelve chemotherapeutic agents were selected, namely,
camptothecin, mitomycin C, doxorubicin, gemcitabine,
paclitaxel, rapamycin, sorafenib, bleomycin, docetaxel,
sunitinib, cisplatin, and vinblastine, to determine the response
of CC cells to chemotherapy. On the basis of the GDSC training
set, 10-fold cross-validation was performed to evaluate the
accuracy of the prediction of chemotherapy response.

Construction and Validation of RS Signature
The bulk RNA-seq data were normalized with the log2 scale
transformation method. Intersected CDRGs from TCGA and
GSE39582 cohorts were identified using the “SVA” package in R.
Differential expression analysis was performed in the TCGA
cohort with |log2(FC)| > 1 and FDR <0.05. Univariate analysis
was performed for obtaining prognostic CDRGs in the TCGA
cohort. With TCGA as the training set and GSE39582 as the
validation set, the prognostic CDRGs were incorporated into
Lasso Cox regression analysis to construct a CDRG-based RS
signature. The RS of each sample was calculated as the sum of the
products of CDRGs expression levels and coefficients, using the
following formula:

RS � ∑
k

i

(Expi × Coei),

where “i” and “k” represent the “ith” gene and gene number,
respectively. Kaplan–Meier analysis was conducted to compare
the OS between the high-risk group and the low-risk group.
Receiver operating characteristic (ROC) curves were plotted to
evaluate the predictive performance of the RS signature.

Assessment of Expression Levels of CDRGs
in the RS Signature
A total of 20 pairs of CC samples were collected from patients
with CC admitted to the Renmin Hospital of Wuhan University.
The study was approved by the Ethics Committee of Renmin
Hospital of Wuhan University (no. WDRY 2019-K092), and an
informed consent was obtained from all patients. Total RNA was
extracted from CC patient tissues using TRIzol reagent
(Invitrogen, Carlsbad, CA, United States), and complementary
DNA was synthesized using the total RNA and a PrimeScript RT
reagent kit (Takara). Quantitative PCR (qPCR) was performed
using SYBR Green (Takara) on a CFX-96 instrument (Bio-Rad
Laboratories, Inc., United States). The data were computed using
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the 2−ΔΔCt method, and expression levels of target genes were
normalized to those of GAPDH. The primer sequences used for
qPCR in this study are listed in Table 2. The raw data of qPCR are
shown in Supplementary Material S2. Subsequently, the
expression levels of CDRGs at the protein level were verified
using the Human Protein Atlas database (www.proteinatlas.org).

Construction and Validation of a Nomogram
to Predict OS
Univariate analysis was performed in the training and validation
sets to obtain prognostic variables, which were enrolled into a
nomogram for predicting 3- and 5-year OS. Then, ROC and
calibration curves were used to evaluate the predictive
performance of the nomogram. Furthermore, the validation set
was used for estimating the stability of the nomogram.

RESULTS

Quality Control and Normalization of
scRNA-Seq Data
The scRNA-seq data of 1441 CC cells in 15 samples were
downloaded from the GSE148345 dataset. After performing
quality control and normalization, 349 non-compliant cells
were excluded, and 1,092 cells were selected for further
analysis (Figure 1A). The correlation between sequencing
depth and mitochondrial gene sequences was weak, with R �
0.2, which was the minimum correlation coefficient obtained
according to the best screening conditions (Figure 1B). The
sequencing depth was positively correlated with total
intracellular sequences (R � 0.48, Figure 1B). A total of
27,480 genes were subjected to further analysis, of which
25,980 were intercellular genes with a low-mutation
frequency, and 1,500 were genes with high variability
(Figure 1C).

Identification of Two CC Subsets by CC Cell
Trajectory Analysis
Preliminary dimensionality reduction of scRNA-seq data was
performed by PCA, but no significant segregation was observed
among CC cells (Figure 2A). Therefore, the top 15 PCs with

significant differences were screened for further analysis
(Figure 2B). According to the tSNE algorithm, 1,092 CC cells
were clustered into eight clusters, 5,224 marker genes were
identified, and the top 10% of marker genes into each cluster
were displayed on the heat map (Figure 2C). Eight clusters were
annotated on the basis of marker genes: clusters 0/1/2/5/6/7 were
cancer cells, cluster 3 was macrophages, and cluster 4 was
epithelial cells. The results of cell trajectory analysis revealed
that cluster 4 was mainly distributed in the root, containing
epithelial cells. Clusters 0/3/6 were distributed in subset I (branch
I), which consisted of cancer cells and macrophages. Clusters 1/2/
5/7 were located in subset II (branch II), which consisted of
cancer cells (Figures 2D,E).

Molecular Functional Analysis Based on
CDRGs
We identified 153 CDRGs from the root, 800 CDRGs from
subset I (branch I), and 245 CDRGs from subset II (branch II).
The results of GO annotation and KEGG enrichment analysis
revealed that overexpression of CDRGs in root was strictly
related to the regulation of nuclear mitosis (Supplementary
Figures S1A,B), and low expression of CDRGs was closely
associated with immune killing (Supplementary Figures
S1C,D). Highly expressed CDRGs in subset I (branch I) were
steadily linked to hypoxia and inflammatory responses
(Supplementary Figures S2A,B), and lowly expressed
CDRGs were correlated with energy metabolic disorders
(Supplementary Figures S2C,D). The upregulated CDRGs in
subset II (branch II) were profoundly associated with cellular
drug metabolism and immune responses (Supplementary
Figures S2A,B), whereas the downregulated CDRGs were
strongly correlated with ferroptosis and catabolism
(Supplementary Figures S3C,D).

Identification of HubCDRGs in Two Subsets
On the basis of WGCNA, 13 modules were generated with soft
threshold � 6 (Figure 2F), of which three modules were positively
correlated with subset I (branch I), whereas nine modules were
positively associated with subset II (branch II) (Figure 2G). In
this study, the magenta module and the blue module were
regarded as core modules that regulated cell differentiation
trajectories, and hub CDRGs in two core modules are shown
in Supplementary Material S3. The results of TF enrichment
analysis showed that YY1 and EGR2 were the key TFs regulating
the transcription of hub CDRGs (Figure 2H).

Identification of CDRG-Based Molecular
Subtypes of Patients With CC From the
GSE39582 Dataset
Prognostic CDRG-based consensus clustering analysis was
performed on the GSE39582 dataset, and two molecular
subtypes, including all the CC samples, were generated at a
clustering threshold of K � 2 (Figure 3A). The PCA and tSNE
algorithms demonstrated that the two clusters have strong
stability (Figures 3B,C). The Kaplan–Meier method was used

TABLE 2 | List of primers.

Gene Primer sequence (59-39)

ACAA2 Forward: AGACCCCAGCTCTCACGATT
Reverse: GGCTCATGCTTTCGGTTCCT

SRI Forward: GAGACTTGCCGGCTTATGGT
Reverse: TTGTCAGGGCCTTCTGCAAT

UGT2A3 Forward: TGGTGTTTTCTCTGGGGTCAC
Reverse: ACAGCCGAGTATTGGCTCCT

KPNA2 Forward: GTGATGGCTCAGTGTTCCGA
Reverse: GTGCAGGATTCTTGTTGCGG

MRPL37 Forward: AGAGAACCAAGACGAGTGCG
Reverse: CACCAGAACCACGGACTTGA
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to determine the statistical significance of the consensus
clustering results for CC, and the results revealed that subtype
1 (C1) had better OS compared with that of subtype 2 (C2)
(Figure 3D, p � 0.031). Moreover, subtype 2 (C2) had more
patients with a disease of advanced T stage and TNM stage
(Figure 3E). Differentially expressed CDRGs between two
molecular subtypes are displayed on a heat map (Figure 3F):
The down/upregulated CDRGs in subtype 1 (C1) showed the
same expression trend as that in subset II (branch II) (Figure 3G),
whereas CDRGs in subtype 2 (C2) showed the same expression
trend as that in subset I (branch I) (Figure 3H). These results
demonstrated that subtype 1 (C1) was mainly composed of CC

cells in subset II (branch II), and subtype 2 (C2) was composed of
CC cells in subset I (branch I).

Integrated Analysis of Tumor
Microenvironment Status and Immune
Infiltration Between Two Molecular
Subtypes
On the basis of the “ESTIMATE” package, the immune/stromal
scores (all p < 0.001) of subtype 2 (C2) were higher than those of
subtype 1 (C1) and the tumor purity (p< 0.001) of subtype 2 (C2)was
lower than that of subtype 1 (C1) (Figures 4A–C). The results of

FIGURE 1 | Quality control and normalization of scRNA-seq data. (A) After quality control, 1,092 CC cells were selected for analysis. (B) Results of correlation
analysis. (C) The variation of 27,480 genes between CC cells. scRNA, single-cell RNA sequencing; CC, colon cancer.
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ssGSEA showed that the immune activity of subtype 2 (C2) was
significantly higher than that of subtype 1 (C1) (Figure 4D), which
was consistent with the immune score (Figure 4A). The infiltration
density of 22 types of immune cells in each sample was calculated on
the basis of the CIBERSORT algorithm, and the results were
presented as different colors, which represented different cell types
(Figure 4E). The results of differential analysis further demonstrated

that subtype 1 (C1) contained a higher distribution of memory-
activated CD4+ T cells, plasma cells, follicular T helper cells, dendritic
cells, and natural killer (NK) cells (Figure 4F, all p < 0.05), whereas
subtype 2 (C2) had a higher distribution ofmacrophages, neutrophils,
and regulatory T cells (Tregs) (Figure 4G, all p < 0.05). Together,
subtype 2 (C2) with higher immune infiltration was associated with
tumor immune escape mediated by Tregs and macrophages.

FIGURE 2 | Cell trajectory analysis and WGCNA. (A) PCA based on scRNA-seq data. (B) The top 15 PCs. (C) Eight clusters were identified by tSNE algorithm, and a
heat map was plotted to represent marker genes (top 10%) in each cluster. (D) Two subsets (namely, branch I and branch II) with distinct differentiation states were identified
by cell trajectory analysis. (E) Cell types of subset I (branch I), subset II (branch II), and root. (F) Thirteen modules were identified using WGCNA. (G) Correlation analysis
between modules and subsets. (H) Transcription factor enrichment analysis of key CDRGs. PCA, principal component analysis; PCs, principal components; tSNE,
t-distributed stochastic neighbor embedding; CC, colon cancer; CDRG, CC differentiation-related gene. WGCNA, weighted correlation network analysis.
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However, subtype 2 (C2) lacked cytotoxic T lymphocytes, which are
involved in anti-tumor immunity.

Comparison of Expression Levels of ICGs
Between Two Molecular Subtypes
Thirty-seven confirmed ICGs were accessed from previous
studies (Wu et al., 2016; Nishino et al., 2017; Patel et al., 2017;

Yang et al., 2017; Garris et al., 2018; Zhang et al., 2018; Wang
et al., 2019a; Wang et al., 2019b; Han et al., 2019). Through
differential expression analysis, we found 23 upregulated ICGs
(B2M, CD28, CD40, CD80, CD86, CD8A, CTLA4, HAVCR2,
ICOS, IFNG, IL23A, JAK2, LAG3, LDHA, LDHB, PDCD1LG2,
PTPRC, PVR, TNFRSF18, TNFRSF4, TNFRSF9, TNFSF4, and
TNFSF9) in subtype 2 (C2) (Figure 5A, all p < 0.05). More
importantly, upregulated ICGs, including CD28 (p < 0.05),

FIGURE 3 |CDRG-based consensus clustering analysis of CC patients from the GSE39582 dataset. (A–C) Twomolecular subtypes were identified at a clustering
threshold of maxK � 2. (B) PCA. (C) tSNE algorithm. (D) Kaplan–Meier analysis between subtype 1 (C1) and subtype 2 (C2). (E) The proportion of clinicopathological
variables across the two subtypes. (F) A heat map of differentially expressed CDRGs among the two subtypes. (G) The down/upregulated CDRGs in subtype 1 (C1)
showed the same expression trend as that in subset II (branch II). (H) The down/upregulated CDRGs in subtype 2 (C1) showed the same expression trend as that in
subset I (branch I). CC, colon cancer; CDRGs, CC differentiation-related genes; PCA, principal component analysis; tSNE, t-distributed stochastic neighbor embedding.
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CTLA4 (p < 0.05), PVR (p < 0.05), CD80, CD86, IFNG, JAK2,
LDHA, PTPRC, TNFRSF9, and TNFSF, were correlated with
worse OS (Figure 5B). Only three ICGs (namely, CD40LG,
LGALS9, and YTHDF1) were highly expressed in subtype 1
(C1) (Figure 5A, all p < 0.05). Interestingly, upregulated
LGALS9 was correlated with a better OS (Figure 5B), whereas
CD40LG and YTHDF1 were not associated with OS. These results
indicate that upregulated ICGs are associated with a higher
distribution of Tregs and adverse clinical outcomes of subtype

2 (C2) and are hence vital for guiding immunotherapy of CC
subtypes.

Differences in the Sensitivity of Two
Molecular Subtypes to Chemotherapy
Next, we estimated the IC50 of 12 chemotherapeutic agents in
each sample from the GSE39582 dataset. Subtype 2 (C2) was
more sensitive to camptothecin, mitomycin C, doxorubicin,

FIGURE 4 | Comprehensive analysis of the tumor microenvironment status and immune infiltration across two molecular subtypes. (A) Immune scores of the two
molecular subtypes. (B) Stromal scores of the two molecular subtypes. (C) Tumor purity status of the two molecular subtypes. (D) Heat map of ssGSEA scores for the
two molecular subtypes. (E) The infiltration density of 22 immune cells in each sample. (F) Immune cells with higher fraction in subtype 1 (C1). (G) Immune cells with
higher fraction in subtype 2 (C2). ssGSEA, single-sample gene set enrichment analysis.
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gemcitabine, paclitaxel, rapamycin, bleomycin, docetaxel,
sunitinib, cisplatin, and vinblastine than subtype 1 (C1)
(Figure 6A, all p < 0.001). However, subtype 1 (C1) was more
sensitive to sorafenib than subtype 2 (C2) (Figure 6B, p � 0.013).

Construction, Evaluation, and Validation of
a Five-CDRG-Based RS Signature
After obtaining the intersection of CDRGs in TCGA and
GSE39582 datasets, a total of 673 CDRGs were subjected to
differential analysis, and 209 differentially expressed CDRGs
were identified (Figure 7A). The results of univariate analysis
further revealed 19 prognostic CDRGs (Figure 7B), which were
enrolled into Lasso Cox regression analysis, and finally, a five-
CDRG-based RS signature was generated. The RS of each sample
was calculated on the basis of the relative coefficient and
expression levels of five genes using the following formula:
RS� (−0.0427 * expression of UGT2A3) + (−0.0192 *
expression of SRI) + (−0.0230 * expression of MRPL37) +
(−0.0145 * expression of KPNA2) + (−0.0184 * expression of
ACAA2). The RS of each CC sample was calculated in the training
and validation cohorts, and the results revealed that the OS of the
low-risk group was significantly better than that of the high-risk

group (Figure 7C, TCGA: p � 2.576e-04; Figure 7D, GSE39582:
p � 3.48e-05). Moreover, the values of the areas under the ROC
curves for predicting 1- and 2-year OS were 0.712 and 0.709,
respectively, in the training set (Figure 7E), and 0.621 and 0.624,
respectively, in the validation set (Figure 7F).

Expression Levels and Prognostic Values of
Five CDRGs in the RS Signature
The results of qPCR analysis showed that ACAA2 (p � 0.01), SRI
(p < 0.001), and UGT2A3 (p < 0.001) were downregulated in CC
samples, whereas KPNA2 (p < 0.001) and MRPL37 (p < 0.001)
were upregulated in CC samples (Figure 7G). The results of
immunohistochemical staining confirmed that ACAA2 was
highly expressed in normal glandular cells and moderately
expressed in CC cells (Supplementary Figure S4A). KPNA2
was expressed at low intensity in normal glandular cells,
endothelial cells, and stromal cells and was highly expressed in
CC cells (Supplementary Figure S4B). Moreover, MRPL37 was
moderately expressed in normal glandular cells and highly
expressed in CC cells (Supplementary Figure S4C). SRI was
upregulated in normal glandular cells and endothelial cells and
was downregulated in CC cells (Supplementary Figure S4D).

FIGURE 5 | Expression levels and prognostic values of ICGs in twomolecular subtypes. (A)Differential expression analysis of 37 ICGs. (B)Kaplan–Meier analysis of
ICGs. ICGs, immune checkpoint genes.
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The expression of UGT2A3 was higher in normal glandular cells
and endothelial cells and was significantly lower in CC cells than
that in normal cells (Supplementary Figure S4E). The scRNA-
seq data revealed that ACAA2, KPNA2, MRPL37, and SRI were
downregulated in subset I (branch I, consisting of cluster 0/3/6),
and UGT2A3 was downregulated in subset II (branch II,
containing cluster 1/2/5/7) (Supplementary Figures S4F,G).
The results of Kaplan–Meier analysis demonstrated that
upregulation of five CDRGs was correlated with better OS
rates (Supplementary Figure S4H, all p < 0.05).

Construction, Evaluation, and Validation of
a Nomogram for Predicting OS
Univariate analysis was performed on the clinicopathological
characteristics and RS in the training and validation cohorts,
and the results revealed that patient age, TNM stage, T stage, N
stage, M stage, and RS jointly affected patient prognosis (TCGA:
Figure 8A, all p < 0.05; GSE39582: Figure 8B, all p < 0.05). Older
age, later clinicopathological stage, and higher RS corresponded
to poorer OS. Then, six prognostic factors were combined to
establish a nomogram for predicting the OS of patients with CC
on the basis of the training set (Figure 8C). The values of the areas
under the ROC curves for predicting 3- and 5-year OS were 0.863

and 0.867, respectively (Figure 8D), and the calibration curves for
predicting 3- and 5-year OS were in good agreement with the
actual observations (Figure 8D). In addition, the nomogram with
the strongest predictive performance was verified in the training
set (Figure 8E).

DISCUSSION

Previous research has highlighted the importance of tumor site,
pathological type, early or advanced stage, therapy phase, and
primary and metastatic focus in evaluating the therapeutic
response and prognosis of patients with CC (Deng et al., 2006;
Verhulst et al., 2012; Nitsche et al., 2013;Wang et al., 2016). Given
the complexity of CC heterogeneity, the relationship between CC
heterogeneity and clinical outcome and treatment response needs
to be further studied. In the present study, we identified two CC
subsets with distinct differentiation states, of which subset I
(branch I) was related to hypoxia, metabolic disorders, and
inflammatory responses, and subset II (branch II) was
associated with immune responses and ferroptosis. CDRG-
based consensus molecular classifications successfully predicted
clinical outcomes, immune infiltration status, potential
immunotherapy, and chemotherapeutic response in patients

FIGURE 6 | Differences in the sensitivity of two molecular subtypes to chemotherapy. (A) Chemotherapeutic agents that CC cells in subtype 2 (C2) are more
sensitive to. (B) Chemotherapeutic agents that CC cells in subtype 1 (C1) are more sensitive to.
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with CC. A nomogram combining the five-CDRG-based RS
signature and prognostic clinicopathological characteristics
accurately predicted the OS of patients with CC.

Gene-dependent intratumoral heterogeneity is an important
factor that determines the biological behavior of CC cells.
Different pathogeneses, natural evolution, and medical
interventions produce a large number of molecular

phenotypes, which can lead to differences in clinical features,
therapeutic response, drug resistance, and prognosis among
individuals with CC (Hanahan and Weinberg, 2011; Dagogo-
Jack and Shaw, 2018). In this study, CC cells with distinct
differentiation states were projected into two subsets on the
basis of cell trajectory analysis. These results demonstrate that
CC cell differentiation may be related to the activation/inhibition

FIGURE 7 |Generation of a prognostic RS signature and quantitative PCR for CDRGs. (A) Differential expression of 209 CDRGs in normal tissues and CC samples
with |log2(FC)| > 1 and FDR <0.05. (B)Univariate analysis of CDRGs. Kaplan–Meier analysis between the low-risk group and the high-risk group in (C) the training set and
(D) the validation set. The values of the areas under the ROC curves for predicting 3-, 4-, and 5-year OS in (E) the training set and (F) validation set. (G)Quantitative PCR
for five CDRGs in the RS signature. *p < 0.05; **p < 0.01; ***p < 0.001. CC, colon cancer, CDRGs, CC differentiation-related genes, FDR, false discovery rate; OS,
overall survival; ROC, receiver operating characteristic.
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of various signaling pathways in a time- and dose-dependent
manner. On the basis of WGCNA and TF enrichment analysis,
we provided a benchmark for the investigation of intratumoral
heterogeneity and the recognition of specific molecular
phenotypes in CC.

Different molecular phenotypes andmolecular types can guide
disease diagnosis, optimize therapeutic strategies, and facilitate
the development of new models for the advancement of precision
medicine. In current studies, CC has been classified according to
gene mutations, copy number, promoter methylation, non-
coding RNA, microsatellite instability, and proteomics, and
molecular subtypes of CC are based on tumor characteristics,

therapeutic response, and prognosis, with an inconsistent pattern
(Cancer Genome Atlas Network, 2012; Schlicker et al., 2012;
Sinicrope and Sargent, 2012; Budinska et al., 2013; De Sousa E
Melo et al., 2013; Marisa et al., 2013; Sadanandam et al., 2013;
Roepman et al., 2014; Guinney et al., 2015). Therefore, it is worth
exploring the possibility of introducing individualized treatment
of CC based on molecular subtyping. In this study, CDRG-based
molecular typing showed that the OS of subtype 1 (C1) was
superior to that of subtype 2 (C2). Previous studies have shown
that the infiltration of lymphocytes, such as CD4+ T cells, NK
cells, and plasma cells, was high in the tumor microenvironment
(Almatroodi et al., 2016; Engblom et al., 2016; Jiang et al., 2016;

FIGURE 8 | Construction, evaluation, and validation of a nomogram. Univariate analysis based on (A) the training set and (B) the validation set. (C) A nomogram
was constructed on the basis of the training set. (D) In the training set, the areas under the ROC curves for predicting 3- and 5-year OS. (E) Calibration curves for
predicting 3- and 5-year OS of patients in the training set. (F) The ROC curves and calibration curves for 3- and 5-year OS of patients in the validation set. ROC, receiver
operating characteristic; OS, overall survival.

Frontiers in Cell and Developmental Biology | www.frontiersin.org December 2021 | Volume 9 | Article 70553712

Xiang et al. Cancer Subtypes and Gene Signatures

https://www.frontiersin.org/journals/cell-and-developmental-biology
www.frontiersin.org
https://www.frontiersin.org/journals/cell-and-developmental-biology#articles


Jain et al., 2017; Janakiram et al., 2017; Pierce et al., 2017; Song
et al., 2017) and that the effectiveness of immunotherapy may be
attributed to the upregulation of ICGs (e.g., programmed death-1,
programmed death ligand-1, and cytotoxic T lymphocyte
antigen-4) (Llosa et al., 2015). The infiltration density of
memory-activated CD4+ T cells, follicular T helper cells, and
NK cells was higher in subtype 1 (C1) than in subtype 2 (C2), and
the proportion of macrophages and Tregs was lower in subtype 1
(C1) than in subtype 2 (C2). Moreover, the proportion of ICGs
was higher in subtype 2 (C2) than in subtype C1 (C1), suggesting
that the subtype C2 (C2) tumors are characterized by immune
escape and immunosuppression. Nevertheless, immune
checkpoint inhibitors may reactivate the immune response of
subtype 2 (C2) to exert anti-tumor effects (Riaz et al., 2017).
Furthermore, patients with subtype 2 (C2) can be treated with
several chemotherapeutic agents for improved prognosis.

The results of molecular subtyping revealed that patients with
subtype 1 (C1) had better survival outcomes, suggesting that the
classification based on CDRGs can be used to predict the OS of
patients with CC. Therefore, a CDRG-based RS signature with
high accuracy and efficiency was established to evaluate the
survival risk of patients with CC. To our knowledge, this is
the first CDRG-based RS signature generated using Lasso Cox
regression analysis, which can identify the gene combination with
the best predictive ability. Moreover, a nomogram combining the
CDRG-based RS and prognostic clinicopathological variables
served as a visual model to predict patient OS, which was
more accurate and effective than the RS signature.

There are some limitations to the current study. First, the
prognostic RS signature was generated and verified on the basis of
retrospective data from public open databases. Large-scale
prospective clinical studies are needed to estimate the
effectiveness and practicability of the RS signature. Second,
although the nomogram for predicting OS has high predictive
power, some clinicopathological parameters associated with
prognosis are not available from the public open database,
resulting in a limited number of variables involved in the
nomogram. Therefore, it is necessary to further improve the
nomogram in terms of higher predictive power and inclusion of
more variables.

CONCLUSION

In this study, we identified two subsets with distinct
differentiation states and revealed that CC molecular subtypes

on the basis of cell differentiation trajectories could successfully
predict the patient prognosis, tumor microenvironment status,
immune cell infiltration, and potential response to
immunotherapy and chemotherapy. Moreover, the nomogram
combining CDRG-based RS signature and clinicopathological
characteristics accurately predicted the OS of patients with CC.
Together, this study emphasizes the implications of CC cell
differentiation for predicting prognosis and therapeutic
response to immunotherapy and chemotherapy in patients and
proposes a promising direction for clinical decision-making
regarding CC treatment and prognosis.
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