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Recent in vitro studies have revealed that the mechanobiological responses of
osteoblasts and osteocytes are fundamentally impaired during estrogen deficiency.
However, these two-dimensional (2D) cell culture studies do not account for in vivo
biophysical cues. Thus, the objectives of this study are to (1) develop a three-
dimensional (3D) osteoblast and osteocyte model integrated into a bioreactor and
(2) apply this model to investigate whether estrogen deficiency leads to changes in
osteoblast to osteocyte transition, mechanosensation, mineralization, and paracrine
signaling associated with bone resorption by osteoclasts. MC3T3-E1s were expanded
in media supplemented with estrogen (17β-estradiol). These cells were encapsulated
in gelatin-mtgase before culture in (1) continued estrogen (E) or (2) no further estrogen
supplementation. Constructs were placed in gas permeable and water impermeable
cell culture bags and maintained at 5% CO2 and 37◦C. These bags were either
mechanically stimulated in a custom hydrostatic pressure (HP) bioreactor or maintained
under static conditions (control). We report that osteocyte differentiation, characterized
by the presence of dendrites and staining for osteocyte marker dentin matrix
acidic phosphoprotein 1 (DMP1), was significantly greater under estrogen withdrawal
(EW) compared to under continuous estrogen treatment (day 21). Mineralization
[bone sialoprotein (BSP), osteopontin (OPN), alkaline phosphatase (ALP), calcium]
and gene expression associated with paracrine signaling for osteoclastogenesis
[receptor activator of nuclear factor kappa-β ligand (RANKL)/osteoprotegerin OPG ratio]
were significantly increased in estrogen deficient and mechanically stimulated cells.
Interestingly, BSP and DMP-1 were also increased at day 1 and day 21, respectively,
which play a role in regulation of biomineralization. Furthermore, the increase in pro-
osteoclastogenic signaling may be explained by altered mechanoresponsiveness of
osteoblasts or osteocytes during EW. These findings highlight the impact of estrogen
deficiency on bone cell function and provide a novel in vitro model to investigate the
mechanisms underpinning changes in bone cells after estrogen deficiency.
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INTRODUCTION

Osteoporosis is a debilitating bone disease, in which severe
bone loss occurs leading to fractures of the hip, wrist, or
vertebrae (Balena et al., 1993). The disease is most commonly
manifested in postmenopausal women when estrogen production
is deficient, and affects approximately 30% of postmenopausal
women (Melton et al., 2005). Bisphosphonate drugs target bone
resorbing osteoclasts but only reduce osteoporosis fractures by
50% (Randell et al., 2002). However, osteoporosis is not simply
a disease of bone loss and recent studies have demonstrated
that bone tissue composition is fundamentally altered at the
tissue level (Gadeleta et al., 2000; Harris et al., 2000; Zioupos
and Aspden, 2000; Efstathiadou et al., 2001; Ciarelli et al., 2003;
Mansell and Bailey, 2003; McCreadie et al., 2006; McNamara
et al., 2006; Zhu et al., 2008). In particular, changes in bone
tissue mineral occur, which are anatomically distinct, do not
occur ubiquitously throughout the proximal femur, and may be
associated with alterations in the cell mechanical environment
(Riggs et al., 2002; McNamara et al., 2005, 2006; Brennan et al.,
2011a,b, 2012b, 2014a; Vaughan et al., 2015; Verbruggen et al.,
2015, 2016; O’Sullivan et al., 2019; Parle et al., 2020).

Throughout life, maintenance of normal adult bone relies on
biophysical stimulation, whereby osteocytes continually receive
mechanical cues from daily skeletal loading (Knothe Tate, 2003;
Coughlin and Niebur, 2012; Birmingham et al., 2013) and
elicit biochemical signaling to osteoblasts and osteoclasts (Klein-
Nulend et al., 1996; McAllister, 2000; Nauman et al., 2001;
Kapur et al., 2002; Malone et al., 2007; Wang et al., 2008;
Birmingham et al., 2012; Li et al., 2012; Lee et al., 2014).
Cellular mechanosensors have been identified in osteoblasts and
osteocytes, which transduce mechanical signals into the cell
through its interactions with the actin cytoskeleton (Ziambaras
et al., 1998; Rubin et al., 2006; Malone et al., 2007; Litzenberger
et al., 2010; Hoey et al., 2012). Osteocyte cell processes interact
with the surrounding extracellular matrix by means of αvβ3
integrins (McNamara et al., 2009; Cabahug-Zuckerman et al.,
2018), which connect the matrix to the intracellular cytoskeleton
in combination with other proteins in complexes known as
focal adhesions (Hughes et al., 1993; Zaidel-Bar et al., 2004).
A variety of intracellular signaling cascades (MAP kinase, Rho–
ROCK, and Wnt/β-catenin) are activated upon exposure to
mechanical stimulation (Rubin et al., 2006; Bonewald and
Johnson, 2008; Arnsdorf et al., 2009; Jacobs et al., 2010).
Osteocytes produce biochemicals and proteins that activate
osteoblasts and osteoclasts to remodel bone (Poole et al., 2005;
Robling et al., 2008; Kramer et al., 2010; Lewiecki, 2011;
Wijenayaka et al., 2011; Tu et al., 2012; Baron and Kneissel,
2013; Delgado-Calle et al., 2017). In particular, WNT/β-catenin
signaling promotes bone formation by osteoblasts through
inhibition of sclerostin, a protein produced by osteocytes
(Papanicolaou et al., 2009; Wijenayaka et al., 2011; Moustafa
et al., 2012; Spatz et al., 2015; Thompson et al., 2015; Hemmatian
et al., 2018). Mechanical loading decreases sclerostin production
by osteocytes (Holdsworth et al., 2019) enabling bone formation.
Osteocytes also regulate osteoclastogenesis and bone resorption
through the upregulation or downregulation of receptor activator

of NFκB ligand (RANKL) and osteoprotegerin (OPG). RANKL
is a ligand for receptor activator of NFκB (RANK) present in
the cell membrane of osteoclast precursors. The binding between
RANKL and RANK triggers signaling pathways, which promote
proliferation and differentiation of mature osteoclasts (Wada
et al., 2006; Nakashima et al., 2011), which are responsible for
bone resorption. OPG is a soluble glycoprotein that acts as a
decoy receptor for RANKL, by binding to RANKL and prevents
RANK-RANKL association, thus antagonizing the signaling that
promotes osteoclastogenesis (Han et al., 2018).

We previously developed an in vitro two-dimensional (2D)
postmenopausal model to study changes in bone biology during
estrogen deficiency. We reported that estrogen withdrawal
(EW) altered the osteoblast actin cytoskeleton, PGE2 release
and expression of RUNX2, COX2, and OPN genes compared
to cells that continuously received estrogen (Brennan et al.,
2012a,c, 2014b). However, these and other studies of bone
mechanobiology and pathophysiology have largely relied on
2D in vitro cell culture and applied mechanical stimulation
in the form of flow in fluid shear stress (Alford et al., 2003;
Litzenberger et al., 2010; Li et al., 2012; Deepak et al., 2017).
Yet such 2D approaches do not represent the complexity of
in vivo biophysical cues, wherein osteocytes are embedded
within a three-dimensional (3D) matrix and are simultaneously
influenced by mechanical cues arising due to daily physical
activity. Indeed, a study of osteocytes cultured in collagen-
coated 3D scaffolds revealed a significant increase in expression
of important genes (SOST, RANKL) compared to the same
cells cultured in 2D tissue culture plastic (Spatz et al., 2015).
Moreover, osteocyte-selective gene expression (E11/GP38) by
differentiated human osteocytes cultured in 3D (with biphasic
calcium phosphate particles) was comparable to that of
mature human cortical osteocytes, whereas gene expression by
human osteoblasts cultured on 2D tissue culture plastic was
limited (Boukhechba et al., 2009). Specific matrix properties
have been identified that govern osteocyte differentiation and
mineralization by osteoblasts in vitro (Mullen et al., 2013; Mc
Garrigle et al., 2016). In particular, it has been shown that matrix
stiffness (0.58 kPa) controls the phenotypic shift from osteoblasts
to osteocytes in a 3D environment in terms of osteocyte dendrite
formation. Such strategies provide a means of investigating
osteocyte biology in a 3D environment.

To more faithfully represent the complexity of bone
mechanobiology in vivo, a 3D culture and bioreactor approach
is required. In vitro bioreactors provide a physical growth
environment for cells and tissues by subjecting them to various
types of mechanical forces, such as hydrostatic pressure (HP)
(Klein-Nulend et al., 1986; Pörtner et al., 2005; Chen and
Hu, 2006; Henstock et al., 2013; Reinwald et al., 2015). We
have previously developed a HP bioreactor that can enhance
the in vitro mineralization potential of human mesenchymal
stem cells (Freeman et al., 2017). HP has further been shown
to enhance mineralization and bone formation when applied
to osteoblasts, osteocytes, cell−seeded constructs and ex vivo
cultures of chick femurs (Roelofsen et al., 1995; Liu et al.,
2010; Henstock et al., 2013; Reinwald et al., 2015). However,
no such 3D bioreactor approach has been applied to investigate
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the interaction between estrogen deficiency, osteoblast-osteocyte
differentiation, and mechanical loading.

In this study, we tested the hypothesis that estrogen deficiency
alters mineralization and pro-osteoclastogenic potential of
osteocytes in 3D constructs under cyclic loading. Specifically, we
(1) developed a simplified 3D osteocyte model by combining
matrix-based and bioreactor strategies and (2) applied this
model to investigate whether estrogen deficiency leads to
changes in osteoblast to osteocyte transition, mechanosensation,
mineralization, and paracrine biochemical signaling associated
with bone resorption by osteoclasts.

MATERIALS AND METHODS

Osteoblast Cell Expansion and Estrogen
Pre-treatment
To closely mimic the in vivo pre-menopausal physiological
environment, and to accustom the cells to the estrogen
environment prior to our estrogen deficiency experiments,
we first expanded MC3T3-E1 osteoblastic cells (ATCC,
United States) in standard αMEM supplemented with 10%
fetal bovine serum (FBS), 100 U/mL penicillin, 100 µg/mL
streptomycin, 2 mM L-glutamine, and 1 × 10−8 M 17β-estradiol
(a naturally occurring estrogen derived from cholesterol)
and maintained the cells at 37◦C in a humidified 5% CO2
environment. This estrogen dosage is within the normal
physiological circulating serum levels in mice (Porter et al., 2002;
Wood et al., 2007; Haisenleder et al., 2011). Cell culture media
was replenished every 3–4 days. The pre-treatment duration
(14 days) was determined following preliminary experiments
and was deemed to be an appropriate duration to allow cells to
become accustomed to estrogen before subsequent withdrawal
(Brennan et al., 2014b). All reagents used in this study were from
Sigma–Aldrich unless otherwise stated.

Gelatin-Mtgase Hydrogel Encapsulation
The estrogen pre-treated MC3T3-E1 cells were suspended in
sterile microbial transglutaminase (mtgase) solution containing
Activa WM (Aginomoto foods) at 4 × 106 cells/mL. This
mtgase/cell suspension was then enzymatically crosslinked with
an equal volume of 6% gelatin (type A, 175 Bloom) (ratio of
1:1), to yield a final mtgase concentration of 0.3% w/w, a cell
density of 2 × 106 cells/mL and a gelatin concentration of
3%. This concentration for gelatin-mtgase was established based
on previously published work from our lab that demonstrated
a matrix stiffness of 0.58 kPa controls the phenotypic shift
from osteoblasts to osteocytes in a 3D environment in terms
of osteocyte dendrite formation (Mc Garrigle et al., 2016). To
produce rectangular constructs (3 mm × 4 mm × 13 mm),
the gelatin-mtgase cell suspension was pipetted into custom
made polydimethylsiloxane (PDMS) wells and allowed to cool at
4◦C for 6 min.

Estrogen Deficiency
These estrogen pre-treated MC3T3-E1 cells encapsulated in
gelatin were then cultured under the following experimental

conditions: (1) standard growth medium with estrogen
supplementation (E) (1 × 10−8 M 17β-estradiol) or (2) standard
growth medium with no estrogen supplementation, to mimic
the onset of estrogen deficiency in postmenopausal osteoporosis,
referred to as EW. For the estrogen supplemented group,
estrogen was supplemented every 3 days for the duration of the
HP and static experiments described below.

Hydrostatic Pressure (HP) Experiments
After 24 h of incubation under the different estrogen conditions
[continued estrogen supplementation (E), EW], constructs from
each experimental group were transferred from well plates
to sterile, heat-sealed, gas permeable, and water impermeable,
EVO cell culture bags (Quest Biomedical, West Midlands,
United Kingdom) containing 30 mL of their respective media,
as described above. Ten constructs were placed within each EVO
cell culture bag and air was removed. For mechanical stimulation,
the bags were placed in a custom developed HP bioreactor and
were subjected to an intermittent HP regime of 270 kPa and
a frequency of 1 Hz for 1 h per day, 5 days per week for the
duration of the study (21 days). A pressure of 270 kPa replicates
the physiological pressures experienced by osteocytes in the
lacunar–canalicular network of load-bearing bones (Zhang et al.,
1998; Reinwald et al., 2015; Reinwald and El Haj, 2018). This
pressure was found to promote bone growth and mineralization
in a developmental model of organotypically cultured ex vivo
chick fetal femurs (Henstock et al., 2013). Static control groups
were also investigated for all experimental conditions (E, EW),
and were similarly contained in heat-sealed EVO cell culture
bags and maintained in an open water bath (37◦C) for the
same duration as the mechanical stimulation periods. After
each loading bout, mechanically stimulated and static bags were
transferred to a humidified incubator and maintained at 5%
CO2 and 37◦C. Constructs were assessed at days 1, 7, and 21
by immunofluorescent staining, micro-CT, biochemical analyses,
and PCR, as are described further below.

DNA Assay
In order to assess the effects of EW on cell number, DNA content
was measured after 1, 7, and 21 day(s) of culture. At each time
point, constructs were washed twice with PBS, frozen, and stored
at −80◦C. Constructs were digested with 3.88 U/mL papain in
0.1 M sodium acetate, 5 mM L-cysteine-HCl, 0.05 M EDTA,
pH 6.0 at 60◦C under constant rotation for 18 h. Cell number
was evaluated using the Hoechst 33258 DNA assay as previously
described (Haugh et al., 2011).

Immunofluorescent Staining
Constructs from each experimental group were stained for Actin,
DAPI, dentin matrix acidic phosphoprotein 1 (DMP1), αvβ3, and
vinculin. Constructs were fixed using 4% paraformaldehyde after
1, 7, and 21 day(s) of culture at 4◦C overnight. Cells within the
constructs were permeabilized with 0.5% Triton-X in PBS for
10 min at 4◦C under agitation. After three washing steps in 1%
BSA, the constructs were immersed in 1% BSA blocking solution
for 1 h under agitation.
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For DMP1 staining, constructs were incubated in mouse
monoclonal anti-DMP1 antibody (1:100) at 4◦C overnight
(Clone 8G10.3, Merck) and then treated with a DylightTM 549
conjugate goat anti-mouse secondary antibody (1:100) (Jackson
Immunoresearch) for 1 h under agitation at room temperature.
Constructs were further counterstained with phalloidin-FITC
at 1.25 µg/mL (1:400) to stain the actin cytoskeleton and
DAPI dilactate (1:2000) to stain the nucleus. Negative controls
were previously performed on identical MC3T3-E1 encapsulated
gelatin constructs, by omitting the primary antibody incubation
step and it was found that no DMP1 staining was observed (Mc
Garrigle et al., 2016). In this study, Day 1 cell encapsulated gelatin
constructs acted as negative controls, since there is no expected
DMP1 expression at this early time point and negative staining
for DMP1 would confirm that there is no aspecific staining due
to the gelatin constructs or in cells prior to differentiation.

We performed αvβ3 and vinculin staining to investigate
whether the integrin αvβ3, previously shown to play an important
role in osteocyte mechanotransduction under EW in 2D
(Geoghegan et al., 2019), is also implicated under EW in 3D.
For integrin αvβ3 and associated membrane protein vinculin
staining, constructs were incubated in mouse anti-vinculin
primary antibody (1:100) at 4◦C overnight and then incubated in
a DylightTM 549 conjugate goat anti-mouse secondary antibody
(1:100) (Jackson Immunoresearch) for 1 h under agitation at
room temperature. Constructs were incubated in an anti-αvβ3
antibody directly conjugated to Alexa Fluor R© 488 (1:100) (Santa
Cruz) overnight at 4◦C and then incubated in DAPI dilactate
(1:200) to stain the nucleus.

To quantify all immunofluorescent staining, Z-stack imaging
was carried out using a Fluoview FV1000 confocal laser scanning
microscope system (Olympus) at a magnification of either 20x
(air) or 60x (oil immersion) with a step size of 5 or 1 µm,
respectively. All stacks were obtained at the same intensity
setting between groups. NIH ImageJ software and FV10-ASW
2.0 Viewer software were used to analyze the images. The images
used for analysis were created by combining the stacks of images
at maximum intensity projections.

Quantification of Dendritic Cells and
Intensity of DMP1 and Integrin αvβ3
Confocal images of actin/DAPI stained constructs were used for
quantification of dendritic cells. Cell processes were defined as
cellular features composed of actin, located at the cell membrane,
which extended for a distance of at least 10 µm from the
cell body, as previously described (Mullen et al., 2014). Using
this method, cell morphologies were classified as follows: (1)
“not connected dendritic” cells exhibited a small cell body and
long thin cell processes of at least 10 µm, without forming
interconnections with neighboring cells within the constructs,
(2) “not dendritic” cells exhibited a spherical or cuboidal
morphology and no cell processes, and (3) “interconnected
dendritic” cells exhibited a small cell body and long thin
cell processes of at least 10 µm, forming interconnections
with neighboring cells within the constructs. The percentage
of each type of cell classification was quantified using NIH

ImageJ software particle analysis, combining the stacks of images
at maximum intensity projections. Osteocytes are defined as
interconnected dendritic cells.

Cell area and overall fluorescence intensity were measured
using the images stained. Cell area was measured by thresholding
the images to remove background fluorescence and then using
the “wand tool” to select the region of interest around each
cell. When the software could not detect the cell perimeter,
the region of interest was drawn manually with the “freehand
tool.” The cell area thresholds were then used to determine the
intensity of the staining. All fluorescent intensities were measured
using the integrated density of each cell with their corresponding
background integrated density subtracted.

Micro-Computed Tomography (µCT)
Like constructs for immunofluorescence staining, constructs
for micro-computed tomography (µCT) were fixed using 4%
paraformaldehyde at 4◦C overnight. A construct from each
static and mechanically stimulated group was analyzed for
mineralization using µCT scanning methods (Scanco Medical
µCT100) with the following parameters: 9 mm holder, 45 kVp
tube voltage, 200 µA intensity, Al filter, 5 µm voxel size,
300 ms integration time, and a frame averaging value of 2.
Samples were scanned in air and paper strips were used to
minimize movement within the chamber. A density threshold
of 370 mg HA/cm3 (3964 Hounsfield units) was established
to exclude hydrogel material and where only mineralized
regions remained. This threshold level is higher than the
standard range for isolating mineral (90–120 mg HA/cm3)
because hydrogel and collagen materials have higher density
ranges (Vetsch et al., 2015, 2017; Manju et al., 2018; Raina
et al., 2018) (Supplementary Figure S1). µCT scans required a
Gaussian filter (0.8 sigma, 1.0 voxel support) to reduce noise.
A volume of interest (VOI) of 3.95 mm3 was 3D reconstructed
using Scanco Medical software (Switzerland) and evaluated for
mineralization properties such as bone volume fraction (BV/TV),
bone mineral density distribution (BMDD), and full width at
half max (FWHM) to assess the quantity and distribution of
mineralized material within the constructs (Vetsch et al., 2015;
Melke et al., 2016).

Extracellular ALP Activity
Cell culture medium was sampled for each experimental group
and subsequently analyzed for ALP secreted to the media. ALP
activity was determined using a colorimetric assay of enzyme
activity (SIGMAFAST p-NPP Kit), which uses p-nitrophenyl
phosphate (pNPP) (nmol) as a phosphatase substrate, with
ALP enzyme as a standard. After 1, 7, and 21 day(s) EVO
cell culture bags containing constructs were maintained in an
incubator for 2 h after the last bout of mechanical stimulation
before media was removed, frozen and stored at −80◦C. After
thawing, 40 µL of the medium was added to a 96-well plate in
triplicate with a 50 µL of pNPP solution. The plate was shielded
from direct light at room temperature for one hour. The plate
was read at 405 nm in a Synergy HT Multi-mode microplate
reader. Relative colorimetric readings were converted to ALP
activity by creating a standard ALP curve. ALP production was
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normalized to DNA content to establish whether changes in
mineralization were related to (1) the overall mineral capacity of
individual cells or (2) changes in the cell population available to
produce that mineral.

Mineralization
Calcium content within constructs was determined using a
Calcium Liquicolour kit (Stanbio Laboratories, Syntec, Ireland)
according to the manufacturer’s protocol. After 1, 7, and 21
day(s) of incubation, constructs were washed twice with PBS,
frozen, and stored at −80◦C. Constructs were then thawed and
digested by adding 1 mL of 1 M hydrochloric acid (HCL) to each
construct and maintaining the constructs at 60◦C under constant
rotation for 18 h. 10 µL each of the digested constructs and
assay standards was added to a 96-well plate and 200 µL of the
working solution was added. The plate was read on a synergy
HT Multi-mode microplate reader at an absorbance of 550 nm,
as previously described (Freeman et al., 2015).

Quantitative Real-Time PCR
Total RNA was isolated with a custom CTAB method (Koster
et al., 2016). Briefly, each construct was digested with 250 µL of
RNAse-free proteinase K solution 5 mg/mL, containing 5 mM
CaCl2. The digested constructs were mixed with 500 µL of
CTAB solution (2% [w/v] Cetyl trimethylammonium bromide,
1.4 M NaCl, 20 mM EDTA, and 100 mM Tris, pH 8) containing
1% (v/v) β-mercaptoethanol. Then 500 µL of chloroform were
added to each construct and centrifuged at 14,000 g for 2 min
at room temperature. The upper/aqueous phase was transferred
to a fresh tube and 800 µL of isopropanol (Fisher) were added
to precipitate total RNA by centrifugation (14,000 g, 15 min,
room temperature). The pellet was washed with 600 µL 70%
(v/v) ethanol and dissolved in 20 µL low TE buffer (Thermo
Fisher Scientific) for 15 min at 65◦C. RNA purity and yield were
assessed using a spectrophotometer (DS-11 FX, DeNovix), with
260/280 and 260/230 ratios over 1.8 for all constructs. 1 µg of
RNA from each construct was transcribed into cDNA using
Qiagen Quantinova reverse transcription kits and thermal cycler
(5PRIMEG/O2, Prime). Relative gene expression was studied
by quantitative real-time polymerase chain reaction (qRT-PCR).
The genes of interest included ALP (alpl- alkaline phosphatase)
for mineralization, RANKL (TNFSF11—Receptor Activator
for Nuclear Factor κ B Ligand) and OPG (TNFRSF11B—
osteoprotegerin) for pro-osteoclastogenic response, bone

sialoprotein (BSP), OCN (bglap—osteocalcin), and OPN (spp1—
osteopontin) for osteoblast phenotype and DMP1 a marker
of differentiation to osteocyte phenotype. Rpl13A was used
as reference gene (Table 1). qRT-PCR was carried out with
12.5 ng of cDNA per construct, using Qiagen Quantinova SYBR
Green PCR kit and a StepOne Plus PCR machine (Thermo
Fisher Scientific). The PCR was conducted with an enzyme
activation step at 95◦C for 10 min, and then for 40 cycles with
the following steps: 10 s extension at 95◦C, specific annealing
temperatures for each primer pair (Table 1) for 10 s, and
extension 72◦C for 20 s. Analysis of the results was done using
the Pfaffl method (Pfaffl, 2001), and the results are expressed as
relative quantitative changes to constructs from day 1 of static
culture under E.

Statistical Analysis
Statistical analyses were performed using GraphPad Prism
(version 5) software. Two−way ANOVA was used for analysis
of variance with Bonferroni’s post hoc tests to compare between
groups. The results are displayed as mean ± standard deviation.
Significance was accepted at a level of p ≤ 0.05. The entire
experiment was repeated three times with three to four replicates
analyzed for each experimental group per repeat.

RESULTS

3D Osteocyte Model Under Continued
Estrogen Treatment
We first sought to establish whether this model may be
considered an appropriate 3D osteocyte model under normal
estrogen conditions (E) and compared static and mechanically
stimulated constructs. Actin staining revealed that the MC3T3-
E1 cells began to form dendritic cell processes by day 7
under both static and mechanically stimulated conditions
(Figures 1A,B). By day 21, interconnected dendritic cells
were present (Figures 1C–F). Simultaneously, DMP1 staining
was positive at day 21 (Figures 1C,D,G,H) indicative of
phenotypic differentiation toward osteocytes. Interestingly,
the intensity of DMP1 staining decreased significantly with
mechanical stimulation (p < 0.05) (Figure 1I). Day 1 MC3T3
encapsulated gelatin constructs stained negatively for the
DMP1 marker, which confirms that there was no aspecific
staining due to the gelatin constructs or in cells prior to

TABLE 1 | List of primers employed for qRT-PCR, including sequences (5′–3′) and annealing temperatures (Tm).

Gene Forward primer Reverse primer Tm (◦C)

BSP CGGCGATAGTTCCGAAGAGG TTTCTGCATCTCCAGCCTTCT 56.3

OPN AGCAAGAAACTCTTCCAAGCAA GTGAGATTCGTCAGATTCATCCG 55.2

RANKL CCCATCGGGTTCCCATAAAG AGCAAATGTTGGCGTACAGG 58

OPG GCCACGCAAAAGTGTGGAAT TTTGGTCCCAGGCAAACTGT 57.5

OCN CCTGAGTCTGACAAAGCCTTCA GCCGGAGTCTGTTCACTACCTT 59

DMP1 AAGCTAGCCCAGAGGGACAGGCAA TTATCGGCGCCGGTCCCCGTAC 58

ALP ATCTTTGGTCTGGCTCCCATG TTTCCCGTTCACCGTCCA 57.2

Rpl13A TACCAGAAAGTTTGCTTACCTGGG TGCCTGTTTCCGTAACCTCAAG 57.3
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FIGURE 1 | Constructs under continued estrogen treatment under static conditions and mechanical stimulation. Actin (Green) staining at day 7 (A,B). Red arrows
indicate dendritic cells. Actin (green)/DMP1 (red) staining at day 21 (C–H). Merged channels for Actin/DMP1 staining (C,D). Green channel for Actin staining only
(E,F). Red channel for DMP1 staining only (G,H). DMP1 intensity (I). αvβ3 (green)/vinculin (red) staining at day 21 (J–O). Merged channels for αvβ3/vinculin staining
(J,K). Green channel for αvβ3 staining only (L,M). Red channel for vinculin staining only (N,O). αvβ3 intensity (P). Images were taken from the construct surface to a
depth of approximately 65 µm. Scale bar = 50 µm. *p < 0.05, **p < 0.01.

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org 6 June 2020 | Volume 8 | Article 601

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#articles


fbioe-08-00601 June 8, 2020 Time: 20:32 # 7

Naqvi et al. Mechanobiology of Estrogen Deficient Osteocytes

differentiation (Supplementary Figure S2). Next, we performed
immunostaining for integrin αvβ3 on day 21 constructs. All
constructs stained positively for integrin αvβ3 and vinculin
(Figures 1J–O). Semi-quantitative analysis revealed a significant
decrease in αvβ3 intensity under mechanical stimulation
compared to static culture (p < 0.005, Figure 1P).

The time of cell culture had a significant effect on
gene expression under all the conditions. For example, the
expression of DMP1 (Figure 2A) was upregulated at day 21
(p-value < 0.0005) compared to earlier time points of days
7 and 1. Our DMP1 gene expression data correlates with the
DMP1 staining, which revealed positive staining at day 21 only.
Interestingly, the difference in DMP1 intensity observed between
static and mechanically stimulated conditions was not apparent
in gene expression data. Expressions of OCN (Figure 2B) and
ALP (Figure 2C) peaked at day 7 while by day 21, they
were downregulated.

To confirm that we had mineralization as well as osteocyte
differentiation, we performed µCT on our 3D models. Analysis
of constructs at day 21 confirmed the presence of clustered
regions of density values at and above levels assigned to bone
mineral (Vetsch et al., 2015). Figures 3A,B present BMDD
analysis of these constructs with corresponding results in
Table 2. BV/TV reveal the mechanically stimulated E construct
contains ∼4.61% bone-like mineral. The percentage volumes
of high mineral density (above the 75th percentile marker)
are approximately 16% in the static construct but lower in
the mechanically stimulated group (∼13%). Consequentially,
the low mineral density (below the 25th percentile marker)
is lesser in the static (∼6%), compared to the mechanically
stimulated (∼15%) constructs. However, the volume of most
frequent mineral value (Mmode) was highest for the mechanically
stimulated E sample (597.55 mg HA/ccm), and lowest for its
static counterpart (533.6 mg HA/ccm), indicating the highest
density recorded occupies a larger volume of the 3D construct
following mechanical stimulation. FWHM, an indicator of
mineral heterogeneity, is greater in the mechanically stimulated
constructs than the static constructs. 3D reconstructions of
the thresholded regions (Figures 3C–F) demonstrate large
spaces between mineral clusters. Figures 3G,H reflect this
observation, where views of the constructs in grayscale cross-
sections (distributions at 0.3 mm intervals) display bone-like
mineral along the external layer of the construct, and some highly
clustered regions are formed within.

3D Osteocyte Estrogen Withdrawal
Model
We next investigated osteocyte differentiation under conditions
that mimic the onset of estrogen deficiency in postmenopausal
osteoporosis. Cells under EW began to form processes early
in the culture period (day 7, Figures 4A,B) and by day 21
most of the dendritic cells were interconnected (Figures 4C–F).
Furthermore, DMP1 staining revealed increased DMP1 under
EW when compared to E (Figures 4C,D,G,H). Interestingly,
after quantification of the mean intensity per cell, the DMP1
intensity increased significantly with mechanical stimulation

FIGURE 2 | Constructs under continued estrogen treatment under static
conditions and mechanical stimulation. Gene expression of DMP1 (A), OCN
(B), and ALP (C). All constructs normalized to static constructs at day 1,
&significance compared to earlier/later time point(s) for the same experimental
group; p < 0.005.

(p< 0.05) compared to static controls, which was contrary to that
observed under estrogen conditions (Figure 4I). Furthermore,
there was a significant increase in DMP1 intensity under
EW (93,458 ± 82,594) compared to E (28,778 ± 21,376) for
mechanically stimulated constructs only (p < 0.0001). Next,
we performed immunostaining of integrin αvβ3 on day 21

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org 7 June 2020 | Volume 8 | Article 601

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#articles


fbioe-08-00601 June 8, 2020 Time: 20:32 # 8

Naqvi et al. Mechanobiology of Estrogen Deficient Osteocytes

FIGURE 3 | Constructs under continued estrogen treatment under static conditions and mechanical stimulation. Graphs representing BMDD analysis, featuring full
width half max bars (FWHM) to quantify heterogeneity, the most frequent mineral density (Mmode), and markers indicating mineral density at the 25th (Mlow) and 75th
(Mhigh) percentiles (A,B). 3D reconstructions of the VOI (C–F). Orthogonal view (C,E). Top view (D,F). Scale bars = 100 µm. Grayscale views of cross-section of
constructs, alongside four sub-images of example slices, 0.3 mm apart, throughout the constructs (G,H). All scale bars = 1.0 mm.
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TABLE 2 | BMDD results for static and mechanically stimulated estrogen and
estrogen withdrawn samples, including BV/TV and volume percentages of mineral
in the lower, medium, and upper quadrants of distributed density.

Estrogen
Estrogen withdrawal

Static Stimulated Static Stimulated

BV/TV% 2.1 4.61 0.68 2.31

M(low) mineral volume% 6.349 15.165 5.530 27.483

M(medium) mineral volume% 76.981 70.876 77.93 71.201

M(high) mineral volume% 16.668 13.965 16.530 1.315

Mmode density (mg HA/ccm) 533.5984 597.552 577.9381 560.43

Mmode volume% 1.5450 0.913 1.1960 1.297

FWHM (mg HA/ccm) 233.45 403.52 277.31 294.01

Also included are the value for most frequent mineral density (Mmode) and full width
density range at half the maximum volume (FWHM).

constructs. EW constructs stained positively for integrin αvβ3 and
vinculin at day 21 (Figures 4J–O), and semi-quantitative analysis
revealed that there was a significant decrease in mechanically
stimulated groups compared to static groups (p < 0.001,
Figure 4P). This is similar to results obtained for the 3D osteocyte
model under continued estrogen treatment.

DMP1 gene expression (Figure 5A) was upregulated at day
21 (p-value < 0.0005). Our DMP1 gene expression data correlate
with the DMP1 staining, which revealed positive staining at day
21 only. Interestingly, the difference in DMP1 intensity observed
between estrogen conditions was not apparent in gene expression
data. Expressions of OCN (Figure 5B) and ALP (Figure 5C)
peaked at day 7 while at day 21, they were downregulated.

Similar to the osteocyte model under continued estrogen
treatment, µCT analysis of estrogen deficient constructs
at day 21 confirmed the presence of clustered regions
of density values at and above levels assigned to bone
mineral (Vetsch et al., 2015). Figures 6A,B present BMDD
analysis of these four constructs with corresponding results in
Table 2. Like the osteocyte model under continued estrogen
treatment, the percentage volume of high mineral density
is approximately 16% in the static constructs but notably
lower in the mechanically stimulated group. Consequentially,
the low mineral density range (below the 25th percentile
marker) is greater in the static, compared to the mechanically
stimulated constructs. In contrast to the osteocyte model
under continued estrogen treatment, the volume of most
frequent mineral value (Mmode) was highest for the static EW
sample (577.93 mg HA/ccm), and lowest for its mechanically
stimulated counterpart (560.43 mg HA/ccm), indicating the
highest density recorded occupies a larger space within the
3D construct under static conditions. Like the osteocyte model
under continued estrogen treatment, FWHM is greater in the
mechanically stimulated constructs than the static constructs.
3D reconstructions of the thresholded regions (Figures 6C–
F) demonstrate that the mechanically stimulated constructs
formed clustered bone-like mineral regions throughout the cross-
sections. Figures 6G,H display these distributions in grayscale
cross-sections at 0.3 mm intervals.

Estrogen Withdrawal Increased Cell
Interconnectivity
There was significantly greater DNA content for constructs
under E conditions, compared to EW, for both static and
mechanically stimulated conditions at day 1. The difference
between E and EW was also evident for mechanically stimulated
conditions only at day 7 (Figure 7A). DNA content at day 21
was significantly lower than days 1 and 7. The percentage of
cells with interconnected processes was significantly higher for
the constructs maintained under EW (77.0 ± 21.8%) compared
to those maintained under E (29.0 ± 6.1%) for static conditions
only (Figure 7B). Under mechanical stimulation, this same
trend was observed between EW and E (76.7 ± 21.9 and
50.7 ± 18.6%, respectively), although the difference was not
significant. Figures 7C–J illustrate representative actin/DAPI
images at day 21, which revealed that interconnected dendritic
cells were present under both static and mechanically stimulated
conditions. These images were included in the quantification of
cell interconnectivity.

Estrogen Withdrawal Increased
Osteoblast Mineralization
There was a significant increase in ALP activity under EW
compared to E for all time points under mechanical stimulation
and for days 1 and 7 under static conditions (Figure 8A).
Similarly, there was a significant increase in calcium production
for constructs maintained in EW under mechanical stimulation
compared to E for all time points (Figure 8B). There were no
differences in mineral deposition between static and mechanically
stimulated groups for E. However, for EW groups, there was
significantly more ALP activity and calcium content under
mechanical stimulation at day 7 compared to those maintained
under static conditions. Of note, both ALP activity and calcium
content increased significantly from days 1 and 7 to day 21.
Immunofluorescence of collagen type I illustrated pericellular
deposition at day 21 (Supplementary Figure S3) for all groups.

Estrogen Withdrawal Upregulates Early
Expression of Pro-mineralization
Markers and Late Expression of RANKL
Expression of BSP (Figure 9A) was upregulated only in EW
under mechanical stimulation at day 1 (p < 0.001). By day 21, its
expression significantly increased, relative to earlier time points,
for all groups regardless of culture condition. Like BSP at day 1,
expression of OPN (Figure 9B) was upregulated in EW under
mechanical stimulation (p< 0.001). However, at days 7 and 21, its
expression decreased to levels comparable to constructs under E.

After 21 days of culture, gene expression of RANKL
was significantly increased under EW for both static and
mechanically stimulated conditions (Figure 9C). OPG expression
on the other hand was not significantly different among
all groups (Figure 9D). Notably, there was a significantly
higher RANKL/OPG ratio (p < 0.005) for constructs under
EW at day 21 (Figure 9E) for both static and mechanically
stimulated conditions (2.04 ± 0.27 and 2.47 ± 0.39 fold
increase, respectively).
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FIGURE 4 | Constructs under estrogen withdrawal (EW) under static conditions and mechanical stimulation. Actin (green) staining at day 7 (A,B). Red arrows
indicate dendritic cells. Actin (green)/DMP1 (red) staining at day 21 (C–H). Merged channels for actin/DMP1 staining (C,D). Green channel for actin staining only
(E,F). Red channel for DMP1 staining only (G,H). DMP1 intensity (I). αvβ3 (green)/vinculin (red) staining at day 21 (J–O). Merged channels for αvβ3/vinculin staining
(J,K). Green channel for αvβ3 staining only (L,M). Red channel for vinculin staining only (N,O). αvβ3 intensity (P). Images were taken from the construct surface to a
depth of approximately 65 µm. Scale bar = 50 µm. *p < 0.05, ***p < 0.005.
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FIGURE 5 | Constructs under estrogen withdrawal (EW) under static
conditions and mechanical stimulation. Gene expression of DMP1 (A), OCN
(B), and ALP (C). All constructs normalized to static constructs at day 1,
&significance compared to earlier/later time point(s) for the same experimental
group; p < 0.005.

DISCUSSION

In this paper, we developed a 3D osteocyte model combining
matrix-based and bioreactor strategies to more faithfully
represent in vivo biomechanical cues. We demonstrated
that the strategy successfully enabled osteoblast to osteocyte
differentiation, as evidenced by interconnected DMP1 positive
dendritic cells that also stained positive for αvβ3 and vinculin.
Importantly, we report here for the first time that withdrawal of

estrogen altered the osteocyte response compared to continued
estrogen supplementation. Specifically osteocytes cultured
under EW conditions demonstrated increased DMP1 intensity,
cell interconnectivity, mineralization, and paracrine signaling
for osteoclastogenesis (RANKL/OPG). Here, the interaction
between mechanical stimulation and EW is of importance,
whereby significant changes due to EW were only apparent in
the presence of HP, in terms of increases in DMP1 intensity (day
21), ALP activity (days 7 and 21), calcium production (days 7
and 21), expression of markers BSP and OPN (day 1), and ratio
of RANKL:OPG (days 7 and 21) under EW.

It must be noted that there are several limitations associated
with this study. First, the MC3T3-E1 cell line may not represent
the behavior of primary osteoblasts. However, these cells are an
accepted, commercially available model of primary osteoblast
function, because they express ALP, produce mineral, and can
differentiate into osteocyte-like cells in vitro (Sudo et al., 1983).
Moreover, the use of cell lines eliminates donor variability
associated with primary cell culture and thus MC3T3-E1 cells
have been studied extensively (Luppen et al., 2003; Balkan et al.,
2005; Nakano et al., 2007; Kyono et al., 2012; Wang et al., 2012;
Hoac et al., 2013). Second, the withdrawal of estrogen in the
current study is abrupt and thus unlike in vivo estrogen depletion
during menopause in females. However, ovariectomized animal
models also undergo an immediate reduction in circulating
estrogen levels and these have been shown to be a good
representation of osteoporosis (Brennan et al., 2009; Kennedy
et al., 2009). Another limitation was that there was only one
sample from each group for micro-CT and so our conclusions
regarding mineralization are based on the biochemical analysis.
Nonetheless, micro-CT data provided a preliminary spatial
understanding of mineral deposition, which indicated an increase
in low-density mineral and the most frequent mineral density
under EW and mechanical stimulation. Our determination of
osteocyte-like cells was based on DMP1 positive staining and
the presence of dendritic cell processes, following our previous
approach (Mullen et al., 2013; Mc Garrigle et al., 2016). However,
it should be noted that DMP1 is expressed by both late osteoblasts
and osteocytes (Feng et al., 2002) and so these cells may not be
mature osteocytes. Future studies could analyze later markers
of osteocyte differentiation, in particular the osteocytic marker
Sost/sclerostin. Finally, the cell culture media used for these
experiments contains phenol red, which has reported estrogenic
activity (Berthois et al., 1986; Welshons et al., 1988). However, the
concentration of phenol red in αMEM culture media (∼11 mg/L)
used in this study is within the range of DMEM/F12 standard
culture media (∼9 mg/L), which was shown to be insufficient
to cause estrogenic effects (Moreno-Cuevas and Sirbasku, 2000).
Moreover, we used the same batch of media for both experimental
groups and further supplemented this batch with estradiol
(1 × 10−8 M) for the estrogen groups only and so we do not
have a concern that phenol red confounded the results reported
here. Indeed, we anticipate that the use of indicator free media
would exacerbate the differences between the EW group and the
continued estrogen supplemented group.

This study reported changes in osteoblast-osteocyte
transition with 3D encapsulation inducing the differentiation of
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FIGURE 6 | Constructs under estrogen withdrawal (EW) under static conditions and mechanical stimulation. Graphs representing BMDD analysis, featuring full width
half max bars (FWHM) to quantify heterogeneity, the most frequent mineral density (Mmode), and markers indicating mineral density at the 25th (Mlow) and 75th (Mhigh)
percentiles (A,B). 3D reconstructions of the VOI (C–F). Orthogonal view (C,E). Top view (D,F). Scale bars = 100 µm. Grayscale views of cross-section of constructs,
alongside four sub-images of example slices, 0.3 mm apart, throughout the constructs (G,H). All scale bars = 1.0 mm.
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FIGURE 7 | Constructs under both continued estrogen treatment (E) and estrogen withdrawal (EW) under static conditions and mechanical stimulation. Total DNA
(ng/mg) content normalized to wet weight at days 1, 7, and 21 (A). Percentage cells after 21 days of culture (B). Actin (green) and Dapi (blue) staining after 21 days
of culture illustrating cell morphology (C–F); scale bar = 50 µm. Magnifications of actin/DAPI stained images illustrating interconnections after 21 days of culture
(G–J); scale bar = 10 µm. Images were taken from the construct surface to a depth of approximately 65 µm; ***significance compared to E for the same
experimental group and time point, &significance compared to earlier time point(s) for the same experimental group, p < 0.001.

osteoblast-like cells without the addition of osteogenic growth
factors. Specifically, under continued estrogen supplementation,
cell processes began to form early in the culture period and by
end of culture, we observed a largely interconnected network of
cells within the 3D construct. This network was characterized by
long osteocyte-like interconnected dendrites. Indeed, osteocytes
form a complex interconnected dendritic network in vivo
allowing for communication with their neighbors and with
osteoblasts and osteoclasts on bone surfaces (Bonewald, 2011;
Divieti Pajevic and Krause, 2019) and thus for regulation of bone
formation and bone resorption. Furthermore, it is established
that as an osteoblast differentiates into an osteocyte, expression
of the osteoblast marker enzyme ALP is greatly reduced (Mikuni-
Takagaki et al., 1995; Nakano et al., 2004), as well as reduced

expression of OCN (Bonewald, 2011) and increased expression
of DMP1 (Narayanan et al., 2003; Rios et al., 2005). In this study,
gene expression of ALP and OCN was upregulated early in the
culture period and downregulated by the end of culture for all
groups. In contrast, DMP1 was upregulated by the end of culture
and immunostaining of DMP1 revealed positive staining also.
Of note, the DMP1 staining appeared to be nuclear for both
experimental conditions. In addition to its role in the MAP
kinase signaling cascade (Kulkarni et al., 2000), DMP1 may
function as a transcription factor in the nucleus (Narayanan
et al., 2003). One study examined nuclear localization of
DMP1 in MC3T3-E1 preosteoblast cells (Siyam et al., 2012)
and demonstrated two subpopulations with either nuclear or
cytoplasmic localization of DMP1. In addition, we found positive
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FIGURE 8 | Constructs under both continued estrogen treatment and estrogen withdrawal (EW) under static conditions and mechanical stimulation. ALP activity
normalized to DNA at days 1, 7, and 21 (A). Calcium normalized to DNA at days 1, 7, and 21 (B); #significance compared to static for the same experimental group
and time point, &significance compared to earlier time point(s) for the same experimental group, ***significance compared to E for the same experimental group and
time point; p < 0.001.

integrin αvβ3 staining by the end of culture. These results suggest
the 3D encapsulation is committing the MC3T3 cells to ultimate
differentiation into osteocytes. Indeed, it has previously been
demonstrated that 3D encapsulation of osteoblast-like cells
induces differentiation (Atkins et al., 2009; Boukhechba et al.,
2009; Woo et al., 2011; Uchihashi et al., 2013). However, in the
current study, we show that osteocyte differentiation and the
formation of interconnections are governed by a 3D matrix
without the addition of osteogenic growth factors.

Osteoblasts and osteocytes express estrogen receptor α and
β (ERα and ERβ), which play a role in regulating both
cell survival and mechanosensation (Lee et al., 2003; Saxon
et al., 2012; Castillo et al., 2014). In osteoblasts, estrogen has
been shown to play a protective role by inhibiting osteoblast
apoptosis and increasing its lifespan. Estrogen exerts these effects
due to activation of the Src/Shc/ERK signaling pathway and
downregulating JNK, which alter the activity of transcription
factors such as CREB and c-Jun/cFos (Kousteni et al., 2001,
2003). Supplementation of estrogen in osteoblasts has also been
shown to increase Opg expression (Tomkinson et al., 1997,
1998; Emerton et al., 2010; Florencio-Silva et al., 2018) and
augment Cox-2 (via β1 integrins and ERs) response to fluid
shear stress (Sterck et al., 1998; Bakker et al., 2005, 2006; Voisin
and McNamara, 2015; Deepak et al., 2017; Geoghegan et al.,
2019), and decrease RANKL and SOST expression (Brennan
et al., 2012c, 2014b). Estrogen supplementation has been shown
to have a protective role against osteocyte apoptosis (Plotkin
et al., 2005; Marathe et al., 2012), increase connexion 43
gap junction expression and mechanosensitivity (Ren et al.,
2013), and increase osteogenic signaling by MLO-Y4 osteocytes
(Deepak et al., 2017). Conversely, estrogen deficiency alters
osteoblast and osteocyte responses (Sterck et al., 1998; Bakker
et al., 2005, 2006; Voisin and McNamara, 2015; Deepak
et al., 2017; Geoghegan et al., 2019), and an in particular is
associated with an increase in osteocyte apoptosis (Brennan
et al., 2012c, 2014b). Ovariectomized rodents and osteoporotic

humans display significant increases in osteocyte apoptotic
markers (Tomkinson et al., 1997, 1998; Emerton et al., 2010;
Florencio-Silva et al., 2018).

Importantly, we observed the notable changes in osteoblast-
osteocyte differentiation under postmenopausal conditions,
stimulated by EW, as evidenced by actin staining, associated
quantification of interconnected dendrites and DMP1 staining.
Comparing EW to continued estrogen supplementation, we
found the number of interconnected cells identified late in the
culture period was significantly greater under EW. DMP1 was
also identified within the matrix by immunofluorescence late
in the culture period, and its intensity was increased under
EW and mechanical stimulation, when compared to continued
estrogen supplementation. Of note, DMP1 gene expression was
upregulated over time with no significant difference between
groups. Like continued estrogen supplementation, we found
positive integrin αvβ3 staining by the end of culture. The
quantification from fluorescence staining of αvβ3 in this study
revealed no significant differences between estrogen conditions.
Importantly, our results show for the first time the effects of
estrogen deficiency in a 3D construct.

It is interesting that early in the culture period, MC3T3 cell
number was lower under EW when compared to cells that
received continued estrogen supplementation. This reduction in
cell number could be explained by cell death or a reduction in
proliferation and concomitant differentiation (Ruijtenberg and
van den Heuvel, 2016). Notably, we also observed increased
expression of osteogenic markers BSP and OPN mRNA under
mechanical stimulation at early timepoints. Both proteins
increase bone cell adhesion in the mineralized collagen matrix
during bone formation (McKee and Nanci, 1996; Giachelli
and Steitz, 2000; Malaval et al., 2008). BSP is produced by
osteoblasts, while OPN is produced by both osteoblasts and
osteoclasts (Denhardt and Noda, 1998; Lenton et al., 2015;
Icer and Gezmen-Karadag, 2018). Although BSP acts as an
initiator of hydroxyapatite crystal formation in the bone matrix,
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FIGURE 9 | Constructs under both continued estrogen treatment and estrogen withdrawal (EW) under static conditions and mechanical stimulation. Gene
expression of BSP (A), OPN (B), RANKL (C), and OPG (D). Ratio of expression between RANKL and OPG (E). All constructs normalized to constructs of day 1 and
E, #significance compared to static for the same experimental group and time point, &significance compared to earlier time point(s) for the same experimental group,
p < 0.05 ***significance compared to E for the same experimental group and time point; p < 0.001, *significance compared to E for the same experimental group
and time point; p < 0.05.

OPN has an antagonistic effect and is a strong inhibitor of
hydroxyapatite crystal growth (Boskey et al., 2002; Harmey et al.,
2006). The upregulation of both of these genes under EW
may be a reflection of the increase in both mineralization and
bone resorption observed during early osteoporosis (McNamara,
2010). Taken together the early reduced cell number and

BSP and OPN mRNA expression might indicate that under
EW the MC3T3s transitioned toward osteocytes as soon as
estrogen was withdrawn.

With regard to mineralization, groups maintained under EW
resulted in greater ALP activity early in the culture period and
this difference was maintained with time in culture. EW caused
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no effect during the time frame of the study at the transcription
level (ALP gene expression). Of note, there was a difference in
gene expression and protein activity at day 21, with reduced ALP
gene expression and increased ALP protein activity compared to
day 7. It should be noted that gene expression is transient, and
precedes protein expression, and as such our gene expression
time points (days 1, 7, and 21) may not have captured the
upregulation of ALP gene expression, but our results do reflect
ultimate changes in ALP proteins that arise in estrogen deficiency.
However, cells maintained under EW demonstrated increased
calcium content as evidenced by biochemical analyses. This
correlates with our previous 2D in vitro study which reported
that EW caused significantly increased osteoblast mineralization
compared to continued estrogen supplementation (Brennan
et al., 2014b). Moreover, higher mineral content has previously
been reported in osteoporotic bone compared to healthy bone
from human patients (Dickenson et al., 1981). In another
study, analogs of gonadotrophin releasing hormone (GnRH)
induced short-term estrogen suppression which resulted in bone
accumulation with a higher mineralization density (Boyde et al.,
1998). In vivo studies have shown similar results; estrogen
deficiency caused by ovariectomy increased plasma levels of
systemic factors that stimulate proliferation and differentiation of
osteoblasts in rats and thus increased bone formation compared
sham-operated rats (Yokose et al., 1996). In the same study,
osteoblasts from the ovariectomized rats produced more ALP
and mineralized bone nodules compared to osteoblasts from the
sham-operated rats. It is important to note that the increased
calcium content observed under EW in our study suggests that
EW itself may be able to enhance the deposition of mineral
in the extracellular matrix even in the absence of osteogenic
growth factors. The increased expression of BSP and OPN
with mechanical loading and EW very early in the culture
period, as well as the increased intensity of DMP1 by the end
of culture under EW, may provide one explanation for the
increase in calcium content. These three phosphoproteins of the
SIBLING family have been widely implicated in the regulation of
biomineralization due to an abundance of phosphorylated serine
and threonine acid-rich domains in their composition (He et al.,
2019). These domains can bind to calcium and therefore act as
nucleators, inhibitors, anchoring molecules, growth modifiers,
or as substrates for mineral deposition. Furthermore, BSP and
DMP1 have been shown to promote mineralization (Padovano
et al., 2015). Gelatin is the only component of our scaffolds and
there is no exogenous source of calcium phosphate, therefore
all mineral nucleation must be related to the encapsulated
cells. It is possible that mineral formation arises either due
to some biological mechanism or nucleation on dead cells/cell
debris. As cell number was lower under EW and mechanical
stimulation, cell death may be a contributor to the higher
mineralization reported in that group. However, these same
conditions corresponded to higher gene expression of BSP and
OPN at the early time point of day 1, which suggests early
activation of biological mineralization processes. Interestingly,
preliminary µCT analysis revealed that mineral depositions were
thinly formed along the construct periphery and clustered toward
the center, a pattern evident of bone matrix in similarly cultured

scaffolds with hMSCs in a silk fibroin scaffold (Hagenmüller et al.,
2007; Vetsch et al., 2015). Moreover, deposition of mineral was
more heterogeneous within mechanically stimulated constructs
compared to the static constructs for both estrogen treated
and EW conditions, but that withdrawal of estrogen induces
greater homogeneity of bone-like mineral compared to continued
estrogen supplementation. It should be noted that the micro-
CT mineralization results are strictly indicative as no replicas
were available for duplicate analysis and therefore could not be
statistically analyzed.

Here we report an early upregulation of genes BSP and
OPN, which encode proteins important for osteoclast adherence
(Ross et al., 1993) and act as substrates for the ECM degrading
protein TRAP (Ek-Rylander et al., 1994). We also report a
late upregulation of the gene RANKL, which encodes the
protein RANKL important for bone resorption by osteoclasts
(Buckley and Fraser, 2002). These findings are consistent with
previously published work in 2D which report exacerbated
osteoblast-induced osteoclastogenesis (Allison and McNamara,
2019) and increased RANKL mRNA expression by MLOY4
osteocytes under EW (Geoghegan et al., 2019). During estrogen
deficiency, osteoblasts alter paracrine regulation of osteoclast
differentiation (TRAP, CTSK, NFATc1) and resorption (Allison
and McNamara, 2019). In osteocytes, EW alters integrin-based
mechanosensors in MLYO4 osteocyte-like cells, resulting in
defective COX2 responses to oscillatory fluid flow, and an
increased RANKL/OPG ratio (Geoghegan et al., 2019). Together,
these findings suggest that both osteoblasts and osteocytes play a
role in enhancing osteoclastogenesis during estrogen deficiency,
which may compound the direct effects of estrogen deficiency on
osteoclasts. Interestingly, in this study, RANKL was upregulated
under EW regardless of whether or not the constructs were
mechanically stimulated. This is consistent with the increased
RANKL mRNA expression by osteocytes mentioned earlier,
which was demonstrated in static conditions (Geoghegan et al.,
2019). Also, we report in this study an increase of dendritic cells
under EW in both static and mechanically stimulated conditions.
Thus, it is suggested that EW may itself induce these effects.
We propose that there may be an increase in available osteocyte
membrane-bound RANKL under EW, due to both the increased
RANKL mRNA expression and increased number of dendrites
we have observed in this study. It is established that estrogen
regulates bone resorption, in part, by modulating the expression
of membrane-bound RANKL on dendrites of osteocytes, which
bind with RANK on osteoclast precursors and in this way
induce osteoclastogenesis (Figures 10A,B). Based on our results,
we hypothesize that EW may enhance osteoclastogenesis as
a result of the interaction of RANKL with RANK (Honma
et al., 2014) (Figure 10B). Interestingly, it has previously been
proposed that estrogen deficiency results in an increase in PGE2
production in bone marrow stromal cells, which then induces the
expression of RANKL leading to accelerated osteoclastogenesis
through interaction with RANK (Kanematsu et al., 2000). Here,
we propose that estrogen deficiency results in an increase in
number of dendrites, which then would make more RANKL
available to bind with RANK and ultimately lead to accelerated
osteoclastogenesis.
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FIGURE 10 | Schematic representation of the proposed mechanism for accelerated osteoclastogenesis in estrogen withdrawal. (A) RANK on osteoclast precursor
binds with RANKL on dendrites of osteocytes under normal estrogen conditions. (B) Estrogen deficiency results in an increase in the number of dendrites which
suggests increased expression of RANKL leading to accelerated osteoclastogenesis as a result of interaction of RANKL with RANK on osteoclast precursors.
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The current study reveals a link between EW, osteocyte
mechanosensitivity, differentiation, mineralization, and
expression of pro-osteoclastogenic signaling in osteocyte-like
cells embedded in 3D hydrogels subjected to mechanical
stimulation without growth factors or mineralization media.
Importantly, we report for the first time that osteoblast-osteocyte
differentiation increased under estrogen deficiency, as confirmed
by actin staining, quantification of interconnected dendrites, and
DMP1 staining. These findings highlight the impact of estrogen
deficiency on bone cell function and provide a novel in vitro
osteocyte model to investigate the mechanisms underpinning
changes in bone cells after estrogen deficiency.
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