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Glioblastoma multiforme (GBM) is a devastating brain tumor and displays divergent
clinical outcomes due to its high degree of heterogeneity. Reliable prognostic biomarkers
are urgently needed for improving risk stratification and survival prediction. In this
study, we analyzed genome-wide mRNA profiles in GBM patients derived from The
Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases to
identify mRNA-based signatures for GBM prognosis with survival analysis. Univariate
Cox regression model was used to evaluate the relationship between the expression
of mRNA and the prognosis of patients with GBM. We established a risk score model
that consisted of six mRNA (AACS, STEAP1, STEAP2, G6PC3, FKBP9, and LOXL1)
by the LASSO regression method. The six-mRNA signature could divide patients into
a high-risk and a low-risk group with significantly different survival rates in training and
test sets. Multivariate Cox regression analysis confirmed that it was an independent
prognostic factor in GBM patients, and it has a superior predictive power as compared
with age, IDH mutation status, MGMT, and G-CIMP methylation status. By combining
this signature and clinical risk factors, a nomogram can be established to predict 1-, 2-,
and 3-year OS in GBM patients with relatively high accuracy.

Keywords: glioblastoma multiforme, six-mRNA signature, LASSO, prognosis, biomarkers

BACKGROUND

Glioblastoma, also known as glioblastoma multiforme (GBM), is the most common primary
malignant cancer involving the central nervous system (CNS), characterized by aggressive
invasiveness and an infiltrative growth pattern (Lapointe et al., 2018; Lee et al., 2018). According
to the Central Brain Tumor Registry of the United States (CBTRUS), GBM accounts for 14.9%
of all primary brain tumors and 55.4% of all gliomas (Alexander and Cloughesy, 2017). Current
standard treatment for GBM patients comprises maximal safe surgical resection, concurrent

Abbreviations: GBM, Glioblastoma multiforme; OS, Overall survival; L1-LASSO, Least absolute shrinkage and selection
operator; TCGA, The Cancer Genome Atlas; GEO, Gene Expression Omnibus; ROC, Receiver operating characteristic;
AUC, Area Under Curve; KPS, Karnofsky; WT, wild type; MT, mutant type; IDH1, isocitrate dehydrogenase 1; MGMT,
O6-methylguanine DNA-methyltransferase; CIMP, CpG Island Methylator Phenotype.
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chemo-radiotherapy, and adjuvant chemotherapy with
temozolomide (TMZ) (Laug et al., 2018). Despite recent advances
in multi-modality strategies and individualized therapies, GBM
patients usually have a dismal prognosis, with a median overall
survival (OS) of less than 15 months (Lapointe et al., 2018).

The 2007 World Health Organization (WHO) classification
system has been used for glioma classification over the
past decade (Fuller and Scheithauer, 2007). This histological
classification and grading system was largely based on visual
criteria alone and fails to accurately evaluate the clinical
outcomes of GBM patients. Actually, GBM patients with
indistinguishable histopathological features can have different
clinical outcomes. Accordingly, numerous efforts have been
undertaken to characterize the underlying pathological molecular
mechanisms and identify reliable prognostic markers for a precise
prediction in GBM patients. More recently, some biomarkers
including loss of 1p19q chromosome, methylation of the O6-
methylguanine DNA-methyltransferase (MGMT), and iso-citrate
dehydrogenases 1/2 (IDH1/2) have been found to be closely
related to the therapy sensitivity and prognosis (Smits and van
den Bent, 2017; Feyissa et al., 2019; Radke et al., 2019). MGMT
promoter region was recognized to have a predictive value for the
efficacy of TMZ-based chemotherapy, and mutations in the genes
encoding for iso-citrate dehydrogenases 1/2 (IDH1/2) could
predict a relatively long-term survival of GBM patients (Feyissa
et al., 2019; Radke et al., 2019). In the 2016 updated version
of the WHO classification system, molecular information has
been integrated into pathological diagnosis for further subgroup
stratification (Louis et al., 2016). However, due to the biological
heterogeneity of GBM, individual biomarkers alone are unable
to predict the therapy sensitivity and survival of GBM patients.
In this regard, there is an urgent need to identify more effective
tumor biomarkers for risk stratification and prognosis prediction.

RNA sequencing (RNA-Seq) is the most commonly used high-
throughput technology for transcriptome profiling and offers
more sensitive and accurate measurement of gene expression as
compared with traditional gene expression arrays (Wang et al.,
2009). The Cancer Genome Atlas (TCGA) has accrued RNA-
Seq-based transcriptome data across various cancer types and
thus provides a robust platform to systematically analyze the
large-scale RNA-Seq data (Peng et al., 2015). A comprehensive
characterization of gene expression changes in GBM will provide
a large number of new potential predictive and prognostic
molecular markers. In this study, we retrieved mRNA expression
profiles from a large number of GBM patients and analyzed
them by re-purposing the publicly available TCGA database to
identify an effective signature of mRNAs for predicting survival
of GBM patients.

METHODS

TCGA GBM and GSE108474 Datasets
Download and Processing
The TCGA GBM data (Level 3 RNA-Seq) of 174 individuals
with clinical information were extracted from the TCGA (GDC)
database, including data from 169 GBM tissues and 5 normal

brain tissues. The exclusion criteria are as follows: (1) GBM was
ruled out by histological diagnosis, (2) the existence of another
malignancy with GBM, and (3) patient death due to unrelated
causes. Only patients who were followed up for longer than a
month were included in the subsequent analysis. Finally, 152
GBM patients were included in this study. Seventy percent of the
TCGA patients were randomly selected as the training set and
the remaining 30% of the patients were selected as the test set.
As the data were downloaded from the public database, ethical
approval was not applicable in this case. The data processing
procedures met the policies of TCGA data access and human
subject protection1. GSE108474 from the GEO database was
conducted through GPL (Affymetrix Human Genome U133 Plus
2.0 Array)2. A total of 210 GBM samples were selected from
the GSE108474 database. The GEO data were also downloaded
from the public database platform. Count data from the TCGA
set and GSE108474 set were integrated into expression matrix,
which were converted to TPM and standardized to Z score data
for subsequent model analysis.

Identification of Differentially Expressed
mRNAs in GBM
Three bioconductor software analysis packages—Deseq2,
limma + voom, and edgerR—are used to analyze the difference
of mRNA expression read count data. The expression differences
were characterized by logFC (log2 fold change). mRNAs with |
logFC| > 1 (P < 0.05) were considered differentially expressed
mRNAs and selected for further analysis.

Identification of mRNAs Significantly
Associated With OS and Prognostic
Signature Construction in GBM
The semi-supervised method combining both the gene
expression data and clinical data was used to identify candidate
mRNAs with a prognostic value. Univariate Cox regression
analysis was conducted to identify common mRNAs related
to OS within each of the subgroups stratified by the IDH
status. Within each group of clinical characteristics, the patient
subclasses represented non-overlapping sets. Common mRNAs
associated with OS in at least two independent subgroups were
selected for the subsequent study, using an HR > 1 or HR < 1
with P < 0.05 as the cutoff.

Definition of the Prognostic Risk Model
and ROC Curve Analysis
The TCGA dataset “caret” package was randomly divided
into a training set and a testing set. An importance score
was calculated by the supervised principal component method
and assigned to each mRNA. Tenfold cross-validation was
used to estimate the optimal feature threshold in supervised
principal components and select significant mRNAs. The linear
mRNA signature prognostic model was developed based on the
supervised principal component method. The mRNA expression

1http://cancergenome.nih.gov/publications/publicationguidelines
2https://www.ncbi.nlm.nih.gov/geo/
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level was expressed as the Z score. The prognostic score was
calculated as follows: Prognostic score = (0.058 × Expression
AACS) + (0.015 × Expression STEAP1) + (0.009 × Expression
STEAP2)+ (0.039× Expression G6PC3)+ (0.014× Expression
FKBP9) + (0.067 × Expression LOXL1). Then, the prognostic
scores were computed for the 152 patients using our mRNAs
prognostic model. The optimal cutoff value of the prognostic
score was decided in the ROC (receiver operating characteristic)
curve analysis for predicting 1-, 2-, and 3-year survival of the
training set. The OS curves were evaluated using the Kaplan–
Meier (KM) and log-rank method. Time-dependent ROC curves
were used to evaluate the predictive power of the mRNA
signature model. All analyses were performed using the R
(version 3.5.2) and Bioconductor (version 3.9).

Survival Analysis
The differences in clinical features including sex, age, IDH1,
MGMT, and the survival status between the training set, internal
testing set, and independent validation set were analyzed using
the chi-square test. A univariate Cox model was performed to
investigate the relationship between the continuous expression
level of each DEmRNA and OS and for preliminary screening
of clinical variables that were correlated with OS of the GBM
patients. Hazard ratios (HRs) and P-values from univariate Cox
regression analysis were used to identify candidate survival-
related DEmRNAs. DEmRNAs with HR for death > 1 were
defined as high-risk RNAs, and those with HR < 1 were
defined as protective RNAs. The common DEmRNAs meeting
the criterion of P-value < 0.05 were selected as survival-related
DEmRNAs and further analyzed in LASSO regression to identity
the most powerful prognostic markers. Finally, a multi-mRNA-
based classifier was constructed for predicting OS. To quantify
the risk of OS, a standard form of risk score (RS) for each GBM
patient was calculated in combination with the relative expression
levels of the mRNAs.

Statistical Analysis
Mann–Whitney U-test and χ2-test were used to compare
the correlation between continuous variables and classified
variables between the training data and test data, respectively.
The independent prognostic variables of OS were screened
by univariate and multivariate regression analyses. L1-LASSO
penalization was carried out using “glmnet” and “pliable”
software packages. KM method was used to draw the survival
curve based on survminer software package, and log-rank
test was used to compare it. Using “rms” software package,
Cox’s regression coefficient was calculated to establish the risk
assessment formula and mRNA nomogram. Knowing that time-
dependent ROC curve analysis is widely used in biomedical
reports to evaluate the prediction accuracy of six mRNA
signatures, we used the “timeROC” software package to analyze
the time-dependent ROC curve. The volcanoes and heat maps
were drawn by using the “ggpolt2” software package of the
R software. All other statistical tests were carried out with R
software version 3.5.2 and the corresponding basic software
packages. The value of P < 0.05 was determined to be
statistically significant.

RESULTS

Baseline Characteristics of the Patients
and Analysis Flow
Included in this study were 152 GBM patients from TCGA
database and 210 GBM patients from the GEO database
(GSE108474). The detailed baseline characteristics of the training
set and test set are listed in Table 1 from the TCGA database.
The results showed no significant difference in the baseline
characteristics between the two sets (all P > 0.05). A total of 210
GBM patients from the GEO database make up an independent
validation set. Our research process is shown in Figure 1.

Candidate OS-Related mRNAs of GBM
Patients in the TCGA Cohort
In the TCGA database, 5754 differentially expressed mRNAs
[false detection rate < 0.05 and log2 fold change (Log2fc) ≥ 1]
were identified by using the expression profiles of 19,781
mRNAs in 152 cases of GBM and 5 cases of normal brain
tissues. These 5754 mRNA volcanoes were visualized through
the “ggplot2” package of R software (Figures 2A–C). These
5754 differentially expressed mRNAs were considered to be
the potential prognostic markers of GBM patients, in which
the expression of 3054 mRNAs was up-regulated and that of
2700 mRNAs was down-regulated. To filtrate out the mRNAs
associated with OS, the Cox’s regression and LASSO regression
analyses (lambda parameter selection 1SE) were performed in
sequence (Figures 2D,E). Finally, six mRNAs related to OS were
selected, including AACS, STEAP1, STEAP2, G6PC3, FKBP9,
and LOXL1 (Table 2).

Development of the Risk Score Formula
and Six-mRNA-Based Prognostic Model
To facilitate the application of identified OS-related mRNAs in
clinical practice, the risk score of each patient was calculated
using the following equation: Risk score = (0.058 × Expression
AACS) + (0.015 × Expression STEAP1) + (0.009 × Expression
STEAP2)+ (0.039× Expression G6PC3)+ (0.014× Expression
FKBP9) + (0.067 × Expression LOXL1). According to the risk
score, Youden index (Hughes, 2015) was set to the cutoff value,
based on which GBM patients were categorized into a low-
risk group and a high-risk group (Figure 3A). The survival
status of GBM patients in the low- and high-risk groups was
obvious in both cohorts (Figure 3B). The heat map showed the
expression of six mRNAs (AACS, STEAP1, STEAP2, G6PC3,
FKBP9, and LOXL1) in the samples (Figure 3C). In addition,
compared with the low-risk group, KM survival analysis showed
that the prognosis of GBM patients in the high-risk group was
significantly worse than that in the low-risk group (training and
test set in TCGA database P < 0.00011, validation set of GEO
database P < 0.0001) (Figures 4A,B). To evaluate the prognostic
prediction performance of GBM patients based on the six-mRNA
signature model, we compared the AUC values at different time
points to draw the survival ROC curve. The AUC value of the
primary set and the validation set at 1, 2, and 3 years was
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TABLE 1 | Baseline characteristic of study patients.

Variables Training date Test date Overall P-value

No. of patients 107 45 152

Age (years), N
(%)

1

Mean (SD) 59.2 (13.4) 59.8 (13.4) 59.6 (13.3)

Median [Min,
Max]

59.0 [21.0, 79.0] 62.0 [21.0, 85.0] 60.0 [21.0, 85.0]

Age (years), N
(%)

0.668

< 50 11 (24.4%) 22 (20.6%) 33 (21.7%)

≥ 50 34 (75.6%) 85 (79.4%) 119 (78.3%)

Sex, N (%) 0.143

Female 20 (44.4%) 34 (31.8%) 54 (35.5%)

Male 25 (55.6%) 73 (68.2%) 98 (64.5%)

KPS type, N
(%)

<70 9 (20.0%) 23 (21.5%) 32 (21.1%) 0.921

≥70 26 (57.8%) 58 (54.2%) 84 (55.3%)

Unknown 10 (22.2%) 26 (24.3%) 36 (23.7%)

IDH1 type, N
(%)

0.486

MT 2 (4.4%) 7 (6.5%) 9 (5.9%)

WT 40 (88.9%) 97 (90.7%) 137 (90.1%)

Unknown 3 (6.7%) 3 (2.8%) 6 (3.9%)

CIMP type, N
(%)

0.787

G-CIMP 3 (6.7%) 6 (5.6%) 9 (5.9%)

Non-G-CIMP 41 (91.1%) 100 (93.5%) 141 (92.8%)

Unknown 1 (2.2%) 1 (0.9%) 2 (1.3%)

MGMT type, N
(%)

0.864

Methylated 18 (40.0%) 38 (35.5%) 56 (36.8%)

Unmethylated 18 (40.0%) 45 (42.1%) 63 (41.4%)

Unknown 9 (20.0%) 24 (22.4%) 33 (21.7%)

Race type, N
(%)

0.448

Black or
African.
American

3 (6.7%) 6 (5.6%) 9 (5.9%)

White 42 (93.3%) 95 (88.8%) 137 (90.1%)

Asian 0 (0%) 5 (4.7%) 5 (3.3%)

Unknown 0 (0%) 1 (0.9%) 1 (0.7%)

Status, N (%) 0.825

Alive 9 (20.0%) 20 (18.7%) 29 (19.1%)

Dead 36 (80.0%) 87 (81.3%) 123 (80.9%)

OS time 0.883

Mean (SD) 461 (427) 439 (364) 445 (382)

Median [Min,
Max]

394 [64.0, 2680] 382 [33.0, 2130] 383 [33.0, 2680]

0.660, 0.668, and 0.674, and 0.680, 0.741, and 0.743, respectively
(Figures 4C,D).

To analyze risk factors affecting the prognosis of GBM
patients, univariate Cox’s analysis was performed and the result
showed that the prognosis of GBM patients was associated with
age, IDH1 mutation, MGMT methylation, CIMP methylation,

FIGURE 1 | Flowchart showing steps involved in identification of
multi-mRNA-based prognostic signature in GBM.

and the six-mRNA signature, but not with gender and KPS
(Karnofsky) score. Subsequent multivariate analysis showed that
the six-mRNA signature was an independent prognostic survival
factor in GBM patients (Table 3).

Predictive Ability of the Six-mRNA-Based
Model in Different Risk Stratification
To show whether the six-mRNA-based model could predict the
OS time of patients, clinical risk factors including age, KPS score,
IDH1 mutation status, MGMT methylation status, and CIMP
methylation status in GBM patients were stratified. In patients
with age = 50 years (P = 0.006), age < 50 years (P = 0.013),
MGMT methylated (P < 0.005), KPS = 70 (P < 0.005), CIMP
unmethylated (P < 0.005), and IDH1 WT (P = 0.015), OS of
GBM patients in the low-risk group was significantly better than
that in the high-risk group. However, in patients with KPS < 70
(P = 0.088) and MGMT unmethylated (P = 0139), there was no
significant difference in OS between the low-risk and high-risk
groups (Figures 5A–H).

To build a convenient and sensitive predictive tool for clinical
use, a new prognostic model based on the six-mRNA model was
established by combining signature and four clinical risk factors
(age, IDH1 status, MGMT status, and CIMP status) to predict 1-,
2-, and 3-years OS in GBM patients. The results showed that the
six-mRNA signature and MGMT methylated status contributed
most to OS in 1, 2, and 3 years, followed by the CIMP methylated
status, patient age, and the IDH1 mutation status in six-mRNA-
based nomograms. Each variable obtained a nomogram score on
the point scale. By calculating the total score of the nomogram,
we easily obtained the nomogram prediction probability of each
patient for 1-, 2-, and 3-years OS (Figure 6).
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FIGURE 2 | Differentially expressed mRNAs (DEmRNAs) in GBM vs. normal tissues. Volcano Plot: The colorized points in scatter plot represent the DEmRNAs with
statistical significance (P-value < 0.05, |logFC| > 1) (A). Venn Plot visualizing the DEmRNAs which was screened by limma Deseq2 and edgeR (B). Two-way
hierarchical clustering of 152 tumor tissues and 5 normal tissues with the 2114 differentially expressed RNAs using Euclidean distance and average linkage
clustering (C). mRNA selection using the least absolute shrinkage and selection operator (LASSO) binary COX regression model. Tuning parameter (λ) selection in
the LASSO model (D). LASSO coefficient profiles (E).

Comparison With Other Prognostic
Factors
To compare the predictive accuracy of different prognostic
factors, ROC analysis showed that the six-miRNA signature had
higher prognostic accuracy than mRNA alone (Figures 7A–
C). More importantly, the accuracy of six-mRNA signature
prediction was also significantly better than that of clinical risk
factors such as age, IDH1 mutation status, MGMT methylation,
and G-CIMP methylation status (Figure 7D).

TABLE 2 | Six prognostic mRNAs associated with OS in the training set.

Name Coefficient Type Down/up-
regulated

HR 95% CI P-value

AACS 0.058 Risky Down 1.132 1.028–1.126 0.011*

STEAP1 0.015 Risky Up 1.012 1.003–1.021 0.012*

STEAP2 0.009 Risky Down 1.08 1.035–1.126 <0.001*

G6PC3 0.039 Risky Up 1.012 1.005–1.019 <0.001*

FKBP9 0.014 Risky Up 1.003 1.001–1.005 0.004*

LOXL1 0.067 Risky Up 1.009 1.004–1.013 <0.001*

*P < 0.05 was considered statistically significant.

DISCUSSION

Transcriptional aberrations play a crucial role in the complex
regulatory network of glioblastoma and are of great importance
for the prognosis of this deadly cancer (Bian et al., 2018).
Previous studies mainly focused on the function of individual
differently expressed mRNAs, which may not be sufficient to
clarify the underlying mechanism of tumorigenesis and predict
the prognosis of GBM patients (Stoltz et al., 2015; Hu et al.,
2017; Yu et al., 2017). Given the high molecular heterogeneity
of GBM, integrating multiple biomarkers into a prediction
model could improve the prognostic value as compared with a
single biomarker. Such multiple-gene signature can be used in
prognosis prediction and personalized therapy due to its great
power and superiority of risk stratification in many cancers
including GBM (Lai et al., 2019; Zuo et al., 2019). Based on this
gene signature, patients can be divided into different risk groups
so that more sophisticated or intensive targeted therapies could
be selected accordingly.

Currently, many prognostic studies have sought to find
GBM-specific genomic signatures based on massive genomic
data generated by the large-scale cancer genomics projects
such as the TCGA database. Yao et al. (2012) have introduced
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FIGURE 3 | The distribution of risk scores (A). Patient survival time and status. The black dotted line represents the optimum cutoff dividing patients into low-risk
and high-risk groups (B). The expression heat map of the mRNAs in a prognostic classifier (C).

an algorithm using Cox proportional hazard regression and
random re-sampling to identify functional gene sets linked to
patient survival based on microarray gene expression datasets
(TCGA and REMBRANDT). Another study conducted by Jing
et al. (Han and Puri, 2018) found that the expression of
interleukin-13 receptor α1 and α2 genes was associated with
poor prognosis in GBM patients by using TCGA data. In
addition, Wang et al. (2016) developed a signature with three
genes that had prognostic values for patients with MGMT
promoter-methylated GBM. However, it should be noted that
the predictive power might be limited by the small number
of individual mRNAs or specific tumor entities in these
studies. Recently, Zuo et al. (2019) built an RNA-Seq-based
six-gene signature to predict survival in patients with GBM
by analyzing RNA-Seq-based gene expression profiles in the
CGGA and TCGA databases. They found that this signature
could divide patients into a high-risk or low-risk group with
different OS and was independent of other clinicopathological
features. However, the mRNAs in Zuo’s six-gene signature
were not all screened from differentially expressed genes
in glioma and normal brain tissues, which may limit its
significance in revealing tumor heterogeneity. For this reason, we

screened the differentially expressed genes by Cox proportional
hazard regression in the present study and only chose GBM
survival-related PCGs for further analysis in LASSO regression.
Consequently, a six-gene signature was generated using gene
expression data from two public databases and was validated in
two cohorts of patients.

Various factors may affect the survival of GBM patients,
including age, KPS score, extent of surgical removal, MGMT
methylated, and the IDH1 mutation status. Our univariate
analysis of the TCGA cohort showed that age, IDH1 mutation,
MGMT methylated, and CIMP methylated were significantly
associated with OS of GBM patients, which is consistent
with numerous previous studies (Hegi et al., 2008; Cohen
et al., 2013; de Souza et al., 2018). In our study, in GBM
patients with age =50 years (P = 0.006), age <50 years
(P = 0.013), MGMT methylated (P < 0.005), KPS = 70
(P < 0.005), CIMP unmethylated (P < 0.005), and IDH1
WT (P = 0.015), OS of patients in the low-risk group was
significantly better than that in the high-risk group. Furthermore,
our subsequent multivariate analysis confirmed that this six-gene
signature was an independent prognostic predictor of survival
for GBM patients.
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FIGURE 4 | Survival analysis of the patients divided by prognostic mRNA in high and low risk. Kaplan–Meier curves of overall survival in TCGA (A) and GSE108474
(B) datasets showed poor survival for patients with a high-risk score. ROC curve for 1, 2, and 3 year survival prediction by the six-gene signature in TCGA (C) and
GSE108474 (D) datasets.

TABLE 3 | Univariate and multivariate Cox’s regression analyses in the training set.

Variables Patients (N) Coefficient Univariate analysis Multivariate analysis

HR 95% CI P-value HR 95% CI P-value

Age ≥50/<50 119/33 0.579 1.784 1.13–2.818 0.013* 1.143 0.692–5.563 0.601

Gender Female/Man 54/98 0.062 1.064 0.732–1.547 0.745

KPS ≥70/<70 108/44 −0.084 0.915 0.611–1.368 0.663

IDH1 Unknown/Mut 6/9 0.217 1.242 0.176–8.758 0.828

WT/Mut 137/9 1.176 3.242 1.317–7.979 0.011* 1.324 0.234–7.493 0.751

MGMT Methylated/Unknown 33/63 −0.306 0.736 0.458–1.182 0.205

Methylated/Unmethylated 56/63 −0.474 0.622 0.408–0.949 0.028* 0.681 0.444–1.045 0.079

CIMP Unknown/non-G-CIMP 2/141 −17.360 0.000 0–inf 0.995

G-CIMP/non-G-CIMP 9/141 −1.196 0.303 0.111–0.822 0.019* 0.835 0.138–5.031 0.844

Six-mRNA signature High/Low 129/23 1.048 2.850 1.621–5.02 0.00028* 2.901 1.513–5.563 0.001*

*P < 0.05 was considered statistically significant.
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FIGURE 5 | Stratification analysis by different clinical variables. Meier curve analysis of overall survival in high- and low-risk group for younger (age < 50) (A) and
older patients (age ≥ 50) (B). KPS ≥ 70 (C), and < 70 (D). MGMT methylated status as methylated (E) and unmethylated (F). G-CIMP methylated (G). IDH1
mutation status as WT (H).
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FIGURE 6 | Nomograms to predict 1, 2, and 3 year survival probability in GBM. Total points were obtained by adding up the corresponding points of each individual
covariate on the points scale.

The six-mRNA signature identified in this study includes
four up-regulated mRNAs (STEAP1, G6PC3, FKBP9, and
LOXL1) and two down-regulated mRNAs (STEAP2 and
AACS) with respect to their expression levels in GBM tissue
samples. Among these genes, a few genes have established
roles in cancers, and other genes might be potential new
biomarkers for cancers. STEAP1 and STEAP2, the members
of the human six-transmembrane epithelial antigen of the
prostate (STEAP) protein family, are highly over-expressed
in many different cancer entities including prostate, bladder,
breast, colon, and lung carcinoma, Ewing’s sarcoma, anaplastic
thyroid carcinoma, and malignant melanoma (Hubert et al.,
1999; Valenti et al., 2009; Gomes et al., 2012). The high rate
of co-expression of STEAP1 and 2 has been observed in
cancer cell lines. However, the functional role of STEAP1 and
STEAP2 in glioma has not yet been established. Acetoacetyl-
CoA synthetase (AACS, acetoacetate-CoA ligase) plays an
important role in cholesterol homeostasis and normal
neuronal development and was found abundant in normal
brain tissues (Ohgami et al., 2003). Knockdown of AACS
in primary neurons decreased the expression of MAP-2
and NeuN, two known markers of neuronal differentiation
(Hasegawa et al., 2012). G6PC3 is known to encode
enzymes that have glucose-6-phosphatase activity, which
is ubiquitously expressed in various tissues (Hayee et al.,
2011). TP53 can reduce gluconeogenesis by down-regulating

the expression of G6PC gene in colon and liver cancer
cells and in vivo, thus implying an important regulatory
relationship between TP53 and G6PC gene (Zhang et al.,
2014). FKBP9 belongs to the FK506-binding protein (FKBP)
family, which has peptidyl–prolyl cis–trans isomerases with
the enzymatic function attributable to the FKBP domain (Jo
et al., 2001). LOXL1, like other Lysyl oxidase (LOX) family
members, has an established role in modifying the tumor
microenvironment by crosslinking collagens and elastin in
the extracellular matrix (Behmoaras et al., 2008). Increased
LOXL1 was found in pancreatic ductal adenocarcinoma (Le
Calve et al., 2016). In addition, the expression of LOXL1
was found to be correlated with T invasion, lymph node
metastasis, and lymphatic and venous invasion in gastric cancer
(Kasashima et al., 2014).

In adopting the prediction model of this study, the
following limitations need to be considered. First of all, the
biological functions and molecular mechanisms of the six
mRNAs in the prediction model in glioma remain unclear
and further researches are needed. Second, clinical data
of postoperative intervention measures for GBM patients
in TCGA and GEO databases are incomplete, such as
radiotherapy and chemotherapy, so we cannot conduct a
comprehensive analysis of OS. Third, the prediction model
cannot effectively predict the patient OS with KPS <70
and MGMT demethylation between the low- and high-risk
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FIGURE 7 | Comparisons of prognostic accuracy at 1 year using the time-dependent receiver operating characteristic curve in the six-mRNA signature with a single
mRNA from training date (A), test date (B), TCGA date (C) separately, and the six-mRNA-based prognostic model with age, IDH1 status, MGMT methylated status,
and G-CIMP methylation in GBM (D).

group. Therefore, multi-center, large-scale, prospective
studies are needed to validate the predictive model in
clinical practice.

CONCLUSION

In this study, we have identified a six-gene signature for
predicting survival of GBM patients by analyzing RNA-Seq
gene expression profiles in the TCGA and GEO databases.
This multiple-RNA-based signature could effectively stratify
GBM patients into low- and high-risk groups with separate
survival curves. Our multivariate analysis demonstrated that
this six-gene signature is an independent prognostic predictor
of survival of GBM patients. To the best of our knowledge,
this is the first report about the prognostic value of the
six RNAs (STEAP1, G6PC3, FKBP9, STEAP2, AACS, and
LOXL1) in GBM, which may serve as new genetic clues for a
better understanding about the development, progression, and
recurrence of GBM.

DATA AVAILABILITY STATEMENT

Publicly available datasets were analyzed in this study. This data
can be found here: http://gepia.cancer-pku.cnGSE108474.

AUTHOR CONTRIBUTIONS

ZL, HZ, and HH analyzed the data and wrote the manuscript.
ZC and CL designed the study and performed data. QL and JQ
prepared the figures and tables. All authors read and approved
the final manuscript.

FUNDING

This work was supported by the National Natural Science
Foundation of China (Nos. 81270038 and 81802480), the
Shanghai Natural Science Foundation (Nos. 19ZR144890 and
20ZR1457400), and the Scientific Research Initial Funding of
Shanghai Tongji Hospital (No. RCQD1704).

Frontiers in Genetics | www.frontiersin.org 10 March 2021 | Volume 12 | Article 634116

http://gepia.cancer-pku.cn GSE108474
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-12-634116 March 7, 2021 Time: 16:49 # 11

Liu et al. Six-mRNA Signature in Glioblastoma Multiforme

REFERENCES
Alexander, B. M., and Cloughesy, T. F. (2017). Adult glioblastoma. J. Clin. Oncol.

35, 2402–2409.
Behmoaras, J., Slove, S., Seve, S., Vranckx, R., Sommer, P., and Jacob, M. P. (2008).

Differential expression of lysyl oxidases LOXL1 and LOX during growth and
aging suggests specific roles in elastin and collagen fiber remodeling in rat aorta.
Rejuvenation Res. 11, 883–889. doi: 10.1089/rej.2008.0760

Bian, S., Repic, M., Guo, Z., Kavirayani, A., Burkard, T., Bagley, J. A., et al. (2018).
Genetically engineered cerebral organoids model brain tumor formation. Nat.
Methods 15, 631–639. doi: 10.1038/s41592-018-0070-7

Cohen, A. L., Holmen, S. L., and Colman, H. (2013). IDH1 and IDH2 mutations in
gliomas. Curr. Neurol. Neurosci. Rep. 13:345.

de Souza, C. F., Sabedot, T. S., Malta, T. M., Stetson, L., Morozova, O., Sokolov,
A., et al. (2018). A distinct DNA methylation shift in a subset of glioma CpG
island methylator phenotypes during tumor recurrence. Cell Rep. 23, 637–651.
doi: 10.1016/j.celrep.2018.03.107

Feyissa, A. M., Worrell, G. A., Tatum, W. O., Chaichana, K. L., Jentoft, M. E.,
Guerrero Cazares, H., et al. (2019). Potential influence of IDH1 mutation and
MGMT gene promoter methylation on glioma-related preoperative seizures
and postoperative seizure control. Seizure 69, 283–289. doi: 10.1016/j.seizure.
2019.05.018

Fuller, G. N., and Scheithauer, B. W. (2007). The 2007 revised World Health
Organization (WHO) classification of tumours of the central nervous system:
newly codified entities. Brain Pathol. 17, 304–307. doi: 10.1111/j.1750-3639.
2007.00084.x

Gomes, I. M., Maia, C. J., and Santos, C. R. (2012). STEAP proteins: from structure
to applications in cancer therapy. Mol. Cancer Res. 10, 573–587. doi: 10.1158/
1541-7786.mcr-11-0281

Han, J., and Puri, R. K. (2018). Analysis of the cancer genome atlas (TCGA)
database identifies an inverse relationship between interleukin-13 receptor
alpha1 and alpha2 gene expression and poor prognosis and drug resistance
in subjects with glioblastoma multiforme. J. Neurooncol. 136, 463–474. doi:
10.1007/s11060-017-2680-9

Hasegawa, S., Kume, H., Iinuma, S., Yamasaki, M., Takahashi, N., and Fukui,
T. (2012). Acetoacetyl-CoA synthetase is essential for normal neuronal
development. Biochem. Biophys. Res. Commun. 427, 398–403. doi: 10.1016/j.
bbrc.2012.09.076

Hayee, B., Antonopoulos, A., Murphy, E. J., Rahman, F. Z., Sewell, G., Smith,
B. N., et al. (2011). G6PC3 mutations are associated with a major defect of
glycosylation: a novel mechanism for neutrophil dysfunction. Glycobiology 21,
914–924. doi: 10.1093/glycob/cwr023

Hegi, M. E., Liu, L., Herman, J. G., Stupp, R., Wick, W., Weller, M.,
et al. (2008). Correlation of O6-methylguanine methyltransferase (MGMT)
promoter methylation with clinical outcomes in glioblastoma and clinical
strategies to modulate MGMT activity. J. Clin. Oncol. 26, 4189–4199. doi:
10.1200/jco.2007.11.5964

Hu, X., Martinez-Ledesma, E., Zheng, S., Kim, H., Barthel, F., Jiang, T., et al. (2017).
Multigene signature for predicting prognosis of patients with 1p19q co-deletion
diffuse glioma. Neuro Oncol. 19, 786–795. doi: 10.1093/neuonc/now285

Hubert, R. S., Vivanco, I., Chen, E., Rastegar, S., Leong, K., Mitchell, S. C., et al.
(1999). STEAP: a prostate-specific cell-surface antigen highly expressed in
human prostate tumors. Proc. Natl. Acad. Sci. U.S.A. 96, 14523–14528. doi:
10.1073/pnas.96.25.14523

Hughes, G. (2015). Youden’s index and the weight of evidence. Methods Inf. Med.
54, 198–199.

Jo, D., Lyu, M. S., Cho, E. G., Park, D., Kozak, C. A., and Kim, M. G. (2001).
Identification and genetic mapping of the mouse Fkbp9 gene encoding a new
member of FK506-binding protein family. Mol. Cells 12, 272–275.

Kasashima, H., Yashiro, M., Kinoshita, H., Fukuoka, T., Morisaki, T., Masuda, G.,
et al. (2014). Lysyl oxidase-like 2 (LOXL2) from stromal fibroblasts stimulates
the progression of gastric cancer. Cancer Lett. 354, 438–446. doi: 10.1016/j.
canlet.2014.08.014

Lai, J., Wang, H., Pan, Z., and Su, F. (2019). A novel six-microRNA-based model to
improve prognosis prediction of breast cancer. Aging (Albany NY) 11, 649–662.
doi: 10.18632/aging.101767

Lapointe, S., Perry, A., and Butowski, N. A. (2018). Primary brain tumours in
adults. Lancet 392, 432–446. doi: 10.1016/s0140-6736(18)30990-5

Laug, D., Glasgow, S. M., and Deneen, B. (2018). A glial blueprint for
gliomagenesis. Nat. Rev. Neurosci. 19, 393–403. doi: 10.1038/s41583-018-
0014-3

Le Calve, B., Griveau, A., Vindrieux, D., Marechal, R., Wiel, C., Svrcek, M., et al.
(2016). Lysyl oxidase family activity promotes resistance of pancreatic ductal
adenocarcinoma to chemotherapy by limiting the intratumoral anticancer
drug distribution. Oncotarget 7, 32100–32112. doi: 10.18632/oncotarget.
8527

Lee, E., Yong, R. L., Paddison, P., and Zhu, J. (2018). Comparison of glioblastoma
(GBM) molecular classification methods. Semin. Cancer Biol. 53, 201–211. doi:
10.1016/j.semcancer.2018.07.006

Louis, D. N., Perry, A., Reifenberger, G., von Deimling, A., Figarella-Branger,
D., Cavenee, W. K., et al. (2016). The 2016 World Health Organization
classification of tumors of the central nervous system: a summary. Acta
Neuropathol. 131, 803–820. doi: 10.1007/s00401-016-1545-1

Ohgami, M., Takahashi, N., Yamasaki, M., and Fukui, T. (2003). Expression of
acetoacetyl-CoA synthetase, a novel cytosolic ketone body-utilizing enzyme, in
human brain. Biochem. Pharmacol. 65, 989–994. doi: 10.1016/s0006-2952(02)
01656-8

Peng, L., Bian, X. W., Li, D. K., Xu, C., Wang, G. M., Xia, Q. Y., et al. (2015). Large-
scale RNA-Seq transcriptome analysis of 4043 cancers and 548 normal tissue
controls across 12 TCGA cancer types. Sci. Rep. 5:13413.

Radke, J., Koch, A., Pritsch, F., Schumann, E., Misch, M., Hempt, C., et al.
(2019). Predictive MGMT status in a homogeneous cohort of IDH wildtype
glioblastoma patients. Acta Neuropathol. Commun. 7:89.

Smits, M., and van den Bent, M. J. (2017). Imaging correlates of adult
glioma genotypes. Radiology 284, 316–331. doi: 10.1148/radiol.201715
1930

Stoltz, K., Sinyuk, M., Hale, J. S., Wu, Q., Otvos, B., Walker, K., et al. (2015).
Development of a Sox2 reporter system modeling cellular heterogeneity in
glioma. Neuro Oncol. 17, 361–371. doi: 10.1093/neuonc/\break{}nou320

Valenti, M. T., Dalle Carbonare, L., Donatelli, L., Bertoldo, F., Giovanazzi, B.,
Caliari, F., et al. (2009). STEAP mRNA detection in serum of patients with solid
tumours. Cancer Lett. 273, 122–126.

Wang, W., Zhang, L., Wang, Z., Yang, F., Wang, H., Liang, T., et al. (2016). A three-
gene signature for prognosis in patients with MGMT promoter-methylated
glioblastoma. Oncotarget 7, 69991–69999.

Wang, Z., Gerstein, M., and Snyder, M. (2009). RNA-Seq: a revolutionary tool for
transcriptomics. Nat. Rev. Genet. 10, 57–63.

Yao, J., Zhao, Q., Yuan, Y., Zhang, L., Liu, X., Yung, W. K., et al. (2012).
Identification of common prognostic gene expression signatures with biological
meanings from microarray gene expression datasets. PLoS One 7:e45894. doi:
10.1371/journal.pone.0045894

Yu, Z., Sun, Y., She, X., Wang, Z., Chen, S., Deng, Z., et al. (2017). SIX3, a tumor
suppressor, inhibits astrocytoma tumorigenesis by transcriptional repression of
AURKA/B. J. Hematol. Oncol. 10:115.

Zhang, P., Tu, B., Wang, H., Cao, Z., Tang, M., Zhang, C., et al. (2014).
Tumor suppressor p53 cooperates with SIRT6 to regulate gluconeogenesis
by promoting FoxO1 nuclear exclusion. Proc. Natl. Acad. Sci. U.S.A. 111,
10684–10689.

Zuo, S., Zhang, X., and Wang, L. (2019). A RNA sequencing-based six-gene
signature for survival prediction in patients with glioblastoma. Sci. Rep. 9:2615.

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Copyright © 2021 Liu, Zhang, Hu, Cai, Lu, Liang, Qian, Wang and Jiang. This is an
open-access article distributed under the terms of the Creative Commons Attribution
License (CC BY). The use, distribution or reproduction in other forums is permitted,
provided the original author(s) and the copyright owner(s) are credited and that the
original publication in this journal is cited, in accordance with accepted academic
practice. No use, distribution or reproduction is permitted which does not comply
with these terms.

Frontiers in Genetics | www.frontiersin.org 11 March 2021 | Volume 12 | Article 634116

https://doi.org/10.1089/rej.2008.0760
https://doi.org/10.1038/s41592-018-0070-7
https://doi.org/10.1016/j.celrep.2018.03.107
https://doi.org/10.1016/j.seizure.2019.05.018
https://doi.org/10.1016/j.seizure.2019.05.018
https://doi.org/10.1111/j.1750-3639.2007.00084.x
https://doi.org/10.1111/j.1750-3639.2007.00084.x
https://doi.org/10.1158/1541-7786.mcr-11-0281
https://doi.org/10.1158/1541-7786.mcr-11-0281
https://doi.org/10.1007/s11060-017-2680-9
https://doi.org/10.1007/s11060-017-2680-9
https://doi.org/10.1016/j.bbrc.2012.09.076
https://doi.org/10.1016/j.bbrc.2012.09.076
https://doi.org/10.1093/glycob/cwr023
https://doi.org/10.1200/jco.2007.11.5964
https://doi.org/10.1200/jco.2007.11.5964
https://doi.org/10.1093/neuonc/now285
https://doi.org/10.1073/pnas.96.25.14523
https://doi.org/10.1073/pnas.96.25.14523
https://doi.org/10.1016/j.canlet.2014.08.014
https://doi.org/10.1016/j.canlet.2014.08.014
https://doi.org/10.18632/aging.101767
https://doi.org/10.1016/s0140-6736(18)30990-5
https://doi.org/10.1038/s41583-018-0014-3
https://doi.org/10.1038/s41583-018-0014-3
https://doi.org/10.18632/oncotarget.8527
https://doi.org/10.18632/oncotarget.8527
https://doi.org/10.1016/j.semcancer.2018.07.006
https://doi.org/10.1016/j.semcancer.2018.07.006
https://doi.org/10.1007/s00401-016-1545-1
https://doi.org/10.1016/s0006-2952(02)01656-8
https://doi.org/10.1016/s0006-2952(02)01656-8
https://doi.org/10.1148/radiol.2017151930
https://doi.org/10.1148/radiol.2017151930
https://doi.org/10.1093/neuonc/\break{}nou320
https://doi.org/10.1371/journal.pone.0045894
https://doi.org/10.1371/journal.pone.0045894
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles

	A Novel Six-mRNA Signature Predicts Survival of Patients With Glioblastoma Multiforme
	Background
	Methods
	TCGA GBM and GSE108474 Datasets Download and Processing
	Identification of Differentially Expressed mRNAs in GBM
	Identification of mRNAs Significantly Associated With OS and Prognostic Signature Construction in GBM
	Definition of the Prognostic Risk Model and ROC Curve Analysis
	Survival Analysis
	Statistical Analysis

	Results
	Baseline Characteristics of the Patients and Analysis Flow
	Candidate OS-Related mRNAs of GBM Patients in the TCGA Cohort
	Development of the Risk Score Formula and Six-mRNA-Based Prognostic Model
	Predictive Ability of the Six-mRNA-Based Model in Different Risk Stratification
	Comparison With Other Prognostic Factors

	Discussion
	Conclusion
	Data Availability Statement
	Author Contributions
	Funding
	References


